首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrite and nitrate uptake by wheat (Triticum vulgare) from 0.5 mM potassium solutions both showed an apparent induction pattern characterized by a slow initial rate followed by an accelerated rate. The accelerated phase was more rapid for nitrate uptake, was initiated earlier, and was seriously restricted by the presence of equimolar nitrite. The accelerated phase of nitrite uptake was restricted by nitrate to a lesser extent. The two anions seem not to be absorbed by identical mechanisms. Ammonium pretreatments or prior growth with ammonium had relatively little influence on the pattern of nitrite uptake. However, prior growth with nitrate eliminated the slow initial phase and induced development of the accelerated phase of nitrite uptake. A beneficial effect was noted after 3 h nitrate pretreatment and full development had occurred by 12 h nitrate pretreatment. The evidence suggests that a small amount of tissue nitrite, which could be supplied either by absorption or by nitrate reduction, was specifically required for induction of the accelerated phase of nitrite uptake. Cycloheximide (2 μg ml?1) seriously restricted development of the accelerated phase of nitrite uptake, but its effect was not as severe when it was added after the accelerated phase had been induced by prior exposure to nitrite or nitrate. However, translocation of 15N from the absorbed nitrite was sharply decreased under the latter conditions, indicating a difference in sensitivity of the uptake and translocation processes to cycloheximide. Potassium uptake was greater from KNO3 than from KNO2 and in both instances it was enhanced during the early stages of the accelerated phase of anion uptake. Moreover, addition of NaNO3 to KNO2 substantially increased potassium uptake. A coupling between anion and potassium uptake was therefore evident, but the coupling was not obligatory because the accelerated phase of nitrite uptake could occur in absence of rapid potassium uptake.  相似文献   

2.
Lainé  P.  Ourry  A.  Boucaud  J.  Salette  J. 《Plant and Soil》1998,202(1):61-67
Roots of higher plants are usually exposed to varying spatial and temporal changes in concentrations of soil mineral nitrogen. A split root system was used to see how Lolium multiflorum Lam. roots adapt to such variations to cope with their N requirements. Plants were grown in hydroponic culture with their root system split in two spatially separated compartments allowing them to be fed with or without KNO3. Net NO3 - uptake, 15NO3 - influx and root growth were studied in relation to time. Within less than 24 h following deprivation of KNO3 to half the roots, the influx in NO3 - fed roots was observed to increase (about 200% of the influx measured in plant uniformly NO3 - supplied control plant) thereby compensating the whole plant for the lack of uptake by the N deprived roots. Due to the large NO3 - concentrations in the roots, the NO3 - efflux was also increased so that the net uptake rate increased only slightly (35% maximum) compared with the values obtained for control plants uniformly supplied with NO3 -. This increase in net NO3 - uptake rate was not sufficient to compensate the deficit in N uptake rate of the NO3 - deprived split root in the short term. Over a longer period (>1 wk), root growth of the part of the root system locally supplied with NO3 - was stimulated. An increase in root growth was mainly responsable for the greater uptake of nitrate in Lolium multiflorum so that it was able to fully compensate the deficit in N uptake rate of the NO3 - deprived split root.  相似文献   

3.
Dark-grown, detopped corn seedlings (cv. Pioneer 3369A) were exposed to treatment solutions containing Ca(NO3)2, NaNO3, or KNO3; KNO3 plus 50 or 100 millimolar sorbitol; and KNO3 at root temperatures of 30, 22, or 16 C. In all experiments, the accelerated phase of NO3 transport had previously been induced by prior exposure to NO3 for 10 hours. The experimental system allowed direct measurements of net NO3 uptake and translocation, and calculation of NO3 reduction in the root. The presence of K+ resulted in small increases in NO3 uptake, but appreciably stimulated NO3 translocation out of the root. Enhanced translocation was associated with a marked decrease in the proportion of absorbed NO3 that was reduced in the root. When translocation was slowed by osmoticum or by low root temperatures, a greater proportion of absorbed NO3 was reduced in the presence of K+. Results support the proposition that NO3 reduction in the root is reciprocally related to the rate of NO3 transport through the root symplasm.  相似文献   

4.
The influence of the allelopathic compound ferulic acid (FA) on nitrogen uptake from solutions containing both NO3 and NH4+ was examined in 8-day-old nitrogen-depleted corn (Zea mays L.) seedlings. Concurrent effects on uptake of Cl and K+ also were assessed. The presence of 250 micromolar FA inhibited the initial (0-1 hours) rate of NO3 uptake and also prevented development of the NO3-inducible accelerated rate. The pattern of recovery when FA was removed was interpreted as indicating a rapid relief of FA-restricted NO3 uptake activity, followed by a reinitiation of the induction of that activity. No inhibition of NO3 reduction was detected. Ammonium uptake was less sensitive than NO3 uptake to inhibition by FA. An inhibition of Cl uptake occurred as induction of the NO3 transport system developed in the absence of FA. Alterations of Cl uptake in the presence of FA were, therefore, a result of a beneficial effect, because NO3 uptake was restricted, and a direct inhibitory effect. The presence of FA increased the initial net K+ loss from the roots during exposure to the low K, ammonium nitrate uptake solution and delayed the recovery to positive net uptake, but it did not alter the general pattern of the response. The implications of the observations are discussed for growth of plants under natural conditions and cultural practices that foster periodic accumulation of allelopathic substances.  相似文献   

5.
6.
Malagoli  M.  Dal Canal  A.  Quaggiotti  S.  Pegoraro  P.  Bottacin  A. 《Plant and Soil》2000,221(1):1-3
In forest soils, ammonium is usually the predominant form of inorganic nitrogen. However, the capacity of trees to utilize both NO3 - and NH3 + may provide greater flexibility in responding to changes of nitrogen supply from the environment. Such capacity has been studied in seedlings of Scots pine (Pinus sylvestris L.) and European larch (Larix decidua Mill.) grown in the presence or absence of either nitrate or ammonium. Nitrate-induced plants showed a higher nitrate uptake rate than non-induced plants; this difference was almost negligible after 24 h of exposure to NO3 -. Ammonium uptake in both species was consistently higher than that of nitrate, regardless of prior nitrogen provision. In both nutrient conditions, larch showed a more efficient transport system in comparison with Scots pine, with higher ammonium and nitrate uptake rates in both induced and non-induced plants. This was consistent also with the activity of nitrate reductase, measured in vivo in roots and leaves. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Bowman DC  Paul JL 《Plant physiology》1988,88(4):1303-1309
Assimilation of NO3 and NH4+ by perennial ryegrass (Lolium perenne L.) turf, previously deprived of N for 7 days, was examined. Nitrogen uptake rate was increased up to four- to five-fold for both forms of N by N-deprivation as compared to N-sufficient controls, with the deficiency-enhanced N absorption persisting through a 48 hour uptake period. Nitrate, but not NH4+, accumulated in the roots and to a lesser degree in shoots. By 48 hours, 53% of the absorbed NO3 had been reduced, whereas 97% of the NH4+ had been assimilated. During the early stages (0 to 8 hours) of NO3 uptake by N-deficient turf, reduction occurred primarily in the roots. Between 8 and 16 hours, however, the site of reduction shifted to the shoots. Nitrogen form did not affect partitioning of the absorbed N between roots (40%) and shoots (60%) but did affect growth. Compared to NO3, NH4+ uptake inhibited root, but not shoot, growth. Total soluble carbohydrates decreased in both roots and shoots during the uptake period, principally the result of fructan metabolism. Ammonium uptake resulted in greater total depletion of soluble carbohydrates in the root compared to NO3 uptake. The data indicate that N assimilation by ryegrass turf utilizes stored sugars but is also dependent on current photosynthate.  相似文献   

8.
The influence of NO3 uptake and reduction on ionic balance in barley seedlings (Hordeum vulgare, cv. Compana) was studied. KNO3 and KCl treatment solutions were used for comparison of cation and anion uptake. The rate of Cl uptake was more rapid than the rate of NO3 uptake during the first 2 to 4 hours of treatment. There was an acceleration in rate of NO3 uptake after 4 hours resulting in a sustained rate of NO3 uptake which exceeded the rate of Cl uptake. The initial (2 to 4 hours) rate of K+ uptake appeared to be independent of the rate of anion uptake. After 4 hours the rate of K+ uptake was greater with the KNO3 treatment than with the KCl treatment, and the solution pH, cell sap pH, and organic acid levels with KNO3 increased, relative to those with the KCl treatment. When absorption experiments were conducted in darkness, K+ uptake from KNO3 did not exceed K+ uptake from KCl. We suggest that the greater uptake and accumulation of K+ in NO3-treated plants resulted from (a) a more rapid, sustained uptake and transport of NO3 providing a mobile counteranion for K+ transport, and (b) the synthesis of organic acids in response to NO3 reduction increasing the capacity for K+ accumulation by providing a source of nondiffusible organic anions.  相似文献   

9.
Role of sugars in nitrate utilization by roots of dwarf bean   总被引:4,自引:0,他引:4  
Nitrate uptake and in vivo, nitrate reductase activity (NRA) in roots of Phaseolus vulgaris, L. cv. Witte Krombek were measured in nitrogen-depleted plants of varying sugar status, Variation in sugar status was achieved at the start of nitrate nutrition by excision, ringing, darkness or administration of sugars to the root medium. The shape of the apparent induction pattern of nitrate uptake was not influenced by the sugar status of the absorbing tissue. When measured after 6 h of nitrate nutrition (0.1 mol m?3), steady state nitrate uptake and root NRA were in the order intact>dark>ringed>excised. Exogenous sucrose restored NRA in excised roots to the level of intact plants. The nitrate uptake rate of excised roots, however, was not fully restored by sucrose (0.03–300 mol m?3). When plants were decapitated after an 18 h NO3? pretreatment, the net uptake rate declined gradually to become negative after three hours. This decline was slowed down by exogenous fructose, whilst glucose rapidly (sometimes within 5 min) stimulated NG?3 uptake. Presumably due to a difference in NO3? due to a difference in NO3? uptake, the NRA of excised roots was also higher in the presence of glucose than in the presence of fructose after 6 h of nitrate nutrition. The sugar-stimulation of, oxygen consumption as well as the release of 14CO2 from freshly absorbed (U-14C) sugar was the same for glucose and fructose. Therefore, we propose a glucose-specific effect on NO3? uptake that is due to the presence of glucose rather than to its utilization in root respiration. A differential glucose-fructose effect on nitrate reductase activity independent of the effect on NO3? uptake was not indicated. A constant level of NRA occurred in roots of NO3? induced plants. Removal of nutrient nitrate from these plants caused an exponential NRA decay with an approximate half-life of 12 h in intact plants and 5.5 h in excised roots. The latter value was also found in roots that were excised in the presence of nitrate, indicating that the sugar status primarily determines the apparent rate of nitrate reductase decay in excised roots.  相似文献   

10.
Nitrate utilization has been characterized in nitrogen-deficient cells of the marine diatom Skeletonema costatum. In order to separate nitrate uptake from nitrate reduction, nitrate reductase activity was suppressed with tungstate. Neither nitrite nor the presence of amino acids in the external medium or darkness affects nitrate uptake kinetics. Ammonium strongly inhibits carrier-mediated nitrate uptake, without affecting diffusion transfer. A model is proposed for the uptake and assimilation of nitrate in S. costatum and their regulation by ammonium ions.  相似文献   

11.
A mechanism is proposed by which secondary products of nitrate reduction in the shoot control the uptake of nitrate by the roots. KNO3 enters the roots and is translocated to the shoot where nitrate is reduced and, at the same time, malate is produced. The reduction of nitrate is stoichiometric to the synthesis of malate (1). Part of the K-malate moves down to the root system in which malate is oxidized, yielding KHCO3 which exchanges for KNO3. Nitrate reduction in the shoot promotes the synthesis of malate which, after its translocation to the root, allows the preferential uptake of nitrate. Thus, plants reducing large amounts of nitrate may take up the anion without a superfluous accumulation of the cation. Furthermore, the utilization of nitrate by the shoot regulates its uptake by the root.  相似文献   

12.
The influence of nitrogen stress on net nitrate uptake resulting from concomitant 15NO3 influx and 14NO3 efflux was examined in two 12-day-old inbred lines of maize. Plants grown on 14NO3 were deprived of nitrogen for up to 72 hours prior to the 12th day and then exposed for 0.5 hour to 0.15 millimolar nitrate containing 98.7 atom% 15N. The nitrate concentration of the roots declined from approximately 100 to 5 micromolar per gram fresh weight during deprivation, and 14NO3 efflux was linearly related to root nitrate concentration. Influx of 15NO3 was suppressed in nitrogen-replete plants and increased with nitrogen deprivation up to 24 hours, indicating a dissipation of factors suppressing influx. Longer periods of nitrogen-deprivation resulted in a decline in 15NO3 influx from its maximal rate. The two inbreds differed significantly in the onset and extent of this decline, although their patterns during initial release from influx suppression were similar. Except for plants of high endogenous nitrogen status, net nitrate uptake was largely attributable to influx, and genetic variation in the regulation of this process is implied.  相似文献   

13.
The fate of nitrate and nitrogen-15 was followed during the apparent induction phase (6h) for nitrate uptake by N-depleted dwarf bean (Phaseolus vulgaris L. ev. Witte Krombek). Experiments were done with intact plants and with detached root systems. Qualitatively and quantitatively, xylem exudation from detached roots was a bad estimate of the export of NO?3 or NO?3-15N from roots of intact plants. In vivo nitrate reductase activity (NRA) agreed well with in situ reduction, calculated as the difference between uptake and accumulation in whole plants, provided NRA was assayed with merely endogenous nitrate as substrate (‘actual’ NRA). The majority (75%) of the entering nitrate remained unmetabolized. Both nitrate reduction and nitrate accumulation occurred predominantly in the root system. Some (< 25%) of the root-reduced nitrate-N was translocated to the shoot. Nitrate uptake occurred against the concentration gradient between medium and root cells, and probably against the gradient of the electro-chemical potential of nitrate. Part of the energy expended for NO?3 absorption came from the tops, since decapitation and ringing at the stem base restricted nitrate uptake.  相似文献   

14.
Nitrate uptake and assimilation were examined in intact 18 days old wheat (Triticum aestivum, cv Capitole) seedlings either permanently grown on nitrate (high-N seedlings) or N-stressed by transfer to an 0 N-solution for the final 7 days (low-N seedlings). The N-stressed seedlings were characterized by a lower organic N content (2.5 mg instead of 4.9 mg per seedling) and an increased root dry weight.The seedlings received 15NO3K for 7 h in the light. Nitrate uptake was 2.8 times higher in low-N than in high-N seedlings. The assimilation rate was 35 and 16 μmol NO3?·h?1· g?1 dry weight respectively. Partitioning of NO3? to reduction and assimilation was the very same in both kinds of seedlings. The results support the view that 50 % of the nitrate reduction in Triticum aestivum, cv Capitole could be achieved in the roots.The present observations are interpreted as evidence that factors closely associated with the seedling N-status may have a major role in regulating NO3? uptake and assimilation. In low-N seedlings, the high amount of carbohydrates in roots may add its stimulus to the specific inducing effect of nitrate whereas in high-N seedlings, excess of nitrate or amino-acids may set the pace by negative feedback control.  相似文献   

15.
Abstract Growth-chamber cultivated Raphanus plants accumulate nitrate during their vegetative growth. After 25 days of growth at a constant supply to the roots of 1 mol m?3 (NO?3) in a balanced nutrient solution, the oldest leaves (eight-leaf stage) accumulated 2.5% NO?3-nitrogen (NO3-N) in their lamina, and almost 5% NO3-N in their petioles on a dry weight basis. This is equivalent to approximately 190 and 400 mol?3 m?3 concentration of NO?3 in the lamina and the petiole, respectively, as calculated on a total tissue water content basis. Measurements were made of root NO?3 uptake, NO?3 fluxes in the xylem, nitrate uptake by the mesophyll cells, and nitrate reduction as measured by an in vivo test. NO?3 uptake by roots and mesophyll cells was greater in the light than in the dark. The NO?3 concentration in the xylem fluid was constant with leaf age, but showed a distinct daily variation as a result of the independent fluxes of root uptake, transpiration and mesophyll uptake. NO?3 was reduced in the leaf at a higher rate in the light than in the dark. The reduction was inhibited at the high concentrations calculated to exist in the mesophyll vacuoles, but reduction continued at a low rate, even when there was no supply from the incubation medium. Sixty-four per cent of the NO?3 influx was turned into organic nitrogen, with the remaining NO?3 accumulating in both the light and the dark.  相似文献   

16.
The nature of the injury and recovery of nitrate uptake (net uptake) from NaCl stress in young barley (Hordeum vulgare L, var CM 72) seedlings was investigated. Nitrate uptake was inhibited rapidly by NaCl, within 1 minute after exposure to 200 millimolar NaCl. The duration of exposure to saline conditions determined the time of recovery of NO3 uptake from NaCl stress. Recovery was dependent on the presence of NO3 and was inhibited by cycloheximide, 6-methylpurine, and cerulenin, respective inhibitors of protein, RNA, and sterol/fatty acid synthesis. These inhibitors also prevented the induction of the NO3 uptake system in uninduced seedlings. Uninduced seedlings exhibited endogenous NO3 transport activity that appeared to be constitutive. This constitutive activity was also inhibited by NaCl. Recovery of constitutive NO3 uptake did not require the presence of NO3.  相似文献   

17.
18.
A comparison was made of energy metabolism of nodulated N2 fixing plants and non-nodulated NO3-fed plants of Lupinus albus L. Growth, N-increment, root respiration (O2 uptake and CO2 production) and the contribution of a SHAM-sensitive oxidative pathway (the alternative pathway) in root respiration were measured. Both growth rate and the rate of N-increment were the same in both series of plants. The rate of root respiration, both O2 uptake and CO2 production, and the activity of the SHAM-sensitive pathway were higher in NO3-fed plants than in N2 fixing plants. The rate of ATP production in oxidative phosphorylation was computed also to be higher in NO3-fed plants. It is concluded that both carbohydrate costings and ATP costings for synthesis + maintenance of root material were lower in N2 fixing than in NO3-fed plants. The respiratory quotient of root respiration was 1.6 in N2-fixing plants and 1.4 in NO3-fed plants. These values were slightly higher than the values calculated on the basis of CO2 output due to N-assimilation and the experimental values of O2 uptake, but showed the same trend: highest in N2 fixing plants. Root respiration of NO3-fed plants showed a diurnal pattern (both O2 uptake, CO2 production and the activity of the SHAM-sensitive pathway), whilst no diurnal variation in root respiration was found in N2 fixing plants. However, C2H2 reduction did show a diurnal rhythm, which is suggested to be related to the diurnal variation in transpiration. Addition of NO3 to N2 fixing plants increased the rate of root respiration and the activity of the alternative pathway. This treatment did not decrease C2H2 reduction and H2 evolution within 4 days. Withdrawal of NO3-supply from NO3-fed plants decreased the rate of root respiration but had no effect on the relative activity of the alternative pathway. It is suggested that the higher rate of root respiration and the higher activity of the SHAM-sensitive pathway in NO3-fed plants is due to a larger supply of carbohydrates to the roots, partly due to a better photosynthetic performance of the shoots and partly due to a higher capacity of the roots to attract carbohydrates.  相似文献   

19.
Abstract Chenopodium album L. plants, grown under controlled environmental conditions on different levels of soil nitrate, produced seeds with proportionately different NO?3 contents. Regardless of the endogenous NO?3 content, few seeds germinated in water or upon treatment with KNO3. Ethylene promoted germination, and the extent of germination was positively correlated with the endogenous seed NO?3 content. Combined application of ethylene and KNO3 in the dark had a synergistic effect on NO?3 -deficient seed. The synergism between ethylene and KNO3 was attributable to the NO?3 moiety of the nitrate salt. Ethylene and light showed moderate synergism in seeds with low or high endogenous nitrate. Addition of nitrate, however, masked the interaction between ethylene and light. Gibberellic acid4+7 (GA4+7) or red light, each alone or combined with KNO3, had little effect on germination. When applied together in the dark, ethylene and GA4+7 synergistically enhanced the germination of NO?3-deficient seed. The combined effects of the two hormones on this seed were further enhanced by the addition of KNO3. There was no synergism between ethylene and GA4+7 in NO?3-rich seed. These interactions among GA4+7, ethylene and KNO3 were not affected by light. The results confirm and further elaborate our earlier finding that the sensitivity of C. album seeds to ethylene may depend on nitrate availability.  相似文献   

20.
Gniazdowska  A.  Rychter  A. M. 《Plant and Soil》2000,226(1):79-85
Bean (Phaseolus vulgaris L.) plants were cultured for 19 d on complete or on phosphate deficient culture media. Low inorganic phosphate concentration in the roots decreased ATP level and nitrate uptake rate. The mechanisms which may control nitrate uptake rate during phosphate deficiency were examined. Plasma membrane enriched fractions from phosphate sufficient and phosphate deficient plants were isolated and compared. The decrease in total phospholipid content was observed in plasma membranes from phosphate deficient roots, but phospholipid composition was similar. No changes in ATPase and proton pumping activities measured in isolated plasma membrane of phosphate sufficient and phosphate deficient bean roots were noted. The electron microscope observations carried out on cortical meristematic cells of the roots showed that active ATPases were found in plasma membrane of both phosphate sufficient and phosphate deficient plants. The decrease in inorganic phosphate concentration in roots led to increased nitrate accumulation in roots, accompanied by a corresponding alterations in NO3 distribution between shoots and roots. Nitrate reductase activity in roots of phosphate deficient plants estimated in vivo and in vitro was reduced to 50–60% of the control. The increased NO3 concentration in root tissue may be explained by decreased NR activity and lower transport of nitrate from roots to shoots. Therefore, the reduction of nitrate uptake during phosphate starvation is mainly a consequence of nitrate accumulation in the roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号