首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of the CD45 tyrosine protein phosphatase is required for the response of functional lymphocytes to stimulation through the antigen receptor. One or more of its substrates may therefore be essential for signal transduction during lymphocyte activation. We have studied the phosphorylation of the closely related lck, fyn, and c-src tyrosine protein kinases in leukemic murine T-cell lines that have lost the expression of CD45. The phosphorylation of the lck kinase at an inhibitory site of tyrosine phosphorylation, Tyr-505, was increased by two-, six-, and eightfold in three different cell lines. Phosphorylation of the fyn kinase at the homologous site, Tyr-531, was unaltered in one of these cell lines, but increased by 2.5-fold in the two others. The phosphorylation of p60c-src at the homologous tyrosine was essentially unchanged in the one CD45-negative cell line in which it was examined. The expression of CD45 therefore regulates the phosphorylation and potentially the activity of the lck and fyn tyrosine protein kinases, but the effect on the lck kinase is much greater than on the fyn kinase. This finding and the observation that CD45 had no effect on the phosphorylation of p60c-src suggest that CD45 exhibits polypeptide substrate specificity in vivo. Additionally, these findings are consistent with the hypothesis that the unresponsiveness of CD45-negative lymphoid cells to antigenic stimulation is due largely to hyperphosphorylation of the lck kinase.  相似文献   

2.
Glycoprotein CD45, a transmembrane protein tyrosine phosphatase of leukocytes, is topographically similar to the epidermal growth factor receptor, a transmembrane tyrosine kinase. Since the latter is thought to be allosterically regulated through conversion between monomeric and dimeric forms, we sought to determine whether CD45 undergoes similar oligomerization. Our analysis, employing a thiol-cleavable and homobifunctional chemical cross-linker, dithiobis succinimidyl propionate, revealed that CD45 indeed formed homodimers. In addition, a protein of molecular mass 30,000 daltons (30 kDa) was found to be associated with both the CD45 monomer and dimer. The 30-kDa protein was phosphorylated and was not labeled by cell surface radioiodination. Distinct differences in protein tyrosine phosphatase activity were detected among the various populations of CD45 separated by sucrose gradient ultracentrifugation. However, the differences observed could not be explained simply by dimerization and instead suggest the presence of other factor(s) involved in the regulation of CD45 enzyme activity.  相似文献   

3.
CD45 is a leukocyte specific transmembrane glycoprotein and a receptor-like protein tyrosine phosphatase (PTP). CD45 can be expressed as several alternatively spliced isoforms that differ in the extracellular domain. The isoforms are regulated in a cell type and activation state-dependent manner, yet their function has remained elusive. The Src family kinase members Lck and Lyn are key substrates for CD45 in T and B lymphocytes, respectively. CD45 lowers the threshold of antigen receptor signalling, which impacts T and B cell activation and development. CD45 also regulates antigen triggered Fc receptor signalling in mast cells and Toll-like receptor (TLR) signalling in dendritic cells, thus broadening the role of CD45 to other recognition receptors involved in adaptive and innate immunity. In addition, CD45 can affect immune cell adhesion and migration and can modulate cytokine production and signalling. Here we review what is known about the substrate specificity and regulation of CD45 and summarise its effect on immune cell signalling pathways, from its established role in T and B antigen receptor signalling to its emerging role regulating innate immune cell recognition and cytokine production.  相似文献   

4.
5.
The transmembrane protein tyrosine phosphatase CD45 is required for Ag receptor signal transduction in lymphocytes. Recently, a role for CD45 in the regulation of macrophage adhesion has been demonstrated as well. To investigate further the role of CD45 in the regulation of adhesion, we examined integrin-mediated adhesion to fibronectin of two T cell lines and their CD45-deficient variants. The absence of CD45 correlated with enhanced adhesion to fibronectin via integrin alpha5beta1 (VLA-5), but not alpha4beta1 (VLA-4) in both cell lines. Adhesion returned to normal levels upon transfection of wild-type CD45 into the CD45-deficient lines. Transfection of chimeric or mutant molecules expressing some, but not all, CD45 domains and activities demonstrated that both the transmembrane domain and the tyrosine phosphatase activity of CD45 were required for regulation of integrin-dependent adhesion, but the highly glycosylated extracellular domain was dispensable. In contrast, only a catalytically active CD45 cytoplasmic domain was required for TCR signaling. Transfectants that restored normal levels of adhesion to fibronectin coimmunoprecipitated with the transmembrane protein known as CD45-associated protein. These studies demonstrate a novel role for CD45 in adhesion regulation and suggest a possible function for its association with CD45-associated protein.  相似文献   

6.
CD45 is a protein tyrosine phosphatase implicated in T and B cell activation, differentiation, and development. It dephosphorylates specific tyrosine residues on its substrates, principally on the Src-family of protein tyrosine kinases, thus regulating T cell or B cell activation during the immune response. In this study, we present the partial CD45 nucleotide and deduced amino-acid sequences for the owl monkey (Aotus vociferens). There is 97% identity in the nucleotide sequence and 96% in the amino acid sequence with the human counterpart. Aotus CD45 undergoes alternative splicing on the extracelular N-terminal tail, and has several conserved features characteristic of other species. This includes the two Tyr phosphatase domains and some residues and/or motifs involved in docking of signaling molecules, intramolecular interactions, and CD45 activity and activity regulation (YINAS, GXGXXG, WPD, and YWP motifs, and the Cys residues). This suggests that the Aotus CD45 molecule is a functional enzyme and that initial lymphocyte activation in Aotus monkeys and humans is very similar. Together with previous reports from our laboratory, this work supports the contention that immune responses in Aotus are similar to those of humans, and supports the strategy for using this experimental model for studies on activation of T lymphocytes in response to specific antigens.  相似文献   

7.
Using tumour cell lines expressing specific isoforms of murine Ly-5 (molecular weights of 180,000, 200,000 and 240,000) we find that all forms of Ly-5 and immuno-affinity purified forms of Ly-5 contain tyrosyl phosphatase activity. These results demonstrate that these isoforms of Ly-5 belong to the same family of functional receptor-linked tyrosine phosphatases as the human leukocyte common antigen. CD45.  相似文献   

8.
A simple, high-throughput fluorescent assay was developed to measure the inhibition of membrane-bound CD45 from Jurkat cells. This assay is based on the fact that approximately 64% of PTP activity from Jurkat cell membrane is contributed by CD45. This has been proven by comparing the activity in membrane protein from wild-type Jurkat cells and CD45-negative mutant cells, and also by measuring the residual activity after depleting CD45 from Jurkat cell membrane. We have demonstrated that fluorescein diphosphate can be used as a substrate to monitor CD45 activity from Jurkat cell membrane, which allows us to easily follow CD45 activity in both fluorescent and absorbance modes in a 96-well format. Some common protein tyrosine phosphatase inhibitors have been evaluated with this assay.  相似文献   

9.
In this study we compare the effect of CD3 and CD2 ligation on tyrosine kinase activation in human peripheral blood T cells. Using antiphosphotyrosine antibody to detect tyrosine phosphorylation of cellular substrates, we demonstrate that mAb stimulation of either CD3 or CD2 results in tyrosine phosphorylation of the TCR-zeta chain and 135- and 100-kDa proteins. However, differences are observed between CD3 and CD2 ligation; only the former results in rapid tyrosine phosphorylation of 72-, 65-, and 40-kDa substrates. Co-aggregation of CD2 and CD45, a tyrosine phosphatase, results in inhibition of intracellular calcium elevation and T cell proliferation. We demonstrate in this study that this manipulation also inhibits polyphosphoinositide hydrolysis and tyrosine phosphorylation of the 100-kDa substrate. The failure of tyrosine phosphorylation of the 100-kDa substrate is specific in that phosphorylation of the 135-kDa protein is not inhibited. Similar results are observed when CD2 and CD45 are independently cross-linked rather than co-aggregated. The observation that CD45 cross-linking alters tyrosine phosphorylation of T cell substrates and effects polyphosphoinositide hydrolysis is further evidence that tyrosine phosphorylation regulates early events in T cell activation including, perhaps, phospholipase C activity.  相似文献   

10.
Cell surface expression of CD45, a receptor-like protein tyrosine phosphatase (PTPase), is required for T cell antigen receptor (TCR)-mediated signal transduction. Like the majority of transmembrane PTPases, CD45 contains two cytoplasmic phosphatase domains, whose relative in vivo function is not known. Site-directed mutagenesis of the individual catalytic residues of the two CD45 phosphatase domains indicates that the catalytic activity of the membrane-proximal domain is both necessary and sufficient for restoration of TCR signal transduction in a CD45-deficient cell. The putative catalytic activity of the distal phosphatase domain is not required for proximal TCR-mediated signaling events. Moreover, in the context of a chimeric PTPase receptor, the putative catalytic activity of the distal phosphatase domain is not required for ligand-induced negative regulation of PTPase function. We also demonstrate that the phosphorylation of the C-terminal tyrosine of Lck, a site of negative regulation, is reduced only when CD45 mutants with demonstrable in vitro phosphatase activity are introduced into the CD45-deficient cells. These results demonstrate that the phosphatase activity of CD45 is critical for TCR signaling, and for regulating the levels of C-terminal phosphorylated Lck molecules.  相似文献   

11.
In the present report, we demonstrated that modulation of CD26 from T cell surface induced by antiCD26 (1F7) led to enhanced phosphorylation of CD3 zeta tyrosine residues and increased CD4 associated p56lck tyrosine kinase activity. We further showed that CD26 was comodulated on the T cell surface with CD45, a known membrane-linked protein tyrosine phosphatase and that anti-CD26 was capable of precipitating CD45 from T cell lysates. These findings strongly suggest that CD26 may be closely associated with the CD45 protein tyrosine phosphatase on T cell surface and further support the notion that the interaction of CD26 with CD45 results in enhanced tyrosine kinase activity, zeta chain phosphorylation, and T cell activation.  相似文献   

12.
The protein tyrosine phosphatase CD45 is expressed as a series of isoforms whose tissue and differentiation stage specificity is broadly conserved in evolution. CD45 has been shown to be an important regulator of a variety of functions in many different hemopoietic lineages. We have chosen an in vivo genetic complementation strategy to investigate the differential functions between isoforms. In this study, we report the characterization of transgenic mice which express the isoforms CD45RO or CD45RB as their only CD45 molecules, at a variety of expression levels and in the majority of hemopoietic lineages. Both CD45RO and CD45RB isoforms reconstitute thymocyte development in a CD45-null mouse background when expressed above a threshold level. The resulting mature T cells populate the peripheral lymphoid organs where they are found at normal frequency. Both CD45RO and CD45RB isoforms also permit T cell function in the periphery, although the threshold for normal function here appears to be set higher than in the thymus. In contrast, neither isoform is capable of fully restoring peripheral B cell maturation, even at levels approaching those in heterozygous CD45(+/-) mice in which maturation is normal. In vitro activation of B cells by Ag-receptor stimulation is only minimally complemented by these CD45RO and CD45RB transgenes. Our results suggest that CD45 isoforms play unique roles which differ between the T and B lineages.  相似文献   

13.
14.
We have characterized some novel caged fluorescein diphosphates as photoactivatable, cell-permeable substrates for protein tyrosine phosphatases and explored their usefulness in identifying inhibitors of tyrosine phosphatases. 1-(2-Nitrophenyl)ethyl protected fluorescein diphosphate (NPE-FDP) undergoes rapid photolysis to release FDP upon irradiation with a 450-W UV immersion lamp and its by-product does not inactivate protein tyrosine phosphatase 1B (PTP1B) or alters the viability of cells. The generated FDP from photolysis of NPE-FDP was shown to have exactly the same properties as FDP, which can be used as a PTP substrate in pure enzyme assays. We have also demonstrated that the PTP activity can be measured using NPE-FDP in small droplets. Its advantage as an inert substrate before photolysis allows the possibility of applying nanospray technology in screening and optimizing PTP inhibitors through a large chemical library. Like other caged bioeffectors such as nucleotide and inositol trisphosphate, NPE-FDP is cell-permeable. The NPE-FDP can be photolyzed to generate FDP inside cells, and then can be hydrolyzed by phosphatases to produce fluorescein monophosphate and subsequently to fluorescein. Although Jurkat cells contain high concentrations of CD45, it has not been possible to use FDP as a substrate to measure CD45 activity in the intact cell. This is due to the hydrolysis of FDP by several other cellular phosphatases. However, NPE-FDP can be useful as a cell-permeable substrate for overexpressed phosphatases such as alkaline phosphatase.  相似文献   

15.
The function of the second protein tyrosine phosphatase domain (D2) in two-domain protein tyrosine phosphatases (PTP) is not well understood. In CD45, D2 can interact with the catalytic domain (D1) and stabilize its activity. Although D2 itself has no detectable catalytic activity, it can bind substrate and may influence the substrate specificity of CD45. To further explore the function of D2 in T cells, a full-length construct of CD45 lacking the D1 catalytic domain (CD45RABC-D2) was expressed in CD45+ and CD45- Jurkat T cells. In CD45- Jurkat T cells, CD45RABC-D2 associated with Lck but, unlike its active counterpart CD45RABC, did not restore the induction of tyrosine phosphorylation or CD69 expression upon T cell receptor (TCR) stimulation. Expression of CD45RABC-D2 in CD45+ Jurkat T cells resulted in its association with Lck, increased the phosphorylation state of Lck, and reduced T cell activation. TCR-induced tyrosine phosphorylation was delayed, and although MAPK phosphorylation and CD69 expression were not significantly affected, the calcium signal and IL2 production were severely reduced. This indicates that the non-catalytic domains of CD45 can interact with Lck in T cells. CD45RABC-D2 acts as a dominant negative resulting in an increase in Lck phosphorylation and a preferential loss of the calcium signaling pathway, but not the MAPK pathway, upon TCR signaling. This finding suggests that, in addition to their established roles in the initiation of TCR signaling, CD45 and Lck may also influence the type of TCR signal generated.  相似文献   

16.
17.
CD45 is expressed on all nucleated haematopoietic cells and was originally identified as the first and prototypic transmembrane protein tyrosine phosphatase. In CD45 mutant cell lines, CD45-deficient mice and CD45-deficient human SCID patients, CD45 is required for signal transduction through antigen receptors. CD45 can operate as a positive as well as a negative regulator of Src-family kinases. Moreover, CD45 was identified as the elusive JAK tyrosine phosphatase that negatively regulates cytokine receptor activation involved in the differentiation, proliferation and antiviral immunity of haematopoietic cells. Modulation of CD45 splice variants provides a unique opportunity to design drugs that turn off or turn on antigen and cytokine receptor signaling in cancer, transplantation or autoimmunity  相似文献   

18.
We have designed a useful method of assessing reactive oxygen species generation in biological fluids. The novel assay utilizes tyrosine phosphatase CD45 as a biosensor of oxidative stress. Applying this new method, we examined oxygen species generation in the following cell culture media: RPMI 1640, DMEM, DMEM enriched with pyruvate and MEM. We discovered that the media (especially RPMI 1640) significantly reduced the activity of protein tyrosine phosphatase. The media-caused inactivation of CD45 was reversible after treatment with dithiothreitol being a powerful reducing agent. Interestingly, the media supplemented with catalase did not exhibit any inhibitory effect on CD45 activity which suggests a hydrogen peroxide-mediated mechanism of the enzyme inactivation. In addition to that, we assessed the impact of oxidative stress level on the activity of CD45 as measured in Jurkat cells cultured in RPMI 1640 either exposed or not exposed to the light of laminar flow cabinet fluorescent lamp. We found that Jurkat cells that were exposed to light displayed ca. 20% lower activity of CD45 than the cells protected against the light. The obtained results indicate that production of hydrogen peroxide in the medium leading to inhibition of CD45 was light-dependent, and that careful protection of cell culture media from the light may help to prevent the artifact in cell studies. Hydrogen peroxide, responsible for CD45 inactivation, can be generated in cell culture media after exposition to light due to photoreactive amino acids present in the media.  相似文献   

19.
Multiple isoforms of the protein tyrosine phosphatase CD45 are expressed on the surface of human T cells. Interestingly, the expression of these isoforms has been shown to vary significantly upon T-cell activation. In this report, we describe a novel cell line-based model system in which we can mimic the activation-induced alternative splicing of CD45 observed in primary T cells. Of the many proximal signaling events induced by T-cell stimulation, we show that activation of protein kinase C and activation of Ras are important for the switch toward the exclusion of CD45 variable exons, whereas events related to Ca(2+) flux are not. In addition, the ability of cycloheximide to block the activation-induced alternative splicing of CD45 suggests a requirement for de novo protein synthesis. We further demonstrate that sequences which have previously been implicated in the tissue-specific regulation of CD45 variable exons are likewise necessary and sufficient for activation-induced splicing. These results provide an initial understanding of the requirements for CD45 alternative splicing upon T-cell activation, and they confirm the importance of this novel cell line in facilitating a more detailed analysis of the activation-induced regulation of CD45 than has been previously possible.  相似文献   

20.
Activation of human PBL T cells with solid phase anti-CD3 mAb or during the course of an MLR response gives rise to the association of CD4 or CD8 molecules with the protein tyrosine phosphatase, CD45, on the cell surface. This paired association of cell-surface molecules occurs late in the activation cycle and appears to be dependent upon Ti-CD3-mediated signaling because mitogen-driven activation does not induce formation of the complex. Maximal association occurred 72 to 96 h after exposure to anti-CD3 mAb on both CD4+ and CD8+ T cells. In contrast, association between CD8 and CD45 during an MLR response did not occur until day 6 of a MLR whereas CD4-CD45 association was detected by 72 h of culture. The kinetics of association between CD4 or CD8 and CD45 was measured by fluorescence resonance energy transfer and confirmed by immunoprecipitation of dithiobis succinimidylpropionate or disuccinimidyl suberate cross-linked 125I-labeled resting or activated T cells. The molecules that co-precipitated with either CD4 or CD8 and had an apparent kDa of 180 to 205 could be immunodepleted with anti-CD45 mAb. Furthermore, CD4 or CD8 immunoprecipitates from 96-h activated T cells contained significant levels of protein tyrosine phosphatase activity whereas corresponding immunoprecipitates from resting or recently activated T cells showed little protein tyrosine phosphatase activity. This association may allow CD45 to engage and dephosphorylate lck or another CD4- or CD8-associated substrate in order to reset the receptor complex to receive a new set of stimuli. Our observations suggest that synergistic signaling provided as a consequence of CD4 or CD8 association with the TCR after antigenic stimulation may develop on a different temporal scale than that observed after soluble anti-CD4+ anti-CD3 heteroconjugate antibody cross-linking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号