首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Nipah virus V and W proteins, which are encoded by the P gene via RNA editing, have a common N-terminal domain but unique C-terminal domains. They localize to the cytoplasm and nucleus, respectively, and have both been shown to function as inhibitors of JAK/STAT signaling. Here we report that V and W proteins also block virus activation of the beta interferon (IFN-beta) promoter and the IFN regulatory factor 3 (IRF3)-responsive IFN-stimulated gene 54 promoter. Surprisingly, only W protein shows strong inhibition of promoter activation in response to stimulation of Toll-like receptor 3 (TLR3) by extracellular double-stranded RNA. This activity is dependent on the nuclear localization of W protein. Within the unique C-terminal domain of W protein, we have identified a nuclear localization signal (NLS) that requires basic residues at positions 439, 440, and 442. This NLS is responsible for mediating the preferential interaction of W protein with karyopherin-alpha 3 and karyopherin-alpha 4. Nuclear localization of W protein therefore enables it to target both virus and TLR3 pathways, whereas the cytoplasmic V protein is restricted to inhibiting the virus pathway. We propose that this discrepancy is in part due to the V protein being less able to block signaling in response to the kinase, TBK-1, whereas both V and W can prevent promoter activation in response to IKKepsilon. We demonstrate that, when the TLR3 pathway is stimulated, the levels of phosphorylated IRF3 are reduced in the presence of W protein but not V protein, confirming the differential effects of these proteins and illustrating that W protein-mediated inhibition is due to a loss of active IRF3.  相似文献   

2.
Emerging viruses in the paramyxovirus genus Henipavirus evade host antiviral responses via protein interactions between the viral V and W proteins and cellular STAT1 and STAT2 and the cytosolic RNA sensor MDA5. Polo-like kinase (PLK1) is identified as being an additional cellular partner that can bind to Nipah virus P, V, and W proteins. For both Nipah virus and Hendra virus, contact between the V protein and the PLK1 polo box domain is required for V protein phosphorylation. Results indicate that PLK1 is engaged by Nipah virus V protein amino acids 100 to 160, previously identified as being the STAT1 binding domain responsible for host interferon (IFN) signaling evasion, via a Thr-Ser-Ser-Pro motif surrounding residue 130. A distinct Ser-Thr-Pro motif surrounding residue 199 mediates the PLK1 interaction with Hendra virus V protein. Select mutations in the motif surrounding residue 130 also influenced STAT1 binding and innate immune interference, and data indicate that the V:PLK1 and V:STAT complexes are V mediated yet independent of one another. The effects of STAT1/PLK1 binding motif mutations on the function the Nipah virus P protein in directing RNA synthesis were tested. Remarkably, mutations that selectively disrupt the STAT or PLK1 interaction site have no effects on Nipah virus P protein-mediated viral RNA synthesis. Therefore, mutations targeting V protein-mediated IFN evasion will not alter the RNA synthetic capacity of the virus, supporting an attenuation strategy based on disrupting host protein interactions.  相似文献   

3.
Mechanism of mda-5 Inhibition by Paramyxovirus V Proteins   总被引:1,自引:0,他引:1       下载免费PDF全文
The RNA helicases encoded by melanoma differentiation-associated gene 5 (mda-5) and retinoic acid-inducible gene I (RIG-I) detect foreign cytoplasmic RNA molecules generated during the course of a virus infection, and their activation leads to induction of type I interferon synthesis. Paramyxoviruses limit the amount of interferon produced by infected cells through the action of their V protein, which binds to and inhibits mda-5. Here we show that activation of both mda-5 and RIG-I by double-stranded RNA (dsRNA) leads to the formation of homo-oligomers through self-association of the helicase domains. We identify a region within the helicase domain of mda-5 that is targeted by all paramyxovirus V proteins and demonstrate that they inhibit activation of mda-5 by blocking dsRNA binding and consequent self-association. In addition to this commonly targeted domain, some paramyxovirus V proteins target additional regions of mda-5. In contrast, V proteins cannot bind to RIG-I and consequently have no effect on the ability of RIG-I to bind dsRNA or to form oligomers.  相似文献   

4.
Devaux P  Cattaneo R 《Journal of virology》2004,78(21):11632-11640
The measles virus (MV) P gene codes for three proteins: P, an essential polymerase cofactor, and V and C, which have multiple functions but are not strictly required for viral propagation in cultured cells. V shares the amino-terminal domain with P but has a zinc-binding carboxyl-terminal domain, whereas C is translated from an overlapping reading frame. During replication, the P protein binds incoming monomeric nucleocapsid (N) proteins with its amino-terminal domain and positions them for assembly into the nascent ribonucleocapsid. The P protein amino-terminal domain is natively unfolded; to probe its conformational flexibility, we fused it to the green fluorescent protein (GFP), thereby also silencing C protein expression. A recombinant virus (MV-GFP/P) expressing hybrid GFP/P and GFP/V proteins in place of standard P and V proteins and not expressing the C protein was rescued and produced normal ratios of mono-, bi-, and tricistronic RNAs, but its replication was slower than that of the parental virus. Thus, the P protein retained nearly intact polymerase cofactor function, even with a large domain added to its amino terminus. Having noted that titers of cell-associated and especially released MV-GFP/P were reduced and knowing that the C protein of the related Sendai virus has particle assembly and infectivity factor functions, we produced an MV-GFP/P derivative expressing C. Intracellular titers of this virus were almost completely restored, and those of released virus were partially restored. Thus, the MV C protein is an infectivity factor.  相似文献   

5.
In previous reports it was demonstrated that the Nipah virus V and W proteins have interferon (IFN) antagonist activity due to their ability to block signaling from the IFN-alpha/beta receptor (J. J. Rodriguez, J. P. Parisien, and C. M. Horvath, J. Virol. 76:11476-11483, 2002; M. S. Park et al., J. Virol. 77:1501-1511, 2003). The V, W, and P proteins are all encoded by the same viral gene and share an identical 407-amino-acid N-terminal region but have distinct C-terminal sequences. We now show that the P protein also has anti-IFN function, confirming that the common N-terminal domain is responsible for the antagonist activity. Truncation of this N-terminal domain revealed that amino acids 50 to 150 retain the ability to block IFN and to bind STAT1, a key component of the IFN signaling pathway. Subcellular localization studies demonstrate that the V and P proteins are predominantly cytoplasmic whereas the W protein is localized to the nucleus. In all cases, STAT1 colocalizes with the corresponding Nipah virus protein. These interactions are sufficient to inhibit STAT1 activation, as demonstrated by the lack of STAT1 phosphorylation on tyrosine 701 in IFN-stimulated cells expressing P, V, or W. Therefore, despite their common STAT1-binding domain, the Nipah virus V and P proteins act by retaining STAT1 in the cytoplasm while the W protein sequesters STAT1 in the nucleus, creating both a cytoplasmic and a nuclear block for STAT1. We also show that the IFN antagonist activity of the P protein is not as strong as that of V or W, perhaps explaining why Nipah virus has evolved to express these two edited products.  相似文献   

6.
Seven complementation-recombination groups of temperature-sensitive (ts) influenza WSN virus mutants have been previously isolated. Recently two of these groups (IV and VI) were shown to possess defects in the neuraminidase and the hemagglutinin gene, respectively, and two groups (I and III) were reported to have defects in the P3 and P1 proteins which are required for complementary RNA synthesis. In this communication we report on the defects in the remaining three mutant groups. Wild-type (ts+) recombinants derived from ts mutants and different non-ts influenza viruses were analyzed on RNA polyacrylamide gels. This technique permitted the identification of the P2 protein, the nucleoprotein, and the M protein as the defective gene products in mutant groups II, V, and VII, respectively. Based on the physiological behavior of mutants in groups II and V, it appears that P2 protein and nucleoprotein are required for virion RNA synthesis during influenza virus replication.  相似文献   

7.
8.
Newcastle disease virus (NDV) edits its P gene by inserting one or two G residues at the conserved editing site (UUUUUCCC, genome sense) and transcribes the P mRNA (unedited), the V mRNA (with a +1 frameshift), and the W mRNA (with a +2 frameshift). All three proteins are amino coterminal but vary at their carboxyl terminus in length and amino acid composition. Little is known about the role of the V and W proteins in NDV replication and pathogenesis. We have constructed and recovered two recombinant viruses in which the expression of the V or both the V and W proteins has been abolished. Compared to the parental virus, the mutant viruses showed impaired growth in cell cultures, except in Vero cells. However, transient expression of the carboxyl-terminal portion of the V protein enhanced the growth of the mutant viruses. In embryonated chicken eggs, the parental virus grew to high titers in embryos of different gestational ages, whereas the mutant viruses showed an age-dependent phenomenon, growing to lower titer in more-developed embryos. An interferon (IFN) sensitivity assay showed that the parental virus was more resistant to the antiviral effect of IFN than the mutant viruses. Moreover, infection with the parental virus resulted in STAT1 protein degradation, but not with the mutant viruses. These findings indicate that the V protein of NDV possesses the ability to inhibit alpha IFN and that the IFN inhibitory function lies in the carboxyl-terminal domain. Pathogenicity studies showed that the V protein of NDV significantly contributes to the virus virulence.  相似文献   

9.
We have investigated the binding of the f1 single-stranded DNA-binding protein (gene V protein) to DNA oligonucleotides and RNA synthesized in vitro. The first 16 nucleotides of the f1 gene II mRNA leader sequence were previously identified as the gene II RNA-operator; the target to which the gene V protein binds to repress gene II translation. Using a gel retardation assay, we find that the preferential binding of gene V protein to an RNA carrying the gene II RNA-operator sequence is affected by mutations which abolish gene II translational repression in vivo. In vitro, gene V protein also binds preferentially to a DNA oligonucleotide whose sequence is the DNA analog of the wild-type gene II RNA-operator. Therefore, the gene V protein recognizes the gene II mRNA operator sequence when present in either an RNA or DNA context.  相似文献   

10.
11.
RNA-binding proteins (RBPs) play crucial roles in all organisms. The protein Gemin5 harbors two functional domains. The N-terminal domain binds to snRNAs targeting them for snRNPs assembly, while the C-terminal domain binds to IRES elements through a non-canonical RNA-binding site. Here we report a comprehensive view of the Gemin5 interactome; most partners copurified with the N-terminal domain via RNA bridges. Notably, Gemin5 sediments with the subcellular ribosome fraction, and His-Gemin5 binds to ribosome particles via its N-terminal domain. The interaction with the ribosome was lost in F381A and Y474A Gemin5 mutants, but not in W14A and Y15A. Moreover, the ribosomal proteins L3 and L4 bind directly with Gemin5, and conversely, Gemin5 mutants impairing the binding to the ribosome are defective in the interaction with L3 and L4. The overall polysome profile was affected by Gemin5 depletion or overexpression, concomitant to an increase or a decrease, respectively, of global protein synthesis. Gemin5, and G5-Nter as well, were detected on the polysome fractions. These results reveal the ribosome-binding capacity of the N-ter moiety, enabling Gemin5 to control global protein synthesis. Our study uncovers a crosstalk between this protein and the ribosome, and provides support for the view that Gemin5 may control translation elongation.  相似文献   

12.
The peptidyl transferase center of the domain V of large ribosomal RNA in the prokaryotic and eukaryotic cytosolic ribosomes acts as general protein folding modulator. We showed earlier that one part of the domain V (RNA1 containing the peptidyl transferase loop) binds unfolded protein and directs it to a folding competent state (FCS) that is released by the other part (RNA2) to attain the folded native state by itself. Here we show that the peptidyl transferase loop of the mitochondrial ribosome releases unfolded proteins in FCS extremely slowly despite its lack of the rRNA segment analogous to RNA2. The release of FCS can be hastened by the equivalent activity of RNA2 or the large subunit proteins of the mitochondrial ribosome. The RNA2 or large subunit proteins probably introduce some allosteric change in the peptidyl transferase loop to enable it to release proteins in FCS.  相似文献   

13.
14.
The Tm-1 gene of tomato confers resistance to Tomato mosaic virus (ToMV). Tm-1 encodes a protein that binds ToMV replication proteins and inhibits the RNA-dependent RNA replication of ToMV. The replication proteins of resistance-breaking mutants of ToMV do not bind Tm-1, indicating that the binding is important for inhibition. In this study, we analyzed how Tm-1 inhibits ToMV RNA replication in a cell-free system using evacuolated tobacco protoplast extracts. In this system, ToMV RNA replication is catalyzed by replication proteins bound to membranes, and the RNA polymerase activity is unaffected by treatment with 0.5 M NaCl-containing buffer and remains associated with membranes. We show that in the presence of Tm-1, negative-strand RNA synthesis is inhibited; the replication proteins associate with membranes with binding that is sensitive to 0.5 M NaCl; the viral genomic RNA used as a translation template is not protected from nuclease digestion; and host membrane proteins TOM1, TOM2A, and ARL8 are not copurified with the membrane-bound 130K replication protein. Deletion of the polymerase read-through domain or of the 3′ untranslated region (UTR) of the genome did not prevent the formation of complexes between the 130K protein and the host membrane proteins, the 0.5 M NaCl-resistant binding of the replication proteins to membranes, and the protection of the genomic RNA from nucleases. These results indicate that Tm-1 binds ToMV replication proteins to inhibit key events in replication complex formation on membranes that precede negative-strand RNA synthesis.  相似文献   

15.
16.
Six overlapping viral RNAs are synthesized in cells infected with the avian coronavirus infectious bronchitis virus (IBV). These RNAs contain a 3'-coterminal nested sequence set and were assumed to be viral mRNAs. The seven major IBV virion proteins are all produced by processing of three polypeptides of ca. 23, 51, and 115 kilodaltons. These are the core polypeptides of the small membrane proteins, the nucleocapsid protein, and the 155-kilodalton precursor to the large membrane proteins GP90 and GP84, respectively. To determine which mRNAs specify these polypeptides, we isolated RNA from infected cells and translated it in a messenger-dependent rabbit reticulocyte lysate. Proteins of 23, 51, and 110 kilodaltons were produced. Two-dimensional tryptic peptide mapping demonstrated that these proteins were closely related to the major virion proteins. Fractionation of the RNA before cell-free translation permitted the correlation of messenger activities for synthesis of the proteins with the presence of specific mRNAs. We found that the smallest RNA, RNA A, directs the synthesis of P51, the nucleocapsid protein. RNA C, which contains the sequences of RNA A, directs the synthesis of the small membrane protein P23. RNA E directs the synthesis of the large virion glycoproteins. These results supported a model in which only the unique 5'-terminal domain of each IBV mRNA is active in translation and enabled us to localize genes for virion proteins on the IBV genome.  相似文献   

17.
18.
Dillon PJ  Parks GD 《Journal of virology》2007,81(20):11116-11127
Six amino acid substitutions in the shared N-terminal region of the P subunit of the viral polymerase and the accessory V protein convert the noncytopathic paramyxovirus simian virus 5 (SV5), which is a poor inducer of host cell responses, into a P/V mutant (P/V-CPI-) that induces high levels of apoptosis, interferon-beta (IFN-beta), and proinflammatory cytokines. In this study, we addressed the question of whether these new mutant phenotypes are due to the presence of an altered P protein or of an altered V protein or of both proteins. By the use of the P/V-CPI- mutant as a backbone, new mutant viruses were engineered to express the wild-type (WT) V protein (+V-wt) or WT P protein (+P-wt) from an additional gene inserted between the HN and L genes. In human epithelial cell lines, the +V-wt virus showed reduced activation of apoptosis and lower secretion of IFN-beta and proinflammatory cytokines compared to the parental P/V-CPI- virus. The presence of a V protein lacking the C-terminal cysteine-rich domain (corresponding to the SV5 I protein) did not reduce these host cell responses to P/V-CPI- infection. Unexpectedly, the +P-wt virus, which expressed a WT P subunit of the viral polymerase, also induced much lower levels of host cell responses than the parental P/V-CPI- mutant. For both +V-wt and +P-wt viruses, reduced levels of IFN-beta synthesis correlated with reduced IRF-3 dimerization and nuclear localization of IRF-3 and NF-kappaB, suggesting that the WT P and V proteins acted at an early stage in antiviral pathways. Host cell responses induced by the various P/V mutants directly correlated with levels of viral mRNA accumulation but not with steady-state levels of genomic RNA. Our results support the hypothesis that WT P and V proteins limit induction of antiviral responses by controlling the production of key viral inducers. A model is presented for the mechanism by which both the P subunit of the viral polymerase and the V accessory protein contribute to the ability of a paramyxovirus to limit activation of antiviral responses.  相似文献   

19.
20.
Myosin V is a molecular motor that transports a variety of cellular cargo, including organelles, vesicles, and messenger RNA. The proper peripheral distribution of melanosomes, a dense pigment-containing organelle, is dependent on actin and the activity of myosin Va. The recruitment of myosin Va to the melanosome and proper transport of the melanosome requires melanophilin, which directly binds to myosin Va and is tethered to the melanosome membrane via Rab27a. Here we use highly purified proteins to demonstrate that the globular tail domain of myosin Va binds directly to an intrinsically unstructured domain of melanophilin. The myosin Va binding domain of melanophilin lacks stable secondary structure, and (1)H NMR measurements indicate that the protein is unfolded. This domain is extremely sensitive to mild proteolysis and has a hydrodynamic radius that is consistent with a random coil-like polypeptide. We show that myosin Va binding does not induce the global folding of melanophilin. Truncations of melanophilin were utilized to define a short peptide sequence (26 residues) within melanophilin that is critical for myosin Va binding. We demonstrate that a peptide corresponding to these residues binds directly to the globular tail domain with the same affinity as melanophilin. We discuss the possible implications of protein intrinsic disorder in recruitment and maintenance of myosin Va on melanosome membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号