首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enzyme inactivating the pyruvate dehydrogenase complex (inactivase) was purified about 8000-fold from rat liver by differential centrifugation, acid extraction of a lysosomerich 25000 g pellet, acetone fractionation, and adsorption on calcium phosphate gel. By exclusion chromatography on Sephadex G-100 a molecular weight of 21 000 was estimated. The purified enzyme was most stable at pH 5.8 in potassium phosphate buffer, and at pH 4.5 in McIlvaine buffer. At high dilutions the enzyme was very labile and was remarkably stabilized by high salt concentrations. Enzyme activity is inhibited by native rat blood serum, iodoacetamide and leupeptin, but not by phenylmethanesulphonyl fluoride, suggesting that it belongs to the class of thiol proteinases. Among various enzymes tested, only 2-oxoglutarate dehydrogenase was attacked by the inactivase to a similar extent to the pyruvate dehydrogenase complex. Studies on the inactivation mechanism indicate that although the overall reaction is completely lost after treatment with inactivase, each individual step of the multienzyme complex retains full catalytic activity. As judged from sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the transacetylase subunit appears to be degraded into several smaller fractions.  相似文献   

2.
On the basis of the homodimeric X-ray structure of dihydrolipoamide dehydrogenase from Azotobacter vinelandii we demonstrate by protein modeling techniques that two dimeric units of this enzyme can associate to a tetrameric structure with intense contacts between the building blocks. Complementary structures of the respective other unit in the tetramer contribute to the active sites. The coenzyme FAD becomes shielded from the environment, thus its binding is stabilized. By energy minimization techniques binding energies and RMS-values were computed and the contact areas between the building blocks were determined to quantify the interaction. In the cell tetramerization of dihydrolipoamide dehydrogenase will be realized upon its incorporation as an enzyme component into the pyruvate dehydrogenase multienzyme complex and will have consequences for the structure and subunit stoichiometry of the complex. Especially, the multiplicity of the three enzyme components, i.e. pyruvate dehydrogenase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase in the enzyme complex must be 24:24:24 instead of 24:24:12 assumed so far.Electronic Supplementary Material available.  相似文献   

3.
1. Bovine kidney pyruvate dehydrogenase multienzyme complex is inactivated by elastase in a similar manner as described earlier for papain. The core component, lipoate acetyltransferase, is cleaved by elastase into an active fragment (Mr 26000) and a fragment with apparent Mr of 45000 as analyzed by dodecylsulfate gel electrophoresis. Due to the fragmentation of the core, the enzyme complex is disassembled into its component enzymes which retain their complete enzymatic activities as assayed separately. 2. A different mechanism was found for the inactivation of pyruvate dehydrogenase complex with trypsin and some other proteases (chymotrypsin, clostripain). In these cases, the pyruvate dehydrogenase component is inactivated rapidly by limited proteolysis. More slowly, the enzyme complex is disassembled simultaneously with fragmentation of the lipoate acetyltransferase which again results in an active fragment of Mr 26000 and another fragment of apparent Mr 45000. Upon prolonged proteolysis, the latter fragment is cleaved further to give products of Mr 36000 or lower. 3. The enzyme-bound lipoyl residues of the pyruvate dehydrogenase complex have been labelled covalently by incubation with [2-14C]pyruvate. After treatment of this [14C]acetyl-enzyme with papain, elastase, or trypsin, radioactivity was associated exclusively with the 45000-Mr and 36000-Mr fragments but not with the active 26000-Mr fragment. 4. It is concluded that the bovine kidney lipoate acetyltransferase core is composed of 60 subunits each consisting of two dissimilar folding domains. One of these contains the intersubunit binding sites as well as the active center for transacylation whereas the other possesses the enzyme-bound lipoyl residues.  相似文献   

4.
The reaction of two maleimides, N-ethylmaleimide and bis-(N-maleimidomethyl) ether, with the pyruvate dehydrogenase multienzyme complex of Escherichia coli in the presence of the substrate, pyruvate, was examined. In both cases, the reaction was demonstrated to be almost exclusively with the lipoate acetyltransferase component, and evidence is presented to show that the most likely sites of reaction are the lipoic acid residues covalently bound to this component. With both reagents the stoicheiometry of the reaction was measured: 2 mol of reagent reacted with each polypeptide chain of lipoate acetyltransferase, implying that each chain bears two functionally active lipolic acid residues. This observation can be reconciled with previous determinations of the lipoic acid content of the complex by allowing for the variability of the subunit polypeptide-chain ratio that can be demonstrated for this multimeric enzyme.  相似文献   

5.
The production of high-titre monospecific polyclonal antibodies against the purified pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes from ox heart is described. The specificity of these antisera and their precise reactivities with the individual components of the complexes were examined by immunoblotting techniques. All the subunits of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes were strongly antigenic, with the exception of the common lipoamide dehydrogenase component (E3). The titre of antibodies raised against E3 was, in both cases, less than 2% of that of the other subunits. Specific immunoprecipitation of the dissociated N-[3H]ethylmaleimide-labelled enzymes also revealed that E3 alone was absent from the final immune complexes. Strong cross-reactivity with the enzyme present in rat liver (BRL) and ox kidney (NBL-1) cell lines was observed when the antibody against ox heart pyruvate dehydrogenase was utilized to challenge crude subcellular extracts. The immunoblotting patterns again lacked the lipoamide dehydrogenase band, also revealing differences in the apparent Mr of the lipoate acetyltransferase subunit (E2) from ox kidney and rat liver. The additional 50 000-Mr polypeptide, previously found to be associated with the pyruvate dehydrogenase complex, was apparently not a proteolytic fragment of E2 or E3, since it could be detected as a normal component in boiled sodium dodecyl sulphate extracts of whole cells. The low immunogenicity of the lipoamide dehydrogenase polypeptide may be attributed to a high degree of conservation of its primary sequence and hence tertiary structure during evolution.  相似文献   

6.
The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase activities of Bacillus subtilis were found to co-purify as a single multienzyme complex. Mutants of B. subtilis with defects in the pyruvate decarboxylase (E1) and dihydrolipoamide dehydrogenase (E3) components of the pyruvate dehydrogenase complex were correspondingly affected in branched-chain 2-oxo acid dehydrogenase complex activity. Selective inhibition of the E1 or lipoate acetyltransferase (E2) components in vitro led to parallel losses in pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex activity. The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes of B. subtilis at the very least share many structural components, and are probably one and the same. The E3 component appeared to be identical for the pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes in this organism and to be the product of a single structural gene. Long-chain branched fatty acids are thought to be essential for maintaining membrane fluidity in B. subtilis, and it was observed that the ace (pyruvate dehydrogenase complex) mutant 61142 was unable rapidly to take up acetoacetate, unlike the wild-type, indicative of a defect in membrane permeability. A single pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex can be seen as an economical means of supplying two different sets of essential metabolites.  相似文献   

7.
The pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus was treated with chymotrypsin at pH 7 and 0 degrees C. Loss of the overall catalytic activity lagged behind the rapid cleavage of the lipoate acetyltransferase polypeptide chains, whose apparent Mr fell from 57 000 to 45 000 as judged by sodium dodecylsulphate/polyacrylamide gel electrophoresis. The inactive chymotrypsin-treated enzyme had lost the lipoic-acid-containing regions of the lipoate acetyltransferase chains, yet remained a highly assembled structure. Treatment of this chymotryptic core complex with trypsin at pH 7.0 and 0 degrees C caused a further shortening of the lipoate acetyltransferase polypeptide chains to an apparent Mr of 28 000 and was accompanied by disassembly of the complex. The lipoic-acid-containing regions are therefore likely to be physically exposed in the intact complex, protruding from the structural core formed by the lipoate acetyltransferase component between the subunits of the other component enzymes. Proton nuclear magnetic resonance spectroscopy demonstrated that the enzyme complex contains large regions of polypeptide chain with remarkable intramolecular mobility, most of which were retained after excision of the lipoic-acid-containing regions with chymotrypsin. It is likely that the highly mobile regions are in the lipoate acetyltransferase component and facilitate movement of the lipoic acid residues. Such polypeptide chain mobility provides the molecular basis of a novel system of active-site coupling in the 2-oxo acid dehydrogenase multienzyme complexes.  相似文献   

8.
The accessibility of sulfhydryl groups at the pyruvate dehydrogenase component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli was reinvestigated. Hydrophobic interactions appear to control the reactivity of an essential cysteine residue at the active site with thiol reagents. This explains why the essential cysteine residue reacts only with thiol reagents of minor polarity, like p-hydroxymercuribenzoate or phenylmercuric nitrate, but not with Ellman's reagent or jodoacetamide. The pyruvate dehydrogenase component was modified with a nitroxide derivative of p-hydroxymercuribenzoate. The ESR spectrum of the spin-labelled enzyme changed dramatically upon addition of the cofactors thiamine diphosphate and Mg2+. Obviously spin-spin interaction occurs under these conditions caused by a transition of an inactive to an active state of the enzyme. The same conformational change is observed when the allosteric activator AMP instead of the cofactors was bound to the enzyme. The implications of these results for the allosteric regulation of the pyruvate dehydrogenase complex are discussed.  相似文献   

9.
The pyruvate dehydrogenase complex of Escherichia coli contains two lipoic acid residues per dihydrolipoamide acetyltransferase chain, and these are known to engage in the part-reactions of the enzyme. The enzyme complex was treated with trypsin at pH 7.0, and a partly proteolysed complex was obtained that had lost almost 60% of its lipoic acid residues although it retained 80% of its pyruvate dehydrogenase-complex activity. When this complex was treated with N-ethylmaleimide in the presence of pyruvate and the absence of CoASH, the rate of modification of the remaining S-acetyldihydrolipoic acid residues was approximately equal to the accompanying rate of loss of enzymic activity. This is in contrast with the native pyruvate dehydrogenase complex, where under the same conditions modification proceeds appreciably faster than the loss of enzymic activity. The native pyruvate dehydrogenase complex was also treated with lipoamidase prepared from Streptococcus faecalis. The release of lipoic acid from the complex followed zero-order kinetics for most of the reaction, whereas the accompanying loss of pyruvate dehydrogenase-complex activity lagged substantially behind. These results eliminate a model for the enzyme mechanism in which specifically one of the two lipoic acid residues on each dihydrolipoamide acetyltransferase chain is essential for the reaction. They are consistent with a model in which the dihydrolipoamide acetyltransferase component contains more lipoic acid residues than are required to serve the pyruvate decarboxylase subunits under conditions of saturating substrates, enabling the function of an excised or inactivated lipoic acid residue to be taken over by another one. Unusual structural properties of the enzyme complex might permit this novel feature of the enzyme mechanism.  相似文献   

10.
The aceEF-lpd operon of Escherichia coli encodes the pyruvate dehydrogenase (E1p), dihydrolipoamide acetyltransferase (E2p) and dihydrolipoamide dehydrogenase (E3) components of the pyruvate dehydrogenase multienzyme complex (PDH complex). A thermoinducible expression system was developed to amplify a variety of genetically restructured PDH complexes, including those containing three, two, one and no lipoyl domains per E2p chain. Although large quantities of the corresponding complexes were produced, they had only 20-50% of the predicted specific activities. The activities of the E1p components were diminished to the same extent, and this could account for the shortfall in overall complex activity. Thermoinduction was used to express a mutant PDH complex in which the putative active-site histidine residue of the E2p component (His-602) was replaced by cysteine in the H602C E2p component. This substitution abolished dihydrolipoamide acetyltransferase activity of the complex without affecting other E2p functions. The results support the view that His-602 is an active-site residue. The inactivation could mean that the histidine residue performs an essential role in the acetyltransferase reaction mechanism, or that the reaction is blocked by an irreversible modification of the cysteine substituent. Complementation was observed between the H602C PDH complex and a complex that is totally deficient in lipoyl domains, both in vitro, by the restoration of overall complex activity in mixed extracts, and in vivo, from the nutritional independence of strains that co-express the two complexes from different plasmids.  相似文献   

11.
The pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus was reconstituted in vitro from recombinant proteins derived from genes over-expressed in Escherichia coli. Titrations of the icosahedral (60-mer) dihydrolipoyl acetyltransferase (E2) core component with the pyruvate decarboxylase (E1, alpha2beta2) and dihydrolipoyl dehydrogenase (E3, alpha2) peripheral components indicated a variable composition defined predominantly by tight and mutually exclusive binding of E1 and E3 with the peripheral subunit-binding domain of each E2 chain. However, both analysis of the polypeptide chain ratios in complexes generated from various mixtures of E1 and E3, and displacement of E1 or E3 from E1-E2 or E3-E2 subcomplexes by E3 or E1, respectively, showed that the multienzyme complex does not behave as a simple competitive binding system. This implies the existence of secondary interactions between the E1 and E3 subunits and E2 that only become apparent on assembly. Exact geometrical distribution of E1 and E3 is unlikely and the results are best explained by preferential arrangements of E1 and E3 on the surface of the E2 core, superimposed on their mutually exclusive binding to the peripheral subunit-binding domain of the E2 chain. Correlation of the subunit composition with the overall catalytic activity of the enzyme complex confirmed the lack of any requirement for precise stoichiometry or strict geometric arrangement of the three catalytic sites and emphasized the crucial importance of the flexibility associated with the lipoyl domains and intramolecular acetyl group transfer in the mechanism of active-site coupling.  相似文献   

12.
Intramolecular coupling of active sites in the pyruvate dehydrogenase multienzyme complexes of Escherichia coli, ox heart and Bacillus stearothermophilus was measured at various temperatures. As the temperature was raised, the extent of active-site coupling was found to increase, approaching a maximum near the physiological growth temperature of the organism. Under these conditions, a single pyruvate dehydrogenase (lipoamide) dimer appeared able to cause a rapid (20s) reductive acetylation of probably all 24 polypeptide chains in the dihydrolipoamide acetyltransferase core of the enzyme complex from E. coli at 37 degrees C, and of most if not all of the 60 polypeptide chains in the dihydrolipoamide acetyltransferase cores of the enzymes from ox heart and B. stearothermophilus at 37 degrees C and 60 degrees C respectively. Experiments designed to measure the inter-core and intra-core migration of enzyme subunits suggested that, in the bacterial enzymes at least, this was not a major contributor to active-site coupling.  相似文献   

13.
Avidin can form intermolecular cross-links between particles of the pyruvate dehydrogenase multienzyme complex from various sources. Avidin does this by binding to lipoic acid-containing regions of the dihydrolipoamide acetyltransferase polypeptide chains that comprise the structural core of the complex. It is inferred that the lipoyl domains of the acetyltransferase chain extend outwards from the interior of the enzyme particle, interdigitating between the subunits of the other two enzymes bound peripherally in the assembled structure, with the lipoyl-lysine residues capable of reaching to within at least 1-2 nm of the outer surface of the enzyme complex (diameter ca. 37 nm). The distribution of enzymic activities between different domains of the dihydrolipoamide acetyltransferase chain implies that considerable movement of the lipoyl domains is a feature of the catalytic activity of the enzyme complex. There is evidence that the lipoyl domain of the 2-oxo acid dehydrogenase complexes is similar in structure to a domain that binds the cofactor biotin, also in amide linkage with a specific lysine residue, in the biotin-dependent class of carboxylases.  相似文献   

14.
The crystal structure of the recombinant thiamin diphosphate-dependent E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined at a resolution of 1.85 A. The E. coli PDHc E1 component E1p is a homodimeric enzyme and crystallizes with an intact dimer in an asymmetric unit. Each E1p subunit consists of three domains: N-terminal, middle, and C-terminal, with all having alpha/beta folds. The functional dimer contains two catalytic centers located at the interface between subunits. The ThDP cofactors are bound in the "V" conformation in clefts between the two subunits (binding involves the N-terminal and middle domains), and there is a common ThDP binding fold. The cofactors are completely buried, as only the C2 atoms are accessible from solution through the active site clefts. Significant structural differences are observed between individual domains of E1p relative to heterotetrameric multienzyme complex E1 components operating on branched chain substrates. These differences may be responsible for reported alternative E1p binding modes to E2 components within the respective complexes. This paper represents the first structural example of a functional pyruvate dehydrogenase E1p component from any species. It also provides the first representative example for the entire family of homodimeric (alpha2) E1 multienzyme complex components, and should serve as a model for this class of enzymes.  相似文献   

15.
The effect of the mitochondrial pyruvate transport inhibitors, α-cyanocinnamate and α-cyano-4-hydroxycinnamate, on the regulation of the pyruvate dehydrogenase multienzyme complex was investigated in the isolated perfused rat heart. Metabolic flux through pyruvate dehydrogenase was monitored by measuring 14CO2 production from [1-14C]pyruvate infused into the heart. A stepwise increase in the concentration of the inhibitor in the influent perfusate effected a stepwise reduction of the flux through the enzyme complex at all pyruvate concentrations tested. However, the magnitude of the α-cyanocinnamate-insensitive flux through pyruvate dehydrogenase increased markedly as the infused pyruvate concentration was elevated. The inhibition of pyruvate decarboxylation in the heart was nearly completely reversed following cessation of the inhibitor infusion. α-Cyanocinnamate was nearly 10 times more potent than α-cyano-4-hydroxycinnamate as an inhibitor of the flux through pyruvate dehydrogenase. Maximally inhibiting levels of α-cyano-4-hydroxycinnamate caused an increase in the ratio of the active form of pyruvate dehydrogenase to the total extractable enzyme complex from a value of 0.5 at 1 mm infused pyruvate (in the absence of the inhibitor) to a value of near unity. This result indicated that the intramitochondrial pyruvate concentration was severely depleted by the infusion of the inhibitor and that the enzyme complex was interconverted to its active form under these conditions. Removal of the inhibitor from the perfusion medium again lowered the ratio of the active/total pyruvate dehydrogenase to near its original level of 0.5 and restored the original flux through the enzyme complex indicating that mitochondrial pyruvate transport has been restored. The results of this study indicate that α-cyanocinnamate and its derivatives are effective inhibitors of pyruvate transport in the perfused heart and that carrier-mediated pyruvate transport can be an important parameter in the regulation of the activation state and the metabolic flux through the pyruvate dehydrogenase multienzyme complex in the heart.  相似文献   

16.
A simple method was developed for assessing the intramolecular coupling of active sites in the lipoate acetyltransferase (E2) component of the pyruvate dehydrogenase multienzyme complexes from Escherichia coli, Bacillus stearothermophilus and ox heart and pig heart mitochondria. Samples of enzyme complex were prepared in which the pyruvate decarboxylase (E1) component was selectively and partly inhibited by treatment with increasing amounts of a transition-state analogue, thiamin thio-thiazolone pyrophosphate. The fraction of the E2 component acetylated by incubation with [2-14C] pyruvate, in the absence of CoA, was determined for each sample of partly inhibited enzyme and was found in all cases to exceed the fraction of overall complex activity remaining. This indicated the potential for transacetylation reactions among the lipoic acid residues within the E2 core. A graphic presentation of the data allowed comparison of the active-site coupling in the various enzymes, which may differ in their lipoic acid content (one or two residues per E2 chain). It is clear that active-site coupling is a general property of pyruvate dehydrogenase complexes of octahedral and icosahedral symmetries, the large numbers of subunits in each E2 core enhancing the effect.  相似文献   

17.
Lipoamide and a peptide, Thr-Val-Glu-Gly-Asp-Lys-Ala-Ser-Met-Glu lipoylated on the N6-amino group of the lysine residue, were tested as substrates for reductive acetylation by the pyruvate decarboxylase (E1p) component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. The peptide has the same amino acid sequence as that surrounding the three lipoyllysine residues in the lipoate acetyltransferase (E2p) component of the native enzyme complex. Lipoamide was shown to be a very poor substrate, with a Km much higher than 4 mM and a value of kcat/Km of 1.5 M-1.s-1. Under similar conditions, the three E2p lipoyl domains, excised from the pyruvate dehydrogenase complex by treatment with Staphylococcus aureus V8 proteinase, could be reductively acetylated by E1p much more readily, with a typical Km of approximately 26 microM and a typical kcat of approximately 0.8 s-1. The value of kcat/Km for the lipoyl domains, approximately 3.0 x 10(4) M-1.s-1, is about 20,000 times higher than that for lipoamide as a substrate. This indicates the great improvement in the effectiveness of lipoic acid as a substrate for E1p that accompanies the attachment of the lipoyl group to a protein domain. The free E2o lipoyl domain was similarly found to be capable of being reductively succinylated by the 2-oxoglutarate decarboxylase (E1o) component of the 2-oxoglutarate dehydrogenase complex of E. coli. The 2-oxo acid dehydrogenase complexes are specific for their particular 2-oxo acid substrates. The specificity of the E1 components was found to extend also to the lipoyl domains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The pigeon breast muscle pyruvate dehydrogenase complex was resolved into three component enzymes: lipoate acetyltransferase, pyruvate dehydrogenase, and lipoamide dehydrogenase. The antibodies against each component enzyme were prepared. All of the antibodies against component enzymes precipitated the pyruvate dehydrogenase complex. The enzyme complex was recovered as the immunoprecipitate from the extract of breast muscle of a pigeon that had received a single injection of L-[4,5-3H]leucine. The immunoprecipitate was separated into each component enzyme by SDS-polyacrylamide gel electrophoresis. The relative isotopic leucine incorporations per mg of protein into each component enzyme 4 h after the injection were 1.0 : 0.9 : 1.4 : 2.7 for lipoate acetyltransferase, alpha- and beta-subunit of pyruvate dehydrogenase, and lipoamide dehydrogenase, respectively. The half-lives of lipoate acetyltransferase, alpha- and beta-subunit of pyruvate dehydrogenase, and lipoamide dehydrogenase were 7.7, 2.5, 2.6, and 1.8 days, respectively. These results indicate that the component enzymes of the pyruvate dehydrogenase complex were synthesized and degraded at different rates.  相似文献   

19.
A G Allen  R N Perham 《FEBS letters》1991,287(1-2):206-210
A fragment of DNA incorporating the gene, pdhC, that encodes the dihydrolipoamide acetyltransferase (E2) chain of the pyruvate dehydrogenase multienzyme complex of Streptococcus faecalis was cloned and a DNA sequence of 2360 bp was determined. The pdhC gene (1620 bp) corresponds to an E2 chain of 539 amino acid residues, Mr 56,466, comprising two lipoyl domains, a peripheral subunit-binding domain and an acetyltransferase domain, linked together by regions of polypeptide chain rich in alanine, proline and charged amino acids. The S. faecalis E2 chain differs in the number of its lipoyl domains from the E2 chains of all bacterial pyruvate dehydrogenase complexes hitherto described.  相似文献   

20.
Genes coding for components of the pyruvate dehydrogenase (PDH) multienzyme complex (PDHc) from Sinorhizobium meliloti, the alfalfa symbiont, have been isolated on the basis of their high expression in symbiotic bacteria. The Elp component, PDH, is encoded by two genes, pdhAalpha (1,047 bp) and pdhAbeta (1,383 bp), a situation encountered in the alpha-proteobacteria Rickettsia prowazekii and Zymomonas mobilis as well as in some gram-positive bacteria and in mitochondria. pdhAalpha and pdhAbeta precede pdhB (1,344 bp), which encodes the E2p component, dihydrolipoamide acetyltransferase, of the PDHc. No gene encoding the E3 component, lipoamide dehydrogenase, was found in the immediate vicinity of pdhA and pdhB genes. pdhAalpha, pdhAbeta and pdhB likely constitute an operon. Here, we provide evidence that pdhA expression is induced in the symbiotic stage, compared with free-living conditions. We demonstrate that symbiotic expression of pdhA genes does not depend on the fix LJ regulatory cascade that regulates nitrogen fixation and respiration gene expression in symbiotic S. meliloti cells. Induction of pdhA expression could be obtained under free-living conditions upon the addition of pyruvate to the culture medium. Induction by pyruvate and symbiotic activation of pdh gene expression take place at the same promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号