首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flagella are cell surface appendages involved in a number of bacterial behaviors, such as motility, biofilm formation, and chemotaxis. Despite these important functions, flagella can pose a liability to a bacterium when serving as potent immunogens resulting in the stimulation of the innate and adaptive immune systems. Previous work showing appendage overexpression, referred to as attenuating gene expression (AGE), was found to enfeeble wild-type Salmonella. Thus, this approach was adapted to discern whether flagella overexpression could induce similar attenuation. To test its feasibility, flagellar filament subunit FliC and flagellar regulon master regulator FlhDC were overexpressed in Salmonella enterica serovar Typhimurium wild-type strain H71. The results show that the expression of either FliC or FlhDC alone, and co-expression of the two, significantly attenuates Salmonella. The flagellated bacilli were unable to replicate within macrophages and thus were not lethal to mice. In-depth investigation suggests that flagellum-mediated AGE was due to the disruptive effects of flagella on the bacterial membrane, resulting in heightened susceptibilities to hydrogen peroxide and bile. Furthermore, flagellum-attenuated Salmonella elicited elevated immune responses to Salmonella presumably via FliC’s adjuvant effect and conferred robust protection against wild-type Salmonella challenge.  相似文献   

2.
3.
Using scanning electron microscopy techniques we measured the diameter of adhesive tubular appendages of Salmonella enterica serovar S. Typhimurium. The appendages interconnected bacteria in biofilms grown on gallstones or coverslips, or attached bacteria to host cells (human neutrophils). The tubular appendage diameter of bacteria of virulent flagellated C53 strain varied between 60 and 70 nm, thus considerably exceeding in size of flagella or pili. Nonflagellated bacteria of mutant SJW 880 strain in biofilms grown on gallstones or coverslips were also interconnected by 60-90-nm tubular appendages. Transmission electron microscopy studies of thin sections of S. Typhimurium biofilms grown on agar or coverslips revealed numerous fragments of membrane tubular and vesicular structures between bacteria of both flagellated and nonflagellated strains. The membrane structures had the same diameter as tubular appendages observed by scanning electron microscopy, indicating that tubular appendages might represent membrane tubules (tethers). Previously, we have shown that neutrophils can contact cells and bacteria over distance via membrane tubulovesicular extensions (TVE) (cytonemes). The present electron microscopy study revealed the similarities in size and behavior of bacterial tubular appendages and neutrophil TVE. Our data support the hypothesis that bacteria establish long-range adhesive interactions via membrane tubules.  相似文献   

4.
5.
6.
7.
Salmonella enterica serovar Typhimurium can differentiate into hyperflagellated swarmer cells on agar of an appropriate consistency (0.5 to 0.8%), allowing efficient colonization of the growth surface. Flagella are essential for this form of motility. In order to identify genes involved in swarming, we carried out extensive transposon mutagenesis of serovar Typhimurium, screening for those that had functional flagella yet were unable to swarm. A majority of these mutants were defective in lipopolysaccharide (LPS) synthesis, a large number were defective in chemotaxis, and some had defects in putative two-component signaling components. While the latter two classes were defective in swarmer cell differentiation, representative LPS mutants were not and could be rescued for swarming by external addition of a biosurfactant. A mutation in waaG (LPS core modification) secreted copious amounts of slime and showed a precocious swarming phenotype. We suggest that the O antigen improves surface "wettability" required for swarm colony expansion, that the LPS core could play a role in slime generation, and that multiple two-component systems cooperate to promote swarmer cell differentiation. The failure to identify specific swarming signals such as amino acids, pH changes, oxygen, iron starvation, increased viscosity, flagellar rotation, or autoinducers leads us to consider a model in which the external slime is itself both the signal and the milieu for swarming motility. The model explains the cell density dependence of the swarming phenomenon.  相似文献   

8.
In Salmonella enterica serovar Typhimurium, sigma(28) and anti-sigma factor FlgM are regulatory proteins crucial for flagellar biogenesis and motility. In this study, we used S. enterica serovar Typhimurium as an in vivo heterologous system to study sigma(28) and anti-sigma(28) interactions in organisms where genetic manipulation poses a significant challenge due to special growth requirements. The chromosomal copy of the S. enterica serovar Typhimurium sigma(28) structural gene fliA was exchanged with homologs of Aquifex aeolicus (an extreme thermophile) and Chlamydia trachomatis (an obligate intracellular pathogen) by targeted replacement of a tetRA element in the fliA gene location using lambda-Red-mediated recombination. The S. enterica serovar Typhimurium hybrid strains showed sigma(28)-dependent gene expression, suggesting that sigma(28) activities from diverse species are preserved in the heterologous host system. A. aeolicus mutants defective for sigma(28)/FlgM interactions were also isolated in S. enterica serovar Typhimurium. These studies highlight a general strategy for analysis of protein function in species that are otherwise genetically intractable and a straightforward method of chromosome restructuring using lambda-Red-mediated recombination.  相似文献   

9.
Swarming motility plays an important role in surface colonization by several flagellated bacteria. Swarmer cells are specially adapted to rapidly translocate over agar surfaces by virtue of their more numerous flagella, longer cell length, and encasement of slime. The external slime provides the milieu for motility and likely harbors swarming signals. We recently reported the isolation of swarming-defective transposon mutants of Salmonella enterica serovar Typhimurium, a large majority of which were defective in lipopolysaccharide (LPS) synthesis. Here, we have examined the biofilm-forming abilities of the swarming mutants using a microtiter plate assay. A whole spectrum of efficiencies were observed, with LPS mutants being generally more proficient than wild-type organisms in biofilm formation. Since we have postulated that O-antigen may serve a surfactant function during swarming, we tested the effect of the biosurfactant surfactin on biofilm formation. We report that surfactin inhibits biofilm formation of wild-type S. enterica grown either in polyvinyl chloride microtiter wells or in urethral catheters. Other bio- and chemical surfactants tested had similar effects.  相似文献   

10.
11.
Vibrio parahaemolyticus possesses two types of flagella, polar and lateral, powered by distinct energy sources, which are derived from the sodium and proton motive forces, respectively. Although proton-powered flagella in Escherichia coli and Salmonella enterica serovar Typhimurium have been extensively studied, the mechanism of torque generation is still not understood. Molecular knowledge of the structure of the sodium-driven motor is only now being developed. In this work, we identify the switch components, FliG, FliM, and FliN, of the sodium-type motor. This brings the total number of genes identified as pertinent to polar motor function to seven. Both FliM and FliN possess charged domains not found in proton-type homologs; however, they can interact with the proton-type motor of E. coli to a limited extent. Residues known to be critical for torque generation in the proton-type motor are conserved in the sodium-type motor, suggesting a common mechanism for energy transfer at the rotor-stator interface regardless of the driving force powering rotation. Mutants representing a complete panel of insertionally inactivated switch and motor genes were constructed. All of these mutants were defective in sodium-driven swimming motility. Alkaline phosphatase could be fused to the C termini of MotB and MotY without abolishing motility, whereas deletion of the unusual, highly charged C-terminal domain of FliM disrupted motor function. All of the mutants retained proton-driven, lateral motility over surfaces. Thus, although central chemotaxis genes are shared by the polar and lateral systems, genes encoding the switch components, as well as the motor genes, are distinct for each motility system.  相似文献   

12.
13.
14.
We describe a large set of genes affecting motility in Salmonella enterica serovar Typhimurium. Identified in microarray experiments as displaying flagellar gene expression patterns or controlled by known flagellar regulators, we show that null mutations in these genes primarily affect swarming motility. Three genes function in chemotaxis.  相似文献   

15.
Prokaryotic microbes possess a variety of appendages on their cell surfaces. The most commonly known surface appendages of bacteria include flagella, pili, curli, and spinae. Although archaea have archaella (archaeal flagella) and various types of pili that resemble those in bacteria, cannulae, and hami are unique to archaea. Typically involved in cell motility, flagella, the thickest appendages, are 20–26 nm and 10–14 nm wide in bacteria and archaea, respectively. Bacterial and archaeal pili are distinguished by their thin, short, hair-like structures. Curli appear as coiled and aggregative thin fibers, whereas spinae are tubular structures 50–70 nm in diameter in bacteria. Cannulae are characterized by ~25 nm-wide tubules that enter periplasmic spaces and connect neighboring archaeal cells. Hami are 1–3 μm in length and similar to barbed grappling hooks for attachment to bacteria. Recent advances in specimen preparation methods and image processing techniques have made cryo-transmission electron microscopy an essential tool for in situ structural analysis of microbes and their extracellular structures.  相似文献   

16.
The chemotaxis system, but not chemotaxis, is essential for swarming motility in Salmonella enterica serovar Typhimurium. Mutants in the chemotaxis pathway exhibit fewer and shorter flagella, downregulate class 3 or 'late' motility genes, and appear to be less hydrated when propagated on a surface. We show here that the output of the chemotaxis system, CheY approximately P, modulates motor bias during swarming as it does during chemotaxis, but for a distinctly different end. A constitutively active form of CheY was found to promote swarming in the absence of several upstream chemotaxis components. Two point mutations that suppressed the swarming defect of a cheY null mutation mapped to FliM, a protein in the motor switch complex with which CheY approximately P interacts. A common property of these suppressors was their increased frequency of motor reversal. These and other data suggest that the ability to switch motor direction is important for promoting optimal surface wetness. If the surface is sufficiently wet, exclusively clockwise or counterclockwise directions of motor rotation will support swarming, suggesting also that the bacteria can move on a surface with flagellar bundles of either handedness.  相似文献   

17.
18.
19.
Hydrodynamics predicts that swimming bacteria generate a propulsion force when a helical flagellum rotates because rotating helices necessarily translate at a low Reynolds number. It is generally believed that the flagella of motile bacteria are semirigid helices with a fixed pitch determined by hydrodynamic principles. Here, we report the characterization of three mutations in laboratory strains of Escherichia coli that produce different steady-state flagella without losing cell motility. E. coli flagella rotate counterclockwise during forward swimming, and the normal form of the flagella is a left-handed helix. A single amino acid exchange A45G and a double mutation of A48S and S110A change the resting flagella to right-handed helices. The stationary flagella of the triple mutant were often straight or slightly curved at neutral pH. Deprotonation facilitates the helix formation of it. The helical and curved flagella can be transformed to the normal form by torsion upon rotation and thus propel the cell. These mutations arose in the long-term laboratory cultivation. However, flagella are under strong selection pressure as extracellular appendages, and similar transformable flagella would be common in natural environments.  相似文献   

20.
Salmonella enterica serovar Typhimurium is a common facultative intracellular pathogen that causes food-borne gastroenteritis in millions of people worldwide. Intracellular survival and replication are important virulence determinants and the bacteria can be found in a variety of phagocytic and non-phagocytic cells in vivo . Invasion of host cells and intracellular survival are dependent on two type III secretion systems, T3SS1 and T3SS2, each of which translocates a distinct set of effector proteins. However, other virulence factors including ion transporters, superoxide dismutase, flagella and fimbriae are also involved in accessing and utilizing the intracellular niche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号