首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A physical map of pPH1JI and pJB4JI   总被引:43,自引:0,他引:43  
P R Hirsch  J E Beringer 《Plasmid》1984,12(2):139-141
The antibiotic resistance plasmid pPH1JI was derived from two IncP plasmids, R751 and R1033. The suicide vector for Tn5, pJB4JI, contains pPH1JI, bacteriophage Mu, and Tn5. Restriction enzyme cleavage maps for pPH1JI and pJB4JI, and the antibiotic resistance levels determined by pPH1JI and its parent plasmids are presented. The relationships between pPH1JI and its parent plasmids, and pJB4JI, are discussed.  相似文献   

2.
Three broad-host-range plasmids (pRK290, pSa4 and pKT230) and one native Pasteurella haemolytica plasmid (pPH33) were used in transformation experiments with P. haemolytica strains T179 (serotype A1), Y216 (serotype A2) and its capsular-deficient variant Y216/NS1. No transformants were detected with either heat-shock or freeze-thaw techniques. However, by electroporation, all P. haemolytica strains were transformed by pPH33 but not by pRK290 or pSa4. The highest frequency obtained was 91 x 10(4) transformants per microgram of pPH33 DNA with P. haemolytica strain Y216/NS1. Although pPH33 itself was non-transmissible by conjugation, it could be mobilized from Escherichia coli, using the transfer function of the IncP plasmid pRK2013, into P. haemolytica at a frequency of 0.3-2.2 x 10(-3) per recipient cell.  相似文献   

3.
Plasmid pPG1 from Staphylococcus aureus coding for ampicillin (Apr), gentamicin (Gmr) and amikacin (Akr) resistance was transformed into Escherichia coli. Transformation efficiency was about 2 x 10(3) transformants/micrograms of plasmid DNA. The plasmids present in the E. coli transformants were identical to pPG1 according to their restriction patterns. The copy number of pPG1 was estimated to be at least 20-times less in E. coli than in S. aureus. The minimal inhibitory concentrations (MICs) for Ap and Gm were lower in E. coli than in S. aureus. However, the MIC for Ak was higher in E. coli transformants than in S. aureus. pPG1 was maintained in the E. coli transformants for at least 80 generations at 37 degrees C without antibiotic selection pressure.  相似文献   

4.
We constructed a shuttle vector, pE5-2, which can replicate in both Bacteroides spp. and Escherichia coli. pE5-2 contains a cryptic Bacteroides plasmid (pB8-51), a 3.8-kilobase (kb) EcoRI-D fragment from the 41-kb Bacteroides fragilis plasmid pBF4, and RSF1010, an IncQ E. coli plasmid. pE5-2 was mobilized by R751, an IncP E. coli plasmid, between E. coli strains with a frequency of 5 X 10(-2) to 3.8 X 10(-1) transconjugants per recipient. R751 also mobilized pE5-2 from E. coli donors to Bacteroides uniformis 0061RT and Bacteroides thetaiotaomicron 5482 with a frequency of 0.9 X 10(-6) to 2.5 X 10(-6). The Bacteroides transconjugants contained only pE5-2 and were resistant to clindamycin and erythromycin. Thus, the gene for clindamycin and erythromycin resistance must be located within the Eco RI-D fragment of BF4. A second recombinant plasmid, pSS-2, which contained 33 kb of pBF4 (including the EcoRI-D fragment and contiguous regions) could also be mobilized by R751 between E. coli strains. In some transconjugants, a 5.5-kb (+/- 0.3 kb) segment of the pBF4 portion of pSS2 was inserted into one of several sites on R751. In some other transconjugants this same 5.5-kb segment was integrated into the E. coli chromosome. This segment could transfer a second time onto R751. Transfer was RecA independent. The transferred segment included the entire EcoRI-D fragment, and thus the clindamycin-erythromycin resistance determinant, from pBF4.  相似文献   

5.
Bacterial artificial chromosome (BAC) vectors enable stable cloning of large DNA fragments from single genomes or microbial assemblages. A novel shuttle BAC vector was constructed that permits replication of BAC clones in diverse Gram-negative species. The "Gram-negative shuttle BAC" vector (pGNS-BAC) uses the F replicon for stable single-copy replication in E. coli and the broad-host-range RK2 mini-replicon for high-copy replication in diverse Gram-negative bacteria. As with other BAC vectors containing the oriV origin, this vector is capable of an arabinose-inducible increase in plasmid copy number. Resistance to both gentamicin and chloramphenicol is encoded on pGNS-BAC, permitting selection for the plasmid in diverse bacterial species. The oriT from an IncP plasmid was cloned into pGNS-BAC to enable conjugal transfer, thereby allowing both electroporation and conjugation of pGNS-BAC DNA into bacterial hosts. A soil metagenomic library was constructed in pGNS-BAC-1 (the first version of the vector, lacking gentamicin resistance and oriT), and recombinant clones were demonstrated to replicate in diverse Gram-negative hosts, including Escherichia coli, Pseudomonas spp., Salmonella enterica, Serratia marcescens, Vibrio vulnificus and Enterobacter nimipressuralis. This shuttle BAC vector can be utilized to clone genomic DNA from diverse sources, and then transfer it into diverse Gram-negative bacterial species to facilitate heterologous expression of recombinant pathways.  相似文献   

6.
Genetic analysis of Staphylococcus aureus with Tn4001.   总被引:2,自引:1,他引:1       下载免费PDF全文
Tn4001, a 4.5-kilobase composite transposon with IS256 ends that confers resistance to gentamicin (Gmr), tobramycin, and kanamycin in Staphylococcus aureus, can transpose to diverse chromosomal sites in S. aureus. Chromosomal insertions of Tn4001 were isolated either after UV irradiation of transducing lysates carrying pII147::Tn4001 or by selection for thermoresistant Gmr isolates with strains containing thermosensitive derivatives of plasmids pI258 and pII147 carrying Tn4001. Frequent integration of the entire delivery plasmid occurred under these selective conditions in recombination-proficient hosts. When selection for thermoresistant Gmr isolates was done with these plasmids in recombination-deficient hosts, 99% or more of the Gmr isolates resulted from transposition of Tn4001 in the absence of plasmid integration. Efficient isolation of Tn4001 insertions near markers of interest and the isolation of insertional auxotrophs were achieved. Reversion frequencies of insertional auxotrophs were between 10(-6) and 10(-7) (higher than those observed with Tn551 and Tn917). About 50% of the prototrophic revertants were Gms, and these are attributed to precise excision of Tn4001. The Gmr prototrophic revertants were due to intergenic suppression.  相似文献   

7.
A 2.6 kb plasmid, named pBBR1, was isolated from Bordetella bronchiseptica S87. After insertion of an antibiotic resistance marker, this plasmid could be transferred into Escherichia coli, Bordetella pertussis, B. bronchiseptica, Vibrio cholerae, Rhizobium meliloti, and Pseudomonas putida by transformation or conjugation. Conjugation was possible only when the IncP group transfer functions were provided in trans. As shown by incompatibility testing, pBBR1 does not belong to the broad-host-range IncP, IncQ or IncW groups. DNA sequence analysis revealed two open reading frames: one was called Rep, involved in replication of the plasmid, and the other, called Mob, was involved in mobilization. Both the amino-terminal region of Mob and its promoter region show sequence similarities to Mob/Pre proteins from plasmids of Gram-positive bacteria. In spite of these sequence similarities, pBBR1 does not replicate via the rolling-circle mechanism commonly used by small Gram-positive plasmids. We therefore speculate that pBBR1 may combine a mobilization mechanism of Gram-positive organisms with a replication mechanism of Gram-negative organisms. Determination of the plasmid copy number in E. coli and B. pertussis indicated that pBBR1 has a rather high copy number, which, in conjunction with its small size and broad host range, renders it particularly interesting for studies of broad-host-range replicons and for the development of new cloning vectors for a wide range of Gram-negative bacteria.  相似文献   

8.
Abstract The broad-host-range IncP plasmid RP1 could not be transferred by conjugation from Escherichia coli to Pseudomonas fluorescens strain CHA0. However, this conjugative transfer was possible with RP1 derivatives which had large deletions extending from the primase gene towards the Tra-2 region, thus lacking the kanamycin resistance gene and IS 21 . Such RP1 deletion derivatives permitted IncP cosmid mobilization to P. fluorescens CHA0 and could be used as vectors for transposon mutagenesis with a newly constructed Tn 5 derivative (carrying kanamycin and mercury resistance determinants) in strain CHA0 and another P. fluorescens soil isolate, strain S9.  相似文献   

9.
Gentamicin-resistant Staphylococcus aureus and Staphylococcus epidermidis strains which were isolated from infants with staphylococcal bacteremia were analyzed for the presence of self-transmissible gentamicin-resistance (Gmr) plasmids. Conjugative GMr plasmids of approximately 43.8-63 kilobases (kb) were found in all S. aureus strains. Inter- and intra-species transfer of Gmr plasmids by conjugation was observed from S. aureus to S. aureus and to S. epidermidis recipient strains. However, neither inter- nor intra-species transfer of gentamicin resistance by conjugation was observed with nine out of nine S. epidermidis donor strains which were mated with either S. epidermidis or S. aureus recipient strains. These conjugative Gmr plasmids were unable to comobilize a smaller (15-kb) plasmid present in all but two S. aureus clinical isolates. Many of the conjugative Gmr plasmids also carried genetic determinants for kanamycin, tobramycin, neomycin, and ethidium bromide resistance, and for beta-lactamase synthesis. EcoRI restriction endonuclease digests of the S. aureus Gmr conjugative plasmids revealed three different digestion patterns. Four EcoRI restriction endonuclease digestion fragments of 15, 11.4, 6.3, and 4.6 kb in size were common to all plasmids. These plasmids and conjugative Gmr staphylococcal plasmids from other geographical regions shared restriction digestion fragments of similar molecular weights. DNA hybridization with biotinylated S. aureus plasmid pIZ7814 DNA revealed a high degree of homology among these plasmids. A 50.9-kb plasmid from one of the nonconjugative S. epidermidis clinical isolates showed homology with the probe DNA but lacked a portion of a 6.3-kb fragment which was present in all conjugative plasmids and believed to carry much genetic information for conjugation.  相似文献   

10.
The complete conjugal transfer gene region of the IncW plasmid R388 has been cloned in multicopy vector plasmids and mapped to a contiguous 14.9-kilobase segment by insertion mutagenesis. The fertility of the cloned region could still be inhibited by a coresident IncP plasmid. The transfer region has been dissected into two regions, one involved in pilus synthesis and assembly (PILW), and the other involved in conjugal DNA metabolism (MOBW). They have been separately cloned. PILW also contains the genes involved in entry exclusion. MOBW contains oriT and the gene products required for efficient mobilization by PILW. MOBW plasmids could also be mobilized efficiently by PILN, the specific pilus of the IncN plasmid pCU1, but not by PILP, the specific pilus of the IncP plasmid RP1.  相似文献   

11.
12.
A genetic transfer system for introducing foreign genes to biomining microorganisms is urgently needed. Thus, a conjugative gene transfer system was investigated for a moderately thermophilic, extremely acidophilic biomining bacterium, Acidithiobacillus caldus MTH-04. The broad-host-range IncP plasmids RP4 and R68.45 were transferred directly into A. caldus MTH-04 from Escherichia coli by conjugation at relatively high frequencies. Additionally the broad-host-range IncQ plasmids pJRD215, pVLT33, and pVLT35 were also transferred into A. caldus MTH-04 with the help of plasmid RP4 or strains with plasmid RP4 integrated into their chromosome, such as E. coli SM10. The Km(r) and Sm(r) selectable markers from these plasmids were successfully expressed in A. caldus MTH-04. Futhermore, the IncP and IncQ plasmids were transferred back into E. coli cells from A. caldus MTH-04, thereby confirming the initial transfer of these plasmids from E. coli to A. caldus MTH-04. All the IncP and IncQ plasmids studied were stable in A. caldus MTH-04. Consequently, this development of a conjugational system for A. caldus MTH-04 will greatly facilitate its genetic study.  相似文献   

13.
We tested the transfer of several plasmids and transposons from Escherichia coli to Pasteurella multocida by filter mating. Two plasmids, pRKTV5 (pRK2013::Tn7) and pUW964 (pRKTV5::Tn5), were derived from pRK2013--a narrow-host-range plasmid with the broad-host-range IncP conjugation genes. Most P. multocida transconjugants obtained with pRKTV5 had Tn7 insertions in the chromosome but some had insertions of the whole plasmid. By contrast, all the transconjugants obtained with pUW964 had insertions of this plasmid or a deleted variant. pUW964 mediated low-frequency transfer of Tn7 or chromosomal markers between P. multocida strains. Broad-host-range IncP plasmid RP4 (RK2) did not yield selectable transconjugants in P. multocida but two plasmids derived by Tn5 insertion into a kanamycin-sensitive derivative of RP4 did yield transconjugants. pSUP1011, a narrow-host-range p15A replicon with the RP4 mob region allowing mobilization by the IncP conjugation genes also yielded transconjugants while several other plasmids tested did not transfer markers to P. multocida.  相似文献   

14.
15.
Abstract We have developed a vector strategy that allows transfer of plasmid DNA by conjugation from Escherichia coli to various Gram-positive bacteria in which transformation via natural competence has not been demonstrated. The prototype vector constructed, pAT187, contains the origins of replication of pBR322 and of the broad host range streptococcal plasmid pAMβ1, a kanamycin resistance gene known to be expressed in both Gram-negative and Gram-positive bacteria, and the origin of transfer of the IncP plasmid RK2. This shuttle plasmid can be mobilised efficiently by the self-transferable IncP plasmid pRK212.1 co-resident in the E. coli donors, and was successfully transferred by filter matings at frequencies of 2 × 10−8 to 5 × 10−7 to Enterococcus faecalis, Streptococcus lactis, Streptococcus agalactiae, Bacillus thuringiensis, Listeria monocytogenes and Staphylococcus aureus .  相似文献   

16.
P R Hirsch  C L Wang  M J Woodward 《Gene》1986,48(2-3):203-209
A physical and genetic map of the IncP plasmid R1033 was constructed: restriction fragments were subcloned and antibiotic resistance genes were located. The map is consistent with previous reports that R1033 is a derivative of RP4 carrying a 16-kb transposon Tn1696 which contains the antibiotic-resistance determinants present on R1033 but not on RP4. A BamHI fragment from R1033, determining resistance to gentamicin, spectinomycin and streptomycin, was cloned into Tn5, replacing the central Bg/II fragment that determined kanamycin resistance, producing a recombinant transposon Tn5-GmSpSm. This was shown to transpose in Rhizobium leguminosarum at a frequency similar to that of the parental Tn5.  相似文献   

17.
A natural isolate of RP4 (PRC#116) acquired from the Stanford University Plasmid Reference Center differed from the wild-type Incompatibility Group P plasmid in several respects. Cells of Escherichia coli harboring PRC#116 were resistant to the IncP pili-specific bacteriophage PRD1 and GU5, and transferred this plasmid at a lower efficiency than the wild-type RP4. Phage sensitivity was restored, and transfer considerably improved in PRC#116+ bacteria transformed with plasmid constructs containing the origin of transfer (oriT region) of RP4. Mutant RP4 plasmids equivalent to PRC#116 were selected at a high frequency from an RP4+ E. coli population infected with PRD1 indicating that this RP4 variant may be the product of a very common mutation of the wild-type plasmid.  相似文献   

18.
Replicons that contain Tn4399, a conjugal mobilizing transposon isolated from Bacteroides fragilis, can be mobilized in the presence of broad-host-range IncP plasmids RP4 and R751 in Escherichia coli to B. fragilis or E. coli recipients (C. G. Murphy and M. H. Malamy, J. Bacteriol. 175:5814-5823, 1993). To identify the initial DNA processing events involved in Tn4399-mediated mobilization in E. coli, plasmid DNA from pCGM328 (a pUC7 vector that contains the mobilization region of Tn4399) was isolated from donor cells following the release of plasmid DNA from the relaxation complex. Site- and strand-specific cleavage within the oriT region of Tn4399 was detected by denaturing gel electrophoresis and Southern hybridization analysis of this DNA in the presence or absence of IncP plasmids. Mutations in either mocA or mocB, two genes which are encoded by Tn4399 and are required for mobilization, significantly decrease the amount of specifically nicked DNA detected. These results suggest roles for the MocA and MocB gene products in specific processing of Tn4399-containing plasmid DNA prior to mobilization. By isolation of the nicked strand and primer extension of this template, we mapped the precise 5' end of the single-stranded cleavage reaction. The nucleotide position of nicTn4399 is adjacent to two sets of inverted repeats, a genetic arrangement similar to those of previously characterized oriT regions. Two site-directed mutations which remove nicTn4399 (oriT delta 1 and oriT delta 2) cannot be mobilized to recipients when they are present in trans along with functional MocA and MocB proteins and an IncP mobilizing plasmid; they are cis-dominant loss-of-function mutations.  相似文献   

19.
Conjugation systems that transfer antibiotic resistance in the absence of detectable plasmids are common in Bacteroides, but the mechanism of transfer is poorly understood. We found that linked transfer of tetracycline (TcR) and clindamycin (ClR) resistance by Bacteroides fragilis strain 1126 is induced by growth in either Tc or Cl. We cloned the transferable TcR locus as a 13 kb fragment on the shuttle vector pPH6 in Escherichia coli and showed that this region expresses TcR in Bacteroides but not E. coli. The TcR gene was mapped to a 3 kb region and the ClR gene was shown not to be present in the 13 kb insert. Homologous TcR genes are found in B. fragilis V479 and 1792. Using pulsed-field electrophoresis, the transferable TcR gene was shown to be physically associated with high molecular-weight DNA, suggesting that it is located on the chromosome. A new TcR shuttle vector, pPH7 delta 1.1, was constructed to facilitate use of this selective marker in Bacteroides genetics.  相似文献   

20.
Mutation of the genes virA, virB, virC, and virG of the Agrobacterium tumefaciens octopine-type Ti plasmid pTiR10 was found to cause a 100- to 10,000-fold decrease in the frequency of conjugal transfer of this plasmid between Agrobacterium cells. This effect was not absolute, however, in that it occurred only during early times (18 to 24 h) of induction of the conjugal transfer apparatus by octopine. Induction of these mutant Agrobacterium strains by octopine for longer periods (48 to 72 h) resulted in a normal conjugal transfer frequency. The effect of these vir gene mutations upon conjugation could be restored by the introduction of cosmids harboring wild-type copies of the corresponding disrupted vir genes into the mutant Agrobacterium strains. In addition, transfer of the self-mobilizable plasmid pPH1JI was not impaired in any of the mutant Agrobacterium strains tested. The effect of vir gene function on the conjugal transfer of the Ti plasmid suggests that a relationship may exist between the processes that control the transfer of the T-DNA from Agrobacterium to plant cells and the conjugal transfer of the Ti plasmid between bacterial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号