首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
来源于P1噬菌体的位点专一性重组系统loxP/Cre,已成为一种新的DNA操作的有用工具,在体内外都获得了成功的应用.为了将四环素诱导表达系统引入减毒伤寒杆菌CVD908株中,tetR-loxP-neo串联基因已通过同源重组被定位插入在CVD908株的△aroC位点中.构建一Cre酶表达受启动子PLtetO-1控制的自杀质粒pJG9/Cre,以切除CVD908株△aroC中同向loxP序列之间的neo基因.质粒pJG9/Cre电转化入菌中,加入去水四环素诱导Cre酶表达,通过重组切除neo基因,再通过自杀质粒上SacB基因的启动,使质粒清除出菌细胞.抗生素鉴定和PCR扩增都证明,CVD908株△aroC位点中的neo基因被成功切除.  相似文献   

2.
利用PCR、Western blot、免疫组化、免疫金标电镜、Southern blot从DNA水平,蛋白水平分析干扰素诱导后Mx-Cre转基因小鼠肝组织中Cre重组酶的表达及其表达产物的活性,在对Mx-Cre转基因小鼠基因组中整合有cre基因进行确定后,通过干扰素诱导Mx-Cre转基因小鼠表达Cre重组酶,结果表明转基因小鼠肝细胞核和细胞质中均有Cre重组酶的表达,并在超微水平进一步证实,将含表达的Cre重组酶的肝细胞核抽提液加入到带有loxP位点的DNA中进行重组,分析证明Mx-Cre转基因小鼠表达的Cre重组酶具有重组活性,从而建立了体外检测Mx-Cre转基因re重组酶活性的方法。  相似文献   

3.
源自噬菌体P1的Cre重组酶可以识别 34bp的靶DNA序列loxP ,进行位点特异性的重组反应。为了简便地检测Cre酶在大肠杆菌中的重组活性 ,分别将cre基因和上下游带有loxP的绿色荧光蛋白基因 (gfp)克隆到具有不同抗性的两种不相容质粒中 ,然后将构建的原核表达载体pET30a Cre和pET2 3b loxGFP电击共转化大肠杆菌BL2 1(DE3) ,利用卡那霉素和氨苄青霉素双抗生素抗性进行筛选。通过直接观察转化子的绿色荧光 ,便可以显示Cre酶的体内重组活性 ,并进一步通过SDS PAGE分析、质粒酶切鉴定进行了验证。结果表明 :以gfp为报告基因、通过两种不相容质粒共转化大肠杆菌可以为研究和改进Cre loxP重组系统提供一种简便直观的检测方法  相似文献   

4.
【背景】谷氨酸棒状杆菌的基因敲除系统较为匮乏且效率不高,难以对其进行代谢工程改造,不利于高性能工业菌株的构建及规模生产。【目的】分别采用CRISPR-Cpf1和Cre/loxP基因敲除系统对谷氨酸棒状杆菌ATCC13032(CorynebacteriumglutamicumATCC13032)基因组上的argR和argF基因进行敲除,比较两种敲除方法的优缺点,为合理选择敲除系统提供依据。【方法】特异性重组的Cre/loxP敲除系统是首先利用同源重组将基因组上的靶基因替换为两端带有重组位点loxP的kanR片段,然后由重组酶Cre识别loxP位点并发生重组反应,从而去除替换到基因组上的kanR片段,进一步利用质粒的温敏特性将其消除,从而实现靶基因的敲除。CRISPR-Cpf1敲除系统是利用Cpf1对pre-crRNA进行加工,形成的成熟crRNA引导Cpf1识别和结合到靶DNA的特定序列上并切割双链DNA分子,通过同源重组作用去除靶基因,基于质粒自身的温敏特性将其消除,从而完成基因敲除的整个过程。【结果】Cre/lox P系统可在8N+2 d内完成N轮迭代基因敲除,而CRISPR-Cpf1系统可在5N+2d内完成N轮迭代基因无痕敲除,理论上还可以一次对多个靶位点进行编辑,效率更高,但存在同源重组效率较低、假阳性率高等缺点。【结论】与Cre/loxP系统相比,CRISPR-Cpf1辅助的同源重组基因敲除方法可省时、省力地实现基因的无痕敲除,理论上还可实现多个基因的同时敲除、总体效率更高,然而编辑效率还有提高的空间。  相似文献   

5.
诱导性基因打靶是一种借助于Cre/loxP系统的作用,利用控制重组酶Cre表达的启动子或Cre酶活性的可诱导性,或重组酶Cre定位表达的基因转移系统的宿主细胞特异性等特性,从而在一定的发育阶段和一定的组织细胞中对特定基因进行遗传修饰的基因打靶技术。  相似文献   

6.
位点特异重组系统由重组酶和相应的重组酶识别位点组成,通过两者间的相互作用,实现外源基因精确整合与切除等一系列遗传操作.主要可分为Cre/lox系统、FLP/frt系统、R/RS系统和Gin/gix系统.目前,研究最充分应用最广泛的位点特异重组系统为Cre/lox系统.此系统为位点特异重组系统家族中的一员,由38.5kDCre重组酶和34bplox位点组成,最早被应用于动物转基因研究,包括基因敲除、基因激活、基因易位等.近年来,随着研究的深入,Cre/lox系统被逐步应用到植物研究中,并在诸多领域取得重大进展.本文总结归纳了Cre/lox系统在定点整合、定点切除以及叶绿体转化等方面的最新研究成果,旨在为利用Cre/lox系统构建环境安全和高效表达的植物遗传转化体系提供参考.  相似文献   

7.
由于具有时间,组织和位点特异性,cre重组酶介导的DNA重组已成为基因靶位操作的一个重要工具,概述了cre/loxP系统的作用特点,cre重组酶的结构和重组机制,表达载体构建及重组个体检测等方面的问题,重点介绍了cre/lox P系统在基因重组研究中的应用及近来的发展与成就。  相似文献   

8.
Cre-loxP系统是起源于P1噬菌体的高效重组系统,其根据loxP位点组合不同而发生特定重组的模式使其成为近年来基因编辑最常用的工具之一。本文聚焦于Cre-loxP系统的实际应用问题,首先分析了CRISPR/Cas9系统在插入Cre序列与loxP序列中的作用与优势,随后阐述了一系列Cre-loxP系统的实际应用问题。本文阐述了Cre重组酶序列的原位插入与安全位点插入的选用、loxP序列插入的策略、Cre重组酶的标签蛋白鉴定、“异位”表达的荧光鉴定、PCR鉴定法的引物设计与工具鼠的繁殖策略等。同时,介绍了Cre-loxP系统在条件性基因敲除中的优化应用,例如配体诱导型Cre、启动子激活型Cre、光诱导型Cre与活性改造型Cre等。通过这些优化应用,可以获得对条件性基因敲除的时间可控性,也可以调节Cre重组酶的活性,甚至可以规避Cre重组酶本身的毒性。最后,论述了Cre-loxP系统面临的缺陷与挑战,展望了未来Cre-loxP系统的发展方向。总而言之,本文综述了基于Cre-loxP系统的基因敲除的实际应用,总结了目前Cre-loxP系统最前沿的研究进展和优化策略,并对未来基于Cre-loxP系统的基因编辑进行展望。本文旨在提供解决基于Cre-loxP系统实际操作问题的理论指导,并为未来更精确、更可控、更具适应性的基因编辑提供新的研究思路。  相似文献   

9.
来源于噬菌体P1的Cre/loxP位点特异性重组系统是目前在植物遗传转化中应用较多,较成熟的一个标记基因删除系统。在这个系统中,Cre酶可以特异性的识别和切割位于两个lox位点之间的标记基因,整个系统重组仅需Cre和lox识别位点即可完成而无需其它辅因子的参加。利用农杆菌介导法成功地将cre基因导入供试材料"皖粳97",得到转hpt-cre基因水稻植株;将其与先期转基因育成的携带loxp-hpt-loxp-bt基因的"皖粳97"株系进行田间杂交,通过PCR分析,Cre/loxP重组系统定向删除了潮霉素抗性筛选标记基因。  相似文献   

10.
Cre-LoxP系统是源于P1噬菌体的一个DNA重组体系,由Cre酶和相应的LoxP位点组成,它能导致重组发生在特定的DNA序列处(LoxP位点),该系统可以将外源基因定点整合到染色体上或将特定DNA片段删除,这种定位重组系统在大容量噬菌体抗体库,抗体重排,抗体的类型转换和抗体修饰等研究领域发挥了重要的作用.  相似文献   

11.
A mutational analysis of the bacteriophage P1 recombinase Cre   总被引:12,自引:0,他引:12  
Bacteriophage P1 encodes a 38,600 Mr site-specific recombinase, Cre, that is responsible for reciprocal recombination between sites on the P1 DNA called loxP. Using in vitro mutagenesis 67 cre mutants representing a total of 37 unique changes have been characterized. The mutations result in a wide variety of phenotypes as judged by the varying ability of each mutant Cre protein to excise a lacZ gene located between two loxP sites in vivo. Although the mutations are found throughout the entire cre gene, almost half are located near the carboxyl terminus of the protein, suggesting a region critical for recombinase function. DNA binding assays using partially purified mutant proteins indicate that mutations in two widely separated regions of the protein each result in loss of heparin-resistant complexes between Cre and a loxP site. These results suggest that Cre may contain two separate domains, both of which are involved in binding to loxP.  相似文献   

12.
S Brecht  H Erdhart  M Soete  D Soldati 《Gene》1999,234(2):239-247
Site-specific DNA recombinases from bacteriophage and yeasts have been developed as novel tools for genome engineering both in prokaryotes and eukaryotes. The 38kDa Cre protein efficiently produces both inter- and intramolecular recombination between specific 34bp sites called loxP. We report here the in vivo use of Cre recombinase to manipulate the genome of the protozoan parasite Toxoplasma gondii. Cre catalyzes the precise removal of transgenes from T. gondii genome when flanked by two directly repeated loxP sites. The efficiency of excision has been determined using LacZ as reporter and indicates that it can easily be applied to the removal of undesired sequences such as selectable marker genes and to the determination of gene essentiality. We have also shown that the reversibility of the recombination reaction catalyzed by Cre offers the possibility to target site-specific integration of a loxP-containing vector in a chromosomally placed loxP target in the parasite. In mammalian systems, the Cre recombinase can be regulated by hormone and is used for inducible gene targeting. In T. gondii, fusions between Cre recombinase and the hormone-binding domain of steroids are constitutively active, hampering the utilization of this mode of post-translational regulation as inducible gene expression system.  相似文献   

13.
The feasibility of using technologies based on site-specific recombination in actinomycetes was shown several years ago. Despite their huge potential, these technologies mostly have been used for simple marker removal from a chromosome. In this paper, we present different site-specific recombination strategies for genome engineering in several actinomycetes belonging to the genera Streptomyces, Micromonospora, and Saccharothrix. Two different systems based on Cre/loxP and Dre/rox have been utilized for numerous applications. The activity of the Cre recombinase on the heterospecific loxLE and loxRE sites was similar to its activity on wild-type loxP sites. Moreover, an apramycin resistance marker flanked by the loxLERE sites was eliminated from the Streptomyces coelicolor M145 genome at a surprisingly high frequency (80%) compared to other bacteria. A synthetic gene encoding the Dre recombinase was constructed and successfully expressed in actinomycetes. We developed a marker-free expression method based on the combination of phage integration systems and site-specific recombinases. The Cre recombinase has been used in the deletion of huge genomic regions, including the phenalinolactone, monensin, and lipomycin biosynthetic gene clusters from Streptomyces sp. strain Tü6071, Streptomyces cinnamonensis A519, and Streptomyces aureofaciens Tü117, respectively. Finally, we also demonstrated the site-specific integration of plasmid and cosmid DNA into the chromosome of actinomycetes catalyzed by the Cre recombinase. We anticipate that the strategies presented here will be used extensively to study the genetics of actinomycetes.  相似文献   

14.
The bacteriophage P1-encoded recombinase Cre forms a simple DNA-protein complex at the specific recognition site loxP. Furthermore, Cre is able to mediate a synaptic union of two loxP sites. When two loxP sites are on the same linear DNA molecule, Cre binds the two sites together to form a circular protein-DNA complex. These complexes can be resolved into a linear DNA molecule and a closed circular DNA molecule, the end products of site-specific recombination.  相似文献   

15.
K Abremski  R Hoess  N Sternberg 《Cell》1983,32(4):1301-1311
Bacteriophage P1 encodes its own site-specific recombination system consisting of a site at which recombination takes place called loxP and a recombinase called Cre. A number of lambda and plasmid substrates containing two loxP sites have been constructed. Using these substrates we have shown both in vivo and in vitro that a fully functional loxP site is composed of no more than 60 bp. In vitro, when an extract containing Cre is used, recombination between loxP sites on supercoiled, nicked-circle or linear DNA occurs efficiently. The most surprising result from the in vitro studies is that 50% of the products of recombination between loxP sites on a supercoiled DNA substrate are present as free supercoiled circles. The ability to produce free products starting with a supercoiled substrate suggests a rather unique property of Cre-mediated lox recombination, the implications of which are discussed in terms of possible effects of the protein on the topology of the DNA molecule.  相似文献   

16.
The site-specific recombinase Cre must employ control mechanisms to impose directionality on recombination. When two recombination sites (locus of crossing over in phage P1, loxP) are placed as direct repeats on the same DNA molecule, collision between loxP-bound Cre dimers leads to excision of intervening DNA. If two sites are placed as inverted repeats, the intervening segment is flipped around. Cre catalyzes these reactions in the absence of protein co-factors. Current models suggest that directionality is controlled at two steps in the recombination pathway: the juxtaposition of loxP sites and the single-strand-transfer reactions within the synaptic complex. Here, we show that in Escherichia coli strain 294-Cre, directionality for recombination is altered when the expression of Cre is increased. This leads to deletion instead of inversion on substrates carrying two loxP sites as inverted repeats. The nucleotide sequence composition of loxP sites remaining in aberrant products indicates that site alignment and/or DNA strand transfer in the in vivo Cre-loxP recombination pathway are not always tightly controlled.  相似文献   

17.
Mlynárová L  Libantová J  Vrba L  Nap JP 《Gene》2002,296(1-2):129-137
Heterospecific lox sites are mutated lox sites that in the presence of Cre recombinase recombine with themselves but not or much less with wildtype loxP. We here show that in Escherichia coli both lox511 and lox2272 sites become highly promiscuous with respect to loxP when in the presence of Cre one of the recombination partners is present in a larger stretch of an inverted repeat of non-lox DNA. In such a palindromic DNA configuration, also the occurrence of other DNA repeat-mediated recombination events is somewhat increased in the presence of Cre. The results indicate that in recombinase mediated cassette exchange or other double lox applications based on the exclusivity of heterospecific lox sites, or in research combining Cre-lox approaches with hairpin RNA for gene silencing, the presence of duplicated DNA around lox sites has to be taken into account. It is proposed that the presence of palindromic non-lox DNA interferes with the homology search of the Cre enzyme prior to the actual recombination event.  相似文献   

18.
The Cre/loxP site-specific recombination system combined with embryonic stem cell-mediated technologies has greatly expanded our capability to address normal and disease development in mammals using genetic approaches. The success of this emerging technology hinges on the production of Cre-expressing transgenic lines that provide cell type-, tissue-, or developmental stage-specific recombination between loxP sites placed in the genome. Here we describe and characterize the production of a double-reporter mouse line that provides a convenient and reliable readout of Cre recombinase activity. Throughout all embryonic and adult stages, the transgenic animal expresses the lacZ reporter gene before Cre-mediated excision occurs. Cre excision, however, removes the lacZ gene, allowing expression of the second reporter, the human alkaline phosphatase gene. This double-reporter transgenic line is able to indicate the occurrence of Cre excision in an extremely widespread manner from early embryonic to adult lineages. It will be a valuable reagent for the increasing number of investigators taking advantage of the powerful tools provided by the Cre/loxP site-specific recombinase system.  相似文献   

19.
Fan HF 《Nucleic acids research》2012,40(13):6208-6222
Tyrosine family recombinases (YRs) are widely utilized in genome engineering systems because they can easily direct DNA rearrangement. Cre recombinases, one of the most commonly used types of YRs, catalyze site-specific recombination between two loxP sites without the need for high-energy cofactors, other accessory proteins or a specific DNA target sequence between the loxP sites. Previous structural, analytical ultracentrifuge and electrophoretic analyses have provided details of the reaction kinetics and mechanisms of Cre recombinase activity; whether there are reaction intermediates or side pathways involved has been left unaddressed. Using tethered particle motion (TPM), the Cre-mediated site-specific recombination process has been delineated, from beginning to end, at the single-molecule level, including the formation of abortive complexes and wayward complexes blocking inactive nucleoprotein complexes from entering the recombination process. Reversibility in the strand-cleavage/-ligation process and the formation of a thermally stable Holliday junction intermediate were observed within the Cre-mediated site-specific recombination process. Rate constants for each elementary step, which explain the overall reaction outcomes under various conditions, were determined. Taking the findings of this study together, they demonstrate the potential of single-molecule methodology as an alternative approach for exploring reaction mechanisms in detail.  相似文献   

20.
SUMMARY: The coding sequences of Cre (site-specific recombinase from bacteriophage P1) and FLP (yeast 2-microm plasmid site-specific recombinase) were fused in frame to produce a novel, dual-function, site-specific recombinase gene. Transgenic maize plants containing the Cre::FLP fusion expression vector were crossed to transgenic plants containing either the loxP or FRT excision substrate. Complete and precise excisions of chromosomal fragments flanked by the respective target sites were observed in the F1 and F2 progeny plants. The episomal DNA recombination products were frequently lost. Non-recombined FRT substrates found in the F1 plants were recovered in the F2 generation after the Cre::FLP gene segregated out. They produced the recombination products in the F3 generation when crossed back to the FLP-expressing plants. These observations may indicate that the efficiency of site-specific recombination is affected by the plant developmental stage, with site-specific recombination being more prevalent in developing embryos. The Cre::FLP fusion protein was also tested for excisions catalysed by Cre. Excisions were identified in the F1 plants and verified in the F2 plants by polymerase chain reaction and Southern blotting. Both components of the fusion protein (FLP and Cre) were functional and acted with similar efficiency. The crossing strategy proved to be suitable for the genetic engineering of maize using the FLP or Cre site-specific recombination system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号