首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sleeping sickness is an increasing problem in many parts of sub-Saharan Africa. The problems are compounded by the lack of new medication, and the increasing resistance against traditional drugs such as melarsoprol, berenil and isometamidium. Over the last few years, much progress has been made in understanding how drug action, and the development of resistance, is related to the mechanisms by which the parasite ingests the drugs. In some cases novel transporters have been identified. In other cases, transporters do not appear to be involved in drug uptake, and selectivity must lie with other parasite features, such as a specific target or activation of the drug. Lessons learned from studying the uptake of drugs currently in use may assist the design of a much needed new generation of trypanocides.  相似文献   

2.
Human African trypanosomiasis, endemic to sub-Saharan Africa, is invariably fatal if untreated. Its causative agent is the protozoan parasite Trypanosoma brucei. Eflornithine is used as a first line treatment for human African trypanosomiasis, but there is a risk that resistance could thwart its use, even when used in combination therapy with nifurtimox. Eflornithine resistant trypanosomes were selected in vitro and subjected to biochemical and genetic analysis. The resistance phenotype was verified in vivo. Here we report the molecular basis of resistance. While the drug's target, ornithine decarboxylase, was unaltered in resistant cells and changes to levels of metabolites in the targeted polyamine pathway were not apparent, the accumulation of eflornithine was shown to be diminished in resistant lines. An amino acid transporter gene, TbAAT6 (Tb927.8.5450), was found to be deleted in two lines independently selected for resistance. Ablating expression of this gene in wildtype cells using RNA interference led to acquisition of resistance while expression of an ectopic copy of the gene introduced into the resistant deletion lines restored sensitivity, confirming the role of TbAAT6 in eflornithine action. Eflornithine resistance is easy to select through loss of a putative amino acid transporter, TbAAT6. The loss of this transporter will be easily identified in the field using a simple PCR test, enabling more appropriate chemotherapy to be administered.  相似文献   

3.
Large polymorphic gene families that are involved in clonal phenotypic variation have been identified in both African trypanosomes and malaria parasites. Many of these gene families are necessary for host adaptation, allowing the parasite to infect different species of host or types of host cells. In many cases, switching between these functionally variable proteins also results in antigenic variation.  相似文献   

4.
5.
6.
7.
Genetic exchange in African trypanosomes   总被引:1,自引:0,他引:1  
African trypanosomes are important pathogens of humans and domestic animals, but little was known, until recently, of the genetic system of these parasites. Recent results demonstrate the existence of nonobligatory genetic exchange between different stocks of T. brucei. A number of models have been put forward for the mechanism of genetic exchange, including a fusion model with subsequent random loss of chromosomes and a more conventional mendelian system.  相似文献   

8.
Differences between host and parasite energy metabolism are eagerly sought after as potential targets for antiparasite chemotherapy. In Kinetoplastia, the first seven steps of glycolysis are compartmented inside glycosomes, organelles that are related to the peroxisomes of higher eukaryotes. This arrangement is unique in the living world. In this review, Christine Clayton and Paul Michels discuss the implications of this unusual metabolic compartmentation for the regulation of trypanosome energy metabolism, and describe how an adequate supply of energy is maintained in different species and life cycle stages.  相似文献   

9.
10.
11.
Antigenic variation is central to the success of African trypanosomes and other eukaryotic, bacterial and viral pathogens. Our understanding of the control and execution of this immune evasion strategy in trypanosomes is incomplete, despite the molecular basis of antigenic variation being first described over 20 years ago. Recent research progress in this field is highlighted here and some of the unresolved questions raised.  相似文献   

12.
Zhang  Kai  Jiang  Ning  Chen  Hongyu  Zhang  Naiwen  Sang  Xiaoyu  Feng  Ying  Chen  Ran  Chen  Qijun 《中国科学:生命科学英文版》2021,64(4):621-632
African trypanosomatid parasites escape host acquired immune responses through periodic antigenic variation of their surface coat. In this study, we describe a mechanism by which the parasites counteract innate immune responses. Two Tat D DNases were identified in each of Trypanosoma evansi and Trypanosoma brucei. These DNases are bivalent metal-dependent endonucleases localized in the cytoplasm and flagella of the parasites that can also be secreted by the parasites. These enzymes possess conserved functional domains and have efficient DNA hydrolysis activity. Host neutrophil extracellular traps(NETs) induced by the parasites could be hydrolyzed by native and recombinant Tat D DNases. NET disruption was prevented, and the survival rate of parasites was decreased, in the presence of the DNase inhibitor aurintricarboxylic acid. These data suggest that trypanosomes can counteract host innate immune responses by active secretion of Tat D DNases to degrade NETs.  相似文献   

13.
Gossypol-induced death of African trypanosomes   总被引:2,自引:0,他引:2  
  相似文献   

14.
15.
Dihydroxyacetone (DHA) was examined to explore its trypanocidal activity. The compound is easily taken up by trypanosomes via its aquaglyceroporins but is not converted to a glycolytic intermediate due to the lack of a respective kinase. Investigating the DHA-induced cell death it became evident that parasites die by autophagy rather than by necrosis or apoptosis. Since autophagy is not well studied in African trypanosomes our work offers a way to investigate the importance of autophagy for trypanosomes not only for stress coping but also for organelle reconstruction during differentiation.  相似文献   

16.
17.
18.
Control of antigenic variation in African trypanosomes   总被引:8,自引:0,他引:8  
  相似文献   

19.
The surface of the African trypanosomes   总被引:3,自引:0,他引:3  
The African trypanosomes bear on the outside of their cell membrane a single 10-15 nm thick coat of a glycoprotein. This glycoprotein may differ in structure in the predominant populations of parasitemic waves found in relapsing infections. Variant Specific Glycoprotein (VSG) range in MW between 53,000-63,000 d and may have variable amounts of carbohydrate attached at one, two, or several loci. Such differences in carbohydrate content may account in part for their range in molecular size. Approximately 30 C-terminal residues demonstrate isotypy ; i.e. these regions fall into classes having similar amino acid sequence. Modest homology has been demonstrated in two VSGs of T. congolense arising in relapsing infections although comparison of many VSG show little or no obvious homology. More recently, lipid-associated forms of VSG have been described and it is believed that these forms may be transmembrane proteins. Different VSGs appear to have different amounts of the primary sequence which have alpha-helix-forming potential. In some VSG, in excess of 80% of the structure is helical as judged by both Chou-Fasman calculations and by circular dichroism. This raises the possibility that different VSG may have different folding patterns. The arrangement of VSG on the trypanosome surface probably places the basic amino acid-rich carbohydrate-bearing C-terminus of the polypeptide chain close to the membrane. There is some protein-protein association between VSGs for which (in T. evansi) the C-terminal tail is not required. The importance of VSG structure lies not only in the fact that the molecule mediates the phenomenon of antigenic variation but also in the recent observation that VSG may act on the cellular immune system to suppress the humoral immune responses of the host.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号