首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell-wall regeneration by isolated tomato-fruit protoplasts   总被引:1,自引:0,他引:1  
Summary Using both light microscopy and electron microscopy of thin sections, and surface replicas, it has been shown that isolated tomato fruit locule tissue protoplasts regenerate a new cell wall when maintained in suitable culture media.This work was supported by a special grant from the S.R.C. Dr. E. Pojnar was in receipt of an EMBO Fellowship.  相似文献   

2.
3.
The formation of wall-like envelopes by isolated tomato-fruit protoplasts   总被引:1,自引:0,他引:1  
Summary Formation of a new cell wall around tomato protoplasts was confirmed by optical microscopy, electron microscopy and X-ray diffraction. This wall is composed of three layers; (a) an outer ring, which seems to be composed of diffuse, amorphous material, (b) an intermediate space, crossed by radial fibers, (c) a thicker, inner band composed of dense, highly consolidated material which may have sub-layers within it. Occasionally, cells are observed with only the dense consolidated layer about them. The origin of this wall and its component layers is not yet understood.National Research Council Post-doctoral Fellow, 1967–1969.  相似文献   

4.
The formation of cell wall fibres at the surface of isolated leaf protoplasts has been studied by scanning electron microscopy. Fibres are not formed on incubated protoplasts until a lag period has elapsed. This period is about 8 h for leaf protoplasts of Nicotiana tabacum and about 45 h for leaf protoplasts of Antirrhinum majus. In the case of Antirrhinum protoplasts the length of the lag period is dependent on the concentration of osmoticum present during the incubation period. If regenerating protoplasts are briefly treated with dilute cellulase, the newly formed wall is completely digested. Such protoplasts are capable of producing new fibres at the surface within minutes of their return to a nutrient medium. These results are discussed in terms of the likely source of the lag period and its significance in wall regeneration studies.Abbreviations MS culture medium used at full strength - 0.1 MS culture medium used at one tenth full strength  相似文献   

5.
Summary Atomic force microscopy (AFM) holds unique prospects for biological microscopy, such as nanometer resolution and the possibility of measuring samples in (physiological) solutions. This article reports the results of an examination of various types of plant material with the AFM. AFM images of the surface of pollen grains ofKalanchoe blossfeldiana andZea mays were compared with field emission scanning electron microscope (FESEM) images. AFM reached the same resolutions as FESEM but did not provide an overall view of the pollen grains. Using AFM in torsion mode, however, it was possible to reveal differences in friction forces of the surface of the pollen grains. Cellulose microfibrils in the cell wall of root hairs ofRaphanus sativus andZ. mays were imaged using AFM and transmission electron microscopy (TEM). Imaging was performed on specimens from which the wall matrix had been extracted. The cell wall texture of the root hairs was depicted clearly with AFM and was similar to the texture known from TEM. It was not possible to resolve substructures in a single microfibril. Because the scanning tip damaged the fragile cells, it was not possible to obtain images of living protoplasts ofZ. mays, but images of fixed and dried protoplasts are shown. We demonstrate that AFM of plant cells reaches resolutions as obtained with FESEM and TEM, but obstacles still have to be overcome before imaging of living protoplasts in physiological conditions can be realized.Abbreviations AFM atomic force microscope - FESEM field emission scanning electron microscope - PyMS pyrolysis mass spectrometry - TEM transmission electron microscope  相似文献   

6.
It has been nearly 100 years since Müller-Thurgau (26) employed cryomicroscopy to identify the cooling rate dependency of intracellular ice formation. Since that time cryomicroscopy has advanced from the “ice age” when Molisch (23) packed his microscope in ice to the “space age” of today when computer hardware developed for space satellite imagery is used for cryomicroscopic image analysis. Although interest in cryomicroscopy has been sporadic in the intervening period, current interest is at a high level—largely as a result of the refinement in the cryomicroscope design by Diller and Cravalho (9). The increased sophistication in cryostage design and precision of temperature control allow for quantitative studies of cell behavior during a freeze-thaw cycle. Not only does quantitative video image analysis facilitate this task, but it provides for increased resolution of cellular and subcellular responses during the freeze-thaw cycle. Most importantly, cryomicroscopy presents a researcher with a panorama of cellular behavior within which existing facts can be placed in perspective and from which future experiments can be more accurately focused.  相似文献   

7.
The (13)glucanase of Basidiomycete QM 806 was used to prepare Saccharomyces cerevisiae and Candida utilis protoplasts. Plasma membranes isolated from S. cerevisiae contained a small amount of mannose and traces of glucose and ribose. Randomly distributed -mannan was detected by scanning electron microscopy at the surface of prefixed protoplasts using colloidal gold labelled with Concanavalin A as a marker. C. utilis protoplasts were also marked with anti-mannan antibodies. Again the distribution of mannan was random. This experiment indicated also that plasma membrane mannan has the same immunochemical determinants as cell wall mannan. It is hypothesized that mannan is mainly located in the outer layer of plasma membranes.  相似文献   

8.
Over periods of up to a few seconds the plasma membrane of isolated rye protoplasts behaves elastically with an area modulus of 230 mN · m?1. Over longer periods, the area increases with time under large tension and decreases under sufficiently small tension, suggesting that material is incorporated into or depleted from the plane of the membrane.  相似文献   

9.
The site of sucrose synthesis in isolated leaf protoplasts   总被引:12,自引:0,他引:12  
  相似文献   

10.
The covalent modification of cell surface proteins with N-hydroxysuccinimide esters of biotin was used to develop a strategy for following the turnover of proteins on the surface of carrot (Daucus carota L.) protoplasts. A biotinylation/internalisation assay was established which enabled the turnover of cell surface proteins to be examined by biochemical and immunocytochemical techniques. The detection of biotinylated proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting indicated that a variety of proteins on the surface of the protoplasts were covalently modified. Immunolocalisation of biotinylated proteins in protoplasts directly after their derivatisation, demonstrated that the proteins were initially restricted to the cell surface. Incubation of biotinylated protoplasts at 25 °C for 1 h resulted in the detection of biotin-labelled proteins on the cell surface and intracellularly. A small proportion of these proteins was associated with coated pits, the Golgi apparatus and vacuolar compartments. Biochemical analysis of internalised proteins revealed that a polypeptide of approximate Mr 100 000 was internalised by the protoplasts. Immunolabelling of a biotinylated protein of Mr 100 000 by an antibody raised against an isoform of a tobacco plasma-membrane H+-ATPase, strongly suggests that the plasma-membrane H+-ATPase is internalised by carrot protoplasts. The implications of these results are discussed within the context of endocytosis in plants. Received: 13 July 1998 / Accepted: 11 November 1998  相似文献   

11.
Melissa A. Melan 《Protoplasma》1990,153(3):169-177
Summary We have investigated the effects of microtubule stabilizing conditions upon microtubule patterns in protoplasts and developed a new method for producing protoplasts which have non-random cortical microtubule arrays. Segments of elongating pea epicotyl tissue were treated with the microtubule stabilizing drug taxol for 1 h before enzymatic digestion of the cell walls in the presence of the drug. Anti-tubulin immunofluorescence showed that 40 M taxol preserved regions of ordered microtubules. The microtubules in these regions were arranged in parallel arrays, although the arrays did not always show the transverse orientation seen in the intact tissue. Protoplasts prepared without taxol had microtubules which were random in distribution. Addition of taxol to protoplasts with random microtubule arrangements did not result in organized microtubule arrays. Taxol-treated protoplasts were used to determine whether or not organized microtubule arrays would affect the organization of cell wall microfibrils as new walls were regenerated. We found that protoplasts from taxol-treated tissue which were allowed to regenerate cell walls produced organized arrays of microfibrils whose patterns matched those of the underlying microtubules. Protoplasts from untreated tissue synthesized microfibrils which were disordered. The synthesis of organized microfibrils by protoplasts with ordered microtubules arrays shows that microtubule arrangements in protoplasts influence the arrangement of newly synthesized microfibrils.Abbreviations DIC differential interference contrast - DMSO dimethyl sulfoxide - FITC fluorescein isothiocyanate - IgG immunoglobulin G - PIPES piperazine-N,N-bis[2-ethane-sulfonic acid] - PBS phosphate buffered saline  相似文献   

12.
13.
14.
The substructure of alpha-keratin microfibrils   总被引:3,自引:0,他引:3  
  相似文献   

15.
The uptake of isolated nuclei from Vicia hajastana Grossh. cells into protoplasts of an auxotrophic cell line of Datura innoxia P. Mill. was induced under the influence of polyethylene glycol and Ca2+ at pH 6.8. The frequency of nuclear uptake varied from 0.8 to 2.3% and that of the recovery of prototrophic clones from 10-5 to 6·10-4. The prototrophic nuclear fusion products following nuclear uptake could be rescued by initial culture of the protoplasts in non-selective conditions and by the subsequent use of feeder cell layers to support the growth of surviving colonies on a selective medium. The presence of Vicia genomic DNA in some prototrophic clones was confirmed by dot-blot hybridization using Datura and Vicia DNA probes. In certain transformed clones, the recovery of prototrophy was accompanied by the restoration of morphogenetic potential. Welldeveloped shoots typical of wild-type Datura could be regenerated employing an appropriate regeneration medium.Abbreviations MS Murashige and Skoog (1962) - PEG polyethylene glycol  相似文献   

16.
Summary A simple method, involving selective Triton X-100 membrane solubilization, has been developed for the isolation of nuclei from barley and tobacco protoplasts which gives a high yield of essentially pure nuclei. The isolated nuclei resembled those in leaf cells and protoplasts when the isolated nuclei were fixed for short times (2 hours, Medium II), except that their chromatin appeared to be more highly condensed and barley nuclei also lacked the outer nuclear membrane. When longer times of fixation (12 hours, Medium I) were used, the isolated nuclei lacked the characteristic condensed chromatin appearance.  相似文献   

17.
Extracellular freezing in plants results in dehydration and mechanical stresses upon the plasma membrane. Plants that acquire enhanced freezing tolerance after cold acclimation can withstand these two physical stresses. To understand the tolerance to freeze-induced physical stresses, the cryobehavior of the plasma membrane was observed using protoplasts isolated from cold-acclimated Arabidopsis thaliana leaves with the combination of a lipophilic fluorescent dye FM 1-43 and cryomicroscopy. We found that many vesicular structures appeared in the cytoplasmic region near the plasma membrane just after extracellular freezing occurred. These structures, referred to as freeze-induced vesicular structures (FIVs), then developed horizontally near the plasma membrane during freezing. There was a strong correlation between the increase in individual FIV size and the decrease in the surface area of the protoplasts during freezing. Some FIVs fused with their neighbors as the temperature decreased. Occasionally, FIVs fused with the plasma membrane, which may be necessary to relax the stress upon the plasma membrane during freezing. Vesicular structures resembling FIVs were also induced when protoplasts were mechanically pressed between a coverslip and slide glass. Fewer FIVs formed when protoplasts were subjected to hyperosmotic solution, suggesting that FIV formation is associated with mechanical stress rather than dehydration. Collectively, these results suggest that cold-acclimated plant cells may balance membrane tension in the plasma membrane by regulating the surface area. This enables plant cells to withstand the direct mechanical stress imposed by extracellular freezing.  相似文献   

18.
Brian W. W. Grout 《Planta》1975,123(3):275-282
Summary The reappearance of cellulose microfibrils at the naked surface of protoplasts enzymatically isolated from tobacco (Nicotiana tabacum L. var. Xanthi) mesophyll tissue has been closely studied using the techniques of thin-sectoining and the deep-etch modification of the freeze fracture procedure.A 16 h lag period was recorded between the time of isolation and the sudden appearance of considerable lengths of cellulose microfibril at the outer protoplast surface. The microfibrils were not associated with any structured particles or apparently differentiated regions of the plasmalemma. Terminal regions of the microfibrils appeared to have tapering ends, or else be sinking into the membrane substance. There was no evidence to suggest transport of intact microfibrils in vesicles through the cytoplasm to the plasmalemma.The reported observations have been discussed with respect to the various working hypotheses which have been proposed for the in vivo construction of cellulose microfibrils.  相似文献   

19.
We propose a new model for the alignment of fibrillin molecules within fibrillin microfibrils. Automated electron tomography was used to generate three-dimensional microfibril reconstructions to 18.6-A resolution, which revealed many new organizational details of untensioned microfibrils, including heart-shaped beads from which two arms emerge, and interbead diameter variation. Antibody epitope mapping of untensioned microfibrils revealed the juxtaposition of epitopes at the COOH terminus and near the proline-rich region, and of two internal epitopes that would be 42-nm apart in unfolded molecules, which infers intramolecular folding. Colloidal gold binds microfibrils in the absence of antibody. Comparison of colloidal gold and antibody binding sites in untensioned microfibrils and those extended in vitro, and immunofluorescence studies of fibrillin deposition in cell layers, indicate conformation changes and intramolecular folding. Mass mapping shows that, in solution, microfibrils with periodicities of <70 and >140 nm are stable, but periodicities of approximately 100 nm are rare. Microfibrils comprise two in-register filaments with a longitudinal symmetry axis, with eight fibrillin molecules in cross section. We present a model of fibrillin alignment that fits all the data and indicates that microfibril extensibility follows conformation-dependent maturation from an initial head-to-tail alignment to a stable approximately one-third staggered arrangement.  相似文献   

20.
Uptake of isolated plant chromosomes by plant protoplasts   总被引:1,自引:0,他引:1  
L. Szabados  Gy. Hadlaczky  D. Dudits 《Planta》1981,151(2):141-145
For mass isolation of plant metaphase chromosomes, cultured cells of wheat (Triticum monococcum) and parsley (Petroselinum hortense) were synchronized by hydroxyurea and colchicine treatment. This synchronization procedure resulted in high mitotic synchrony, especially in suspension cultures of parsley in which 80% of the cells were found to be at the metaphase stage. Mitotic protoplasts isolated from these synchronized cell cultures served as a source for isolation of chromosomes. The described isolation and purification method yielded relatively pure chromosome suspension. The uptake of the isolated plant chromosomes into recipient wheat, parsley, and maize protoplasts was induced by polyethylene-glycol treatment. Cytological studies provided evidences for uptake of plant chromosomes into plant protoplasts.Abbreviations PEG polyethylene glycol - HU hydroxyruea - C colchicine - HUC hydroxyurea and colchicine - CIM chromosome isolation medium - TCM Tris chromosome medium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号