首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tree species diversity was measured in a network of very small galleryforests within the Mountain Pine Ridge savanna in Belize. Research focussed onforest patches smaller than 1 ha in size (micro-forests) and linearstrips of trees along creeks lacking interior core zones with low understoreylight levels (tree thickets). Twenty-five micro-forests and 51 tree thicketsites were sampled throughout the savanna. A total of 144 morphospecies 5cm dbh (106 in micro-forests and 117 in tree thickets) werefound, which represents 1/5 of the approximately 700 native tree species in Belize.Most (85.3%) of the species encountered are typically found in tropical rainforests and few are restricted to savanna or riparian environments. Speciesaccumulated at a much faster rate in micro-forests than in tree thickets. Onlyone species, the palm Acoelorraphe wrightii, was extremelyabundant, accounting for almost 30% of all stems. Many of the species werepresent in very low densities: 19% of all species found in micro-forests and 42%of those found in tree thickets had on average one or fewer stems per hectare. Alarge proportion of species were also found infrequently across the landscape,being present in only 36% of micro-forests and at 52% of tree thicket sites. Theresults indicate that networks of very small forest patches can contain highnumbers of species and could therefore contribute to the maintenance of regionalbiodiversity.  相似文献   

2.
Forest continuity has been identified as an important factor influencing the structure and diversity of forest vegetation. Primary forests with centuries of continuity are usually more diverse than young secondary forests as forest are colonized only slowly and because the former are richer in old tree individuals. In the present study, performed in unmanaged high-elevation spruce forests of the Harz Mountains, Germany, we had the unique opportunity to separate the effects of forest continuity and tree age on plant diversity. We compared an old-growth spruce forest with century-long habitat continuity with an adjacent secondary spruce forest, which had naturally established on a former bog after 1796 when peat exploitation halted. Comparative analysis of the ground and epiphyte vegetation showed that the plant diversity of the old-growth forest was not higher than that of the secondary forest with a similar tree age of >200 years. Our results suggest that a period of >200 years was sufficient for the secondary forest to be colonized by the whole regional species pool of herbaceous and cryptogam forest plants and epiphytes. Therefore, it is likely that habitat structure, including the presence of old and decaying trees, was more important for determining plant diversity than the independent effect of forest continuity. Our results are probably not transferrable to spruce forests younger than 200 years and highly fragmented woodlands with long distances between new stands and old-growth forests that serve as diaspore sources. In addition, our results might be not transferable to remote areas without notable air pollution, as the epiphyte vegetation of the study area was influenced by SO2 pollution in the second half of the 20th century.  相似文献   

3.
Protected forest areas of Sulawesi are gradually being replaced by intensively used agroforestry systems and farmland, especially in lowland and sub-montane regions. Studies on the impact of these man-induced changes on biodiversity are of urgent conservation concern. We compared the fruit-feeding butterfly assemblage of a natural hill forest to that of a disturbed hill forest, representing a mosaic of old secondary forest and recently abandoned or active subsistence farms. Overall, species richness seemed highest in the disturbed site, but both abundance and diversity of endemic butterflies were significantly higher in the natural forest. Although the butterfly assemblage showed a clear vertical structure in the natural forest, vertical stratification was no longer pronounced at the disturbed site. Comparative studies based on diversity estimates from ground samples should consider not only the scale at which sampling is carried out and influences from nearby habitat patches in the surrounding landscape mosaic, but also possible behavioural changes in stratified species after forest modification. This study shows that higher overall species richness does not imply higher species distinctiveness, and indicates that the contribution of land-use systems to global biodiversity should be evaluated with caution, even when relatively high species richness estimates are found.  相似文献   

4.
In the coastal littoral forest of extreme southeastern Madagascar, westudied tree diameter at breast height (DBH) 10 cm in 20, 50× 50 m plots in each of four forest fragments, andunderstorywoody vegetation (DBH < 10 cm, 1 m tall) in60,10 × 10 m plots in three of the fragments. Oneforestfragment was located in the highly degraded Lokaro region, and three in the nearbySainte-Luce forest. Atotal of 3476 trees, representing 169 species in 55 families, were recorded inthe50 × 50 m plots, and 10282 understory stems, representing195 species in 54 families, were found in the 10 × 10m plots. For each tree, DBH was recorded. Mean tree diameter andpatterns of tree size class distribution did not differ among the four forestfragments. However, the fragments differed significantly in both tree andunderstory stem densities, species richness and diversity values, and familyrichness values, with the Lokaro fragment having the lowest values for allmeasures. Furthermore, floristic patterns, family importance values, and communitysimilarity measures revealed that the species composition at theLokaro fragment was very different from the Sainte-Luce fragments. Anthropogenicdisturbance appears most pronounced in the isolated Lokaro forest, where bioticresources are limited to this single fragment.  相似文献   

5.
Tropical montane cloud forest exhibits great heterogeneity in speciescomposition and structure over short geographic distances. In central Veracruz,Mexico, the conservation priority of seven cloud forest fragments was assessedby considering differences in woody plant species richness and complementarityof species among sites, forest structure, tree mortality, and timber andfirewood extraction as indicators of anthropogenic disturbance. Densities oftrees 5 cm dbh (360–1700 trees/ha) weredifferent among the sites, but basal area (35.3–89.3m2/ha) did not differ among fragments. The number of dead trees rangedfrom 10–30 to 170–200 trees/ha. The fragments'species composition was different but complementary. The Morisita–Hornindex indicated low similarity between fragments. A non-parametric estimator ofspecies richness indicated that more sampling effort would be necessary tocomplete the inventory (15 additional trees and two understory shrub species).Unfortunately, most of the fragments are threatened with deforestation. The numberof cut trees was similar among sites (0–15 cut trees/0.1 ha).Sites with immediate need for conservation were close to settlements, with highnumbers of cut trees and no legal protection. The selected sites represent thevariety of situations that exist in the region. Given the high complementarityobserved between fragments, a regional conservation approach will be required topreserve the last repositories of part of the tremendous biodiversity of theonce continuous forest in this region.  相似文献   

6.
西双版纳热带山地雨林群落乔木树种多样性研究   总被引:9,自引:1,他引:9  
根据块样地资料对西双版纳热带山地雨林树种多样性特征进行了分析.结果表明,在2 500m2的样地上,随着起测胸径递增,各样地乔木个体数和树种丰富度均表现为依次递减;低海拔带上(850~1000 m)的山地雨林(1、2号样地)的各指数值无一定变化规律,较高海拔带上(1200~2000 m)的山地雨林(3~6号样地)的Shannon-Wiener指数和Simpson指数均表现为依次递减,而Pielou均匀度指数则呈依次递增的趋势.较高海拔带上的山地雨林在较小乔木起测胸径(≥2 cm、≥5 cm、≥10 cm)的树种丰富度、多样性和均匀度指数均要明显大于低海拔带上的山地雨林,而两者在较大乔木起测胸径(≥20 cm、≥30 cm、≥50 cm)的各指数值无明显差异.随着取样面积的递增,各样地树种丰富度、多样性和均匀度指数在取样面积递增到2 000m2处均已趋于平缓.  相似文献   

7.
分析了南亚热带常绿阔叶林不同大小和发育阶段林隙内树种多样性的变化规律.结果表明,在南亚热带常绿阔叶林中,多样性指数在<400m2的林隙中变化不大,但在400~500m2的林隙中达到最大,而在500~600m2的林隙中最小,在>600m2的林隙中又有所增大.树种多样性指数随林隙年龄的变化趋势是中间高两端低,即在20~50年期间的多样性最大,其次是20年以下的,50年以后的多样性相对最小.林隙更新层中树种多样性指数在500~600m2的林隙中达到最大,在>600m2和200~300m2的林隙中最小.林隙更新层树种多样性指数在林隙形成最初的10年内达到最大值,但随着林隙年龄的增加,总体上表现出下降趋势,在30~40年和50~60年左右又分别形成两个相对的峰值.物种丰富度的变化趋势总体上与树种多样性指数相一致.不同大小和发育阶段的林隙通过其生态因子的改变,对不同树种的更新起到了不同的作用,从而使得不同大小和发育阶段的林隙中树种的多样性特征不同.林隙是维持南亚热带常绿阔叶林树种多样性的一个重要机制.  相似文献   

8.
Plant functional traits are the plant physiological characteristics which can response to the changes of the living environment and have a certain impact on the ecosystem structure and function. The objective of our study was to explore characters of present functional diversity indices, the relationships between functional diversity and environmental variables, the relevance of species diversity and functional diversity. In this paper, habitat type, seed dispersal, pollination method, life cycle, life form, leaf form, leaf hair type, flowering period and flowering time were chosen as functional traits, and the research were done in the typical forest communities in the Xiaowutai Mountain National Nature Reserve, Hebei. One hundred and forty-eight quadrats (10 m × 10 m) of forest communities were established along altitude gradients, at the same time, species composition, functional traits, and environmental variables were measured in each quadrat. The results showed that functional diversity indices in forest communities that were calculated by functional distances varied greatly. Functional diversity indices (FAD, MFAD, FDp, FDc, FRic, Rao and FDis) had highly significantly positive correlation with Patrick index and showed a linear increasing trend. All the nine functional diversity indices (FAD, MFAD, FDp, FDc, FRic, Rao, FEve, FDiv, FDis) had significantly correlation with Shannon-Wiener index and Pielou index. Only FDiv showed significantly negative correlation, and the other eight functional diversity indices showed positive correlation. Environmental filtering was important to functional diversity pattern, and functional diversity indices showed correlation with environmental variables. Altitude was a significant factor to functional diversity in forest communities. Except for FDiv, other functional diversity indices displayed a decreasing trend along altitude gradients. Among all the functional diversity indices, only Rao and FDis showed significantly positive correlation with aspect. The functional diversity indices (FAD, MFAD, FDp, FDc, FRic, Rao and FDdis) showed a negative correlation with slope, slope position, litter layer thickness, soil thickness, while, they showed a positive correlation with soil temperature and disturbance. All the nine indices were proved successful in the analysis of functional diversity in forest communities with different effectiveness. They were divided into three categories, functional richness (FAD, MFAD, FDp, FDc, FRic), functional divergence (Rao, FDis), functional evenness (FEve, FDis). Meanwhile, each category was highly inter-correlated and each category was relatively independent with other categories. The study of functional diversity provides a number of ecological indication and monitoring methods for the forest, and it can address a wide range of important ecological questions that links species and ecosystems through mechanisms in biodiversity research.  相似文献   

9.
It is generally assumed that declining soil fertility during cultivation forces farmers to clear forest. We wanted to test this for a rainforest margin area in Central Sulawesi, Indonesia. We compared soil characteristics in different land-use systems and after different length of cultivation. 66 sites with four major land-use systems (maize, agroforestry, forest fallow and natural forest) were sampled. Soils were generally fertile, with high base cation saturation, high cation exchange capacity, moderate pH-values and moderate to high stocks of total nitrogen. Organic matter stocks were highest in natural forest, intermediate in forest fallow and lowest in maize and agroforestry sites. In maize fields soil organic matter decreased during continuous cultivation, whereas in agroforestry it was stable or had the tendency to increase in time. The effective cation exchange capacity (ECEC) was highest in natural forest and lowest in maize fields. Base cations saturation of ECEC did not change significantly during cultivation both maize and agroforestry, whereas the contribution of K cations decreased in maize and showed no changes in agroforestry sites. Our results indicate that maize cultivation tends to reduce soil fertility but agroforestry systems are able to stop this decline of soil fertility or even improve it. As most areas in this rain forest margin are converted into agroforestry systems it is unlikely that soil degradation causes deforestation in this case. On the contrary, the relatively high soil fertility may actually attract new immigrants who contribute to deforestation and start agriculture as smallholders.  相似文献   

10.
We used a highly replicated study to examine vegetation characteristics between patches of intervened forest, abandoned agroforestry systems with coffee and actively managed agroforestry systems with coffee in a tropical landscape. In all habitats, plant structural characteristics, individual abundance, species richness and composition were recorded for the three plant size classes: adult trees, saplings and seedlings. Furthermore, bird species richness and composition, and seeds dispersed by birds were recorded. Tree abundance was higher in forest habitats while saplings and seedlings were more abundant in abandoned coffee sites. Although species richness of adult trees was similar in the three habitats, species richness of saplings and seedlings was much higher in forest and abandoned coffee than in managed coffee sites. However, in spite of their relatively low species richness, managed coffee sites are an important refuge for tree species common to the almost disappeared mature forest in the area. Floristic similarity for adult trees was relatively low between land use types, but clearly higher for seedlings, indicating homogenizing processes at the landscape level. More than half of the saplings and seedling were not represented by adults in the canopy layer, suggesting the importance of seed dispersal by birds between habitats. Our results show that each of the studied ecosystems plays a unique and complementary role as seed source and as habitat for tree recovery and tree diversity.  相似文献   

11.
Species composition, physiognomy, and plant diversity of the less known cloud forests in Yunnan were studied based on data collected from 35 sample plots at seven sites. In floristic composition, the cloud forests are mainly comprised of Fagaceae, Ericaceae, Vacciniaceae, Aceraceae, Magnoliaceae, Theaceae, Aquifoliaceae, Illiciaceae, Lauraceae, and Rosaceae. Physiognomically, the forests are dominated by tree and shrub species. Lianas are rare in the forests. The plants with microphyllous or nanophyllous leaves comprise 44.32–63.46% of the total species, and plants with an entire leaf margin account for more than 50% of the tree and shrub species. There are few tree and shrub species with a drip tip leaf apex and papery leaves. Evergreen species make up more than 75% of the total tree and shrub species. In a 2,500 m2 sampling area, the number of vascular species ranged between 57 and 110; Simpson’s diversity index ranged from 0.7719 to 0.9544, Shannon–Winner’s diversity index from 1.8251 to 3.2905, and Pielou’s evenness index from 0.5836 to 0.8982 for trees. The cloud forests in Yunnan are physiognomically similar to the tropical cloud forests in America and Southeast Asia. They very much resemble the mountain dwarf mossy forest in Hainan Island, southeastern China, and the Mountain ericaceous forests in the Malay Peninsula. The cloud forests in Yunnan are considered to be developed, as are the tropical upper montane cloud forests in Asia.  相似文献   

12.
We characterized stand structure and floristic composition of woody life forms in three, 16–18 yr old secondary stands that regenerated after pasture abandonment, and three nearby old-growth stands of tropical rain forest in lowland Costa Rica. Basal area and stem density for each of four plant size classes (seedlings, saplings, treelets, trees) were similar among stand types, but density of adult canopy palms (individuals 10 cm DBH), was lower in the secondary stands. We estimate that 15% of the basal area of stems 10 cm DBH correspond to remnant trees in our secondary stands. The observed rapid woody regrowth compared to other published studies in the lowland neotropics, can be attributed to moderate land use and possibly, to the influence of nutrient-rich volcanic soils in the study area. Overall, plant species richness was lower in the secondary stands, but this difference was less pronounced in the smallest size classes (seedlings, saplings). Median percent similarity of all pairwise stand comparisons showed that floristic composition of saplings (stems 1 m tall and 5 cm DBH) was more similar between secondary and old-growth stands than for trees (stems 10 cm DBH). Because the potential value of secondary forests in conserving woody plant diversity appears highest for the young size classes, we suggest that further studies on floristic composition, especially those addressing the dynamics of the understory component, are needed to refine our understanding of the role of this natural resource in the maintenance of plant biodiversity in disturbed landscapes.  相似文献   

13.
14.
Tropical montane cloud forest landscapes are changing, and forest conversion to other land uses is a major driver of biodiversity loss. Land use intensification can lead to significant losses in biodiversity and carbon storage (C); however, the impacts may vary greatly depending on land use type, management practices, and environmental context. We investigated how biodiversity and C are related along a gradient of land use intensification characterized by four dominant land uses in the upper part of Antigua River watershed, Mexico. The land uses were montane cloud forest, secondary forest, and traditional and intensive shade coffee plantations. We determined tree species composition, diversity, ecosystem structure, wood density and C content in dominant tree species to assess aboveground biomass (AGB) and C storage within eight study sites across the land use intensity gradient. A total of 83 tree species was recorded. A canonical correspondence analysis indicated that land uses are separated by particular tree species assemblages. Forests had higher basal area, density, and biomass than coffee plantations, however, the traditional shade coffee plantation had values similar to secondary forest. Calculating C using the standard estimate of 50% of AGB resulted in an overestimation of stored C by 5.8 to 4.1% compared to calculations based on actual measurements. Carbon storage in AGB and biodiversity were strongly and positively related across the land use intensity gradient, although the distinction between the two different intensities of coffee plantation management was not consistently as clear as we had expected. Carbon was highest in forest, but secondary forests and traditional shade coffee plantation had similar C, while intensive coffee had the lowest C content. These results highlight the importance of considering the potential of low intensity land uses such as traditional coffee plantations to mitigate biodiversity loss and preserve ecosystem functions as part of conservation efforts.  相似文献   

15.
If secondary succession can accumulate species rapidly, then tropical secondary forests may have an important role to play in the conservation of biodiversity. Data on the floristic composition of forest stands in the Central Catchment Nature Reserve, Singapore, have been analysed to investigate the diversity of approximately 100-year-old tropical secondary forest. Classification using TWINSPAN indicated that three floristic communities could be recognized from 59 0.2 ha plots enumerated for trees >30 cm gbh. These were two types of secondary forest, both dominated by Rhodamnia cinerea (Myrtaceae), and dryland primary forest. The secondary forest was developed on land abandoned after use for agriculture at the end of the 19th century. The 16 primary forest plots contained a total of 340 species, more than the 281 recorded from the 43 plots of the two secondary forest types combined. The mean species number per plot in the more diverse of the two secondary forests was only about 60% of the primary forest. Thus the secondary forest, despite a century or so for colonization by species and the presence of contiguous primary forest, was still significantly less diverse than primary forest areas. It is concluded that secondary forest cannot be assumed to accrete biodiversity rapidly in the tropics, and may not be of direct value in conservation. However, other indirect roles, such as providing resources for native animals, and buffering and protecting primary forest fragments may make the protection of secondary forest worthwhile.  相似文献   

16.
Species composition, diversity and tree population structure were studied in three stands of the tropical wet evergreen forest in and around Namdapha National Park, Arunachal Pradesh, India. Three study stands exposed to different intensities of disturbances were identified, viz., undisturbed (2.4 ha) in the core zone of the park, moderately disturbed (2.1 ha) in the periphery of the park and highly disturbed (2.7 ha) outside the park area. In total 200 plant species belonging to 73 families were recorded in three stands. Tree density and basal area showed a declining trend with the increase in disturbance intensity. The densities of tree saplings and seedlings were lower in the disturbed stands than in the undisturbed stand. Species like Altingia excelsa, Olea dioica, Terminalia chebula, Mesua ferrea and Shorea assamica in the undisturbed stand and Albizia procera alone in the moderately disturbed stand contributed more than 50% of the total tree density in respective stands. The undisturbed stand contained young tree population. In the highly disturbed stand, the tree density was scarce, but had uncut trees of higher girth class (>210 cm GBH). Low shrub density was recorded in both disturbed stands due to frequent human disturbances; the broken canopy and direct sunlight enhanced the abundance of herbs in these stands. With a species rarity (species having <2 individuals) of ca. 50%, the tropical wet evergreenforests of the Namdapha National Park and its adjacent areas warrant more protection from human intervention and also eco-development to meet the livelihood requirements of the local inhabitants in the peripheral areas of the Namdapha National Park in order to reduce the anthropogenic pressure on the natural resources of the park.  相似文献   

17.
Aiba  Shin-ichiro  Kitayama  Kanehiro 《Plant Ecology》1999,140(2):139-157
We studied forest structure, composition and tree species diversity of eight plots in an environmental matrix of four altitudes (700, 1700, 2700 and 3100 m) and two types of geological substrates (ultrabasic and non-ultrabasic rocks) on Mount Kinabalu, Borneo. On both substrate series, forest stature, mean leaf area and tree species diversity (both 4.8 cm and 10 cm diameter at breast height [dbh]) decreased with altitude. The two forests on the different substrate series were similar at 700 m in structure, generic and familial composition and tree species diversity, but became dissimilar with increasing altitude. The decline in stature with altitude was steeper on the ultrabasic substrates than on the non-ultrabasic substrates, and tree species diversity was generally lower on ultrabasic substrates than on non-ultrabasic substrates at 1700 m. The forests on non-ultrabasic substrates at higher altitudes and those on ultrabasic substrates at the lower altitudes were similar in dbh versus tree height allometry, mean leaf area, and generic and familial composition at 1700 m. These contrasting patterns in forest structure and composition between the two substrate series suggested that altitudinal change was compressed on the ultrabasic substrates compared to the non-ultrabasic substrates. Tree species diversity was correlated with maximum tree height and estimated aboveground biomass, but was not with basal area, among the eight study sites. We suggest that forests with higher tree species diversity are characterized by greater biomass allocation to height growth relative to trunk diameter growth under more productive environment than forests with lower tree species diversity.  相似文献   

18.
Mature tropical forests at agricultural frontiers are of global conservation concern as the leading edge of global deforestation. In the Ituri Forest of DRC, as in other tropical forest areas, road creation associated with selective logging results in spontaneous human colonization, leading to the clearing of mature forest for agricultural purposes. Following 1-3 years of cultivation, farmlands are left fallow for periods that may exceed 20 years, resulting in extensive secondary forest areas impacted by both selective logging and swidden agriculture. In this study, we assessed forest structure, tree species composition and diversity and the regeneration of timber trees in secondary forest stands (5-10 and ~40 years old), selectively logged forest stands, and undisturbed forests at two sites in the Ituri region. Stem density was lower in old secondary forests (~40 years old) than in either young secondary or mature forests. Overall tree diversity did not significantly differ between forest types, but the diversity of trees ≥10 cm dbh was substantially lower in young secondary forest stands than in old secondary or mature forests. The species composition of secondary forests differed from that of mature forests, with the dominant Caesalpinoid legume species of mature forests poorly represented in secondary forests. However, in spite of prior logging, the regeneration of high value timber trees such as African mahoganies (Khaya anthotheca and Entandrophragma spp.) was at least 10 times greater in young secondary forests than in mature forests. We argue that, if properly managed and protected, secondary forests, even those impacted by both selective logging and small-scale shifting agriculture, may have high potential conservation and economic value.  相似文献   

19.
Swidden agriculture, commercial logging and plantation development have been considered to be the primary common causes of degradation and loss of tropical rain forests in Southeast Asia. In this paper, I chose a part of northeastern Sarawak, East Malaysia as my case study area to analyze the changes in its land-use characteristics. In the study area, as well as primeval forests, we see that land use began about 100 years ago by a native group called the Iban; commercial logging began in the 1960s, and the development of oil palm plantations began recently. I describe the changes in land use as well as their social and economic causes by referring to aerial photographs, literature surveys, interviews with government officers and the Iban, and observation of land use. My analysis of land use demonstrates that on “state land”, where commercial logging and oil palm plantation development are occurring, large areas of forest have been disturbed in a short period of time. The objective is to benefit economically in response to the social and economic conditions surrounding the study area. On the other hand, in the “Iban territory,” where the Iban practice their land use, land conversion has not occurred on a large scale and in a short period of time, even though the forest has been cut and agricultural fields have been created in response to social and economic conditions as well. They disperse small agricultural fields throughout their forest land. Therefore, the landscape of the “Iban territory” is based on secondary forest, composed of patches of forest in various stages and with several types of agricultural land. Today in Sarawak, monocrop plantations are rapidly expanding and little primeval forest remains. Given these conditions, the land-use practices of natives such as the Iban will be evaluated from the viewpoint of ecosystem and biodiversity conservation. It could play an important role in providing habitats for natural wildlife.  相似文献   

20.
Tree species richness, tree density, basal area, population structure and distribution pattern were investigated in undisturbed, mildly disturbed, moderately disturbed and highly disturbed stands of tropical wet evergreen forests of Arunachal Pradesh. The forest stands were selected based on the disturbance index (the basal area of the cut trees measured at ground level expressed as a fraction of the total basal area of all trees including felled ones): (i) undisturbed stand (0% disturbance index), (ii) mildly disturbed (20% disturbance index), (iii) moderately disturbed (40% disturbance index), and (iv) highly disturbed stand (70% disturbance index). Tree species richness varied along the disturbance gradient in different stands. The mildly disturbed stand showed the highest species richness (54 of 51 genera). Species richness was lowest (16 of 16 genera) in the highly disturbed stand. In the undisturbed stand, 47 species of 42 genera were recorded while in the moderately disturbed stand 42 species of 36 genera were found. The Shannon–Wiener diversity index for tree species ranged from 0.7 to 2.02 in all the stands. The highest tree diversity was recorded in the undisturbed stand and the lowest in the highly disturbed stand. The stands differed with respect to the tree species composition at the family and generic level. Fagaceae, Dipterocarpaceae and Clusiaceae dominated over other families and contributed 53% in the undisturbed, 51% in the mildly disturbed, 42% in the moderately disturbed and 49% in the highly disturbed forest stands to the total density of the respective stand. Stand density was highest (5452 stems ha–1) in the undisturbed stand, followed by the mildly disturbed stand (5014), intermediate (3656) in the moderately disturbed stand and lowest (338) in the highly disturbed stand. Dominance, calculated as the importance value index of different species, varied greatly across the stands. The highest stand density and species richness were represented in the medium girth class (51–110 cm) in all the stands. In the undisturbed stand, the highest density was found in the 111–140 cm girth class, while in the mildly disturbed stand the 51–80 cm girth range recorded the highest density. About 55, 68 and 52% species were found to be regenerating in the undisturbed, mildly disturbed and moderately disturbed stands, respectively. No regeneration was recorded in the highly disturbed stand. Variation in species richness, distribution pattern and regeneration potential is related to human interference and the need for forest conservation is emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号