首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The productivity of individual phytoplankton species in freshwateror brackish water communities has principally been studied bymeans of grain density autoradiography. The present paper describesa track autoradiographic method which can estimate the productivityof individual cells in marine phytoplankton communities. Individualdisintegrations caused by 14C can be recognized as silver grainstrings of specific shapes. In contrast to grain density autoradiography,the track autoradiography differentiates grains caused by disintegrationsof 14C atoms from those caused by background or artifacts. Onlysmall amounts of radioactivity are necessary. The techniqueis described in detail, and preliminary results are given. Improvementof the technique and other fields for its application are considered.  相似文献   

2.
The distribution of IAA-2-14C or IAA-5-3H applied to the apexin the upper and lower (with respect to gravity) halves of geotropicallystimulated stems of cucumber and pea was examined and the resultsobtained are as follows: 1. A larger amount of IAA-2-14C or IAA-5-3H was detected inthe lower than upper half of cucumber hypocotyls with 3-hr geostimulation. 2. A larger amount of IAA-2-14C was distributed in the lowerthan upper epidermis of pea epicotyls with 1-hr geostimulation. 3. Freezing autoradiography revealed that IAA-2-14C was concentratedin the vascular bundles and epidermis of cucumber hypocotyls,the distribution being affected by geostimulation only in thelatter. 4. Application of 1% TIBA in lanolin inhibited the distributionof IAA-2-14C in the lower epidermis of pea epicotyls, causingsuppression of geotropic curvature. 5. From these results, we concluded that IAA which accumulatedin the lower epidermis of the stem upon geostimulation causedthe negative geotropic curvature of the stem. (Received October 13, 1975; )  相似文献   

3.
The loss of organic material from the roots of forage rape (Brassicanapus L.,) was studied by pulse-labelling 25-d-old non-sterilesand-grown plants with 14CO2. The distribution of 14C withinthe plant was measured at 0, 6 and 13 d after labelling whilst14 C accumulating in the root-zone was measured at more frequentintervals. The rates of 14C release into the rhizosphere, andloss of 14CO2 from the rhizosphere were also determined. Thesedata were used to estimate the accumulative loss of 14C fromroots and loss respiratory 14CO2 from both roots and associatedmicro-organisms. Approximately 17-19% of fixed 14CO2 was translocatedto the roots over 2 weeks, of which 30-34% was released intothe rhizosphere, and 23-24% was respired by the roots as 14CO2. Of the 14C released into the rhizosphere, between 35-51%was assimilated and respired by rhizosphere micro-organisms.Copyright1993, 1999 Academic Press Brassica napus L., carbon loss, carbon partitioning, microbial nutrition, microbial respiration, forage rape, pulse-labelling, rhizodeposition, root respiration, sand culture  相似文献   

4.
Translocation of Assimilates Within and Between Potato Stems   总被引:2,自引:0,他引:2  
Three aspects of translocation in potato were examined: (i)translocation within stems (ii) translocation between individualstems of a plant (iii) translocation between tubers followinginjection of 14C sucrose into a single daughter tuber. Assimilatesexported from single leaves of evenly illuminated potato stemsremained confined to the same side of the stem as the sourceleaf in a pattern consistent with the internal arrangement ofvascular bundles in the stem, and tubers borne on stolons verticallybelow the source leaf contained higher concentrations of 14Cthan those on the opposite side. Consequently 14C import intothe tubers bore little relationship to tuber growth rates. However,alteration of source/sink relations by pruning stems to a singlesouce leaf resulted in an even distribution of 14C throughoutthe vascular bundles of the stem and 14C import into the tubersbore a stronger relationship to tuber growth rates than to thephyllotactic relationship of the tubers with the source leaf. Labelling one stem of a potato plant resulted in little or nomovement of 14C into tubers on other unlabelled stems. However,removal of the unlabelled stems at ground level induced a significantmovement of 14C from the labelled stem to the tubers on unlabelledstems, this movement occurring via the mother tuber. Shadingthe unlabelled stems had less effect than stem removal. 14C sucrose injected into single daughter tubers was translocatedto other tubers on the same stem and also to tubers on a secondstem at the opposite end of the mother tuber. The sucrose wasconverted to starch in these tubers. The results favour the view that each potato stem functionsas an independent unit with potential for assimilate redistributionwithin a stem but with little or no carbon exchange occurringbetween stems, unless under severely altered source/sink patterns. Assimilates, 14C, autoradiography, potato (Solanum tuberosum L.), tuber growth  相似文献   

5.
Assimilate distribution in leaves of Lolium temulentum was establishedby root absorption of [14C]sucrose and after exposure to 14CO2.Age determined the amount of carbon assimilated, with more labelbeing incorporated during expansion than at maturity. Duringsenescence 14C assimilation was much lower. Ethanol-solubleextracts from various tissues of root-labelled plants containedmost of the radioactivity chiefly in basic and acidic compounds.The neutral fraction was composed predominantly of sucrose. Sucrose was comparably labelled in leaves from plants fed equalamounts of either [14C]sucrose, glucose, or fructose and onlytraces of labelled monosaccharides appeared in extracts. Radioactive sucrose was translocated rapidly from mature leaveswhereas, in the expanding leaf, carbon incorporation was directedtowards growth and the greater proportion of label present atligule formation was in ethanol-insoluble material. Induced senescence, of a mature leaf fed during expansion, produceda rapid loss from the pool of insoluble 14C. This was accompaniedby a reduction in the contents of chlorophyll and soluble proteinand an accumulation of amino acids. The onset of senescencecaused changes in leaf sugar levels which were correlated withincreased rates of respiration.  相似文献   

6.
The amounts of carbon released into soil from roots of wheatand barley seedlings grown under three environmental conditionsfor 3 weeks with shoots in constant specific activity 14CO2are reported. This carbon loss was measured as respired 14CO2from both the root and the accompanying microbial populationand as root derived 14C-labelled organic C compounds in thesoil. With a 16 h photoperiod, growth at 15 ?C constant or 18?C day/14 ?C night gave a loss of 33–40% of the totalnet fixed carbon (defined as 14C retained in the plant plus14C lost from the root). The proportion of 14C translocatedto the roots that was released into the soil did not changewith temperature, so carbon distribution within the plant musthave changed. With a 12 h photoperiod and a temperature regimeof 18 ?C/14 ?C carbon loss from the roots was decreased to 17–25%of the total fixed carbon. Key words: Cereals, Roots, Carbon loss  相似文献   

7.
The effects of three ranges of CO2 concentration on growth,carbon distribution and loss of carbon from the roots of maizegrown for 14 d and 28 d with shoots in constant specific activity14CO2 are described. Increasing concentrations of CO2 led toenhancement of plant growth with the relative growth rate (RGR)of the roots affected more than the RGR of the shoots. Between16% and 21% of total net fixed carbon (defined as 14C retainedin the plant plus 14C lost from the root) was lost from theroots at all CO2 concentrations at all times but the amountsof carbon lost per unit weight of plant decreased with time.Possible mechanisms to account for these observations are discussed. Key words: Growth, Roots, Carbon loss, [CO2]  相似文献   

8.
Absorption of 42K by excised roots of barley (Hordeum vulgareL.) grown in 0 or 5 ppm siduron (l-(2-methylcyclohexyl)-3-phenylurea)was a linear function of time for at least 60 minutes with transportbeing unidirectional. Absorption of siduron was a function ofthe external concentration to the limits of its solubility (0.09mM). However, the siduron- 14C absorbed by roots grown in either0 or 5 ppm siduron was in a readily exchangeable form and desorptionfor 4 hr exchanged 80 % of the label. Glucose-14C, adenine-814Cand leucine14C were actively absorbed with 70 to 85 % of thelabel being absorbed in 24 hr. Although roots grown in iduronabsorbed less 42K, glucose-14C, adenine-14C and siduron-14C,and more leucine-14C than similar roots grown in water culture,it is probable that these differences were not large enoughto account for the noted reduction (60%) in root growth. (Received January 9, 1968; )  相似文献   

9.
14C from indol-3-yl-(acetic acid-2-14C) (IAA-14C) was transportedin a weak but definitely polar manner through segments of youngand matured regions of pea roots. Greater quantities of 14C-labelledmaterial moved acropetally than basipetally. Up to 70 per centof radioactivity originally present in donor agar blocks wastaken up by the root segments, but only approximately 2 to 3per cent of this emerged into the receiver agar blocks. Anydifferences in uptake, transport, or binding of auxin were veryslight in the three regions of root studied. The IAA-14C wasmetabolized during passage through the root segments, yieldingtwo principal radioactive products. The identities of thesewere not determined, but they appeared to have auxin activityand may be formed spontaneously, but more slowly, in solutionsof IAA-14C. IAA-14C was transported into receiver blocks morereadily than its radioactive derivatives.  相似文献   

10.
The Stability and Movement of Gibberellic Acid in Pea Seedlings   总被引:1,自引:0,他引:1  
McCOMB  A. J. 《Annals of botany》1964,28(4):669-687
The stability and movement of gibberellic acid (GA) in intactdwarf pea seedlings growing in the light was studied by meansof both unlabelled GA and GA labelled with isotopic carbon (14C).After 14C-GA had been applied to the mature leaves of pea seedlingsmuch remained in association with the treated leaflets, but14C-GA was also extractable from the young shoots. The yieldwas approximately the same 5 to 96 hours after treatment. GApenetrated leaf surfaces only while the application solventwas moist (about 1 hour), but moved from the treated leafletsinto the shoots for at least 24 hours. Some hours after treatmentthere was an abrupt increase in the growth-rates of the plants,and crude estimates suggest that an effective dose of GA movedto the elongating tissue at about 5 cm/hr. The pattern of distributionof 14C was examined by autoradiography. The data suggest thatGA which enters the plant is redistributed from maturing leavesto immature leaves, passing through the elongating tissue, foras long as any of the substance is present. The hypothesis remainstenable that GA produces its growth effects by acting only uponexpanding tissue  相似文献   

11.
The penetration of leucine-(U)-14C and glucose-(U)-14C throughthe bulb epidermal tissue of Allium cepa was examined in thepresence of indoleacetic acid (IAA). Not only the uptake ofleucine-14C and glucose-14C in epidermal tissue but also theirtranscellular penetration were accelerated by IAA treatment.N-Ethylmaleimide (NEM) inhibited their uptake and transcellularpenetration, and the inhibitory effect was relieved by additionalIAA. In the presence of IAA, leucine-14C and glucose-14C weremore penetrable by adaxial than abaxial application, but inthe absence almost no difference due to application side wasobserved. IAA appears to promote permeability of the epidermaltissue only to substances applied adaxially. N,N'-Dicyclohexylcarbodiimide(DCCD) showed a little inhibitory effect on the IAA-inducedpromotion of the uptake and penetration of leucine-14C appliedadaxially. Leucine-14C and glucose-14C penetrated more easilythrough killed than fresh tissue, with little difference betweenabaxial and adaxial applications. 1 Present address: Department of Biology, Faculty of Science,Kochi University, Kochi 780, Japan. 2 Present address: Department of Medical Zoology, Medical School,Mie University, Tsu 514, Japan. (Received October 13, 1977; )  相似文献   

12.
Much of the work on the distribution of 14C-labelled assimilatesin tomato has been done in winter under low light intensities,and consequently the reported distribution patterns of 14C maynot be representative of plants growing in high light. Further,there are several somewhat conflicting reports on patterns ofdistribution of 14C-assimilates in young tomato plants. We soughtto clarify the situation by studying the distribution of 14C-assimilatesin tomato plants of various ages grown in summer when the lightintensity was high. In addition, the role of the stem as a storageorgan for carbon was assessed by (a) identifying the chemicalfractions in the stem internode below a fed leaf and monitoring14 C activity in these fractions over a period of 49 d, and(b) measuring concentrations of unlabelled carbohydrates inthe stem over the life of the plant. The patterns of distribution of 14C-assimilates we found fortomato grown under high light intensity confirmed some of thosedescribed for plants grown under low light, but export of 14Cby fed leaves was generally higher than reported for much ofthe earlier work. Lower leaves of young plants exported over50% of the 14C they fixed, although export fell sharply as theplants aged. Initially, the roots and apical tuft were strongsinks for assimilates, but they had declined in importance bythe time plants reached the nine-leaf stage. On the other hand,the stem became progressively more important as a sink for 14C-assimilates.Older, lower leaves exported more of their 14C-assimilates tothe upper part of the plant than to the roots, whereas youngleaves near the top of the plant exported more of their assimilatesto the roots. The stem internode immediately below a fed leafhad about twice the 14C activity of the internode above theleaf. Mature leaves above and below a fed leaf rarely importedmuch 14C, even when in the correct phyllotactic relationshipto the fed leaf. In the first 3 d after feeding leaf 5 of nine-leaf plants, theorganic and amino acid pools and the neutral fraction of theinternode below the fed leaf had most of the 14C activity, butby 49 d after feeding, the ethanolic-insoluble, starch and lipidfractions had most of the 14C activity. Glucose, fructose andsucrose were the main sugars in the stem. Although concentrationsof these sugars and starch declined in the stem as the plantsmatured, there was little evidence to indicate their use infruit production. Stems of plants defoliated at the 44-leafstage had lower concentrations of sugars and starch at maturity,and produced less fruit than the controls. It was concludedthat tomato is sink rather than source limited with respectto carbon assimilates, and that the storage of carbon in thestem for a long period is possibly a residual perennial traitin tomato.Copyright 1994, 1999 Academic Press Lycopersicon esculentum, tomato, assimilate distribution, 14C, internode storage, sink-source relationships, starch, stem reserves, sugars  相似文献   

13.
MOORBY  J. 《Annals of botany》1970,34(2):297-308
14C-tracer experiments showed that the export of assimilateslabelled with a short pulse of 14CO2 continued for 5 weeks.There appeared to be an approximately exponential loss of ethanol-insoluble14C from the haulm with a half-time of about 3.5 weeks. Initiallythere was a poor correlation between the fresh weight of thetubers and their 14C content but the correlation became goodafter 5 weeks. Field data showed that, in many instances, the rate of tubergrowth was greater than the rate of growth of the whole plant.This suggests the transfer of large amounts of dry matter fromthe haulm to the tubers. Dry-matter loss from the haulm couldaccount for the discrepancy and the amount transferred in thisway was about 10 per cent of the final dry weight of the tuber. There was an increase in net assimilation rate when the leafarea of the plants started to decline. It is suggested thatthis increase was due to an increase in the rate of photosynthesisbrought about by the influence of the rapidly growing tubers.  相似文献   

14.
Sunflower plants (Helianthus annuus L.) grown at 30°C werecooled to 13°C in the light in atmospheric CO2 or low CO2,or in darkness. Photosynthetic rate at 30°C after coolingwhole plants in atmospheric CO2 for 12 h during a photoperiodwas significantly lower than at the start of the photoperiodcompared to plants cooled at low CO2, those cooled in the darkand those maintained at 30°C. Amounts of sucrose, hexosesand starch in leaves at 13°C increased throughout a 14 hphotoperiod to levels higher than in leaves at 30°C, whereamounts of sucrose and hexoses were stable or falling after4 h. Carbohydrate accumulation at 13°C during this photoperiodwas more than twice that at 30°C. After three photoperiodsand two dark periods at 13°C carbohydrate levels in leaveswere still as high as at the end of the first photoperiod, butless carbohydrate accumulated during the photoperiods than duringthe first photoperiod, and more was partitioned as starch. Amountsof soluble carbohydrate in roots were greater after 14 h at13°C than in roots of plants at 30°C. Loss of 14C fromleaves at 30°C as a proportion of 14CO2 fixed by them at30°C, decreased after exposure of plants to 13°C inthe light for 30 min prior to 14CO2feeding. Results indicatean effect of cold on the transport process that was light-dependent.It is inferred that the reduction in the proportion of 14C lostfrom leaves after 10 h cooling was due to reduced sink demand,whereas the rise in the proportion of 14C lost from leaves after24 h reflects reduced photosynthetic rate. The coincidence ofreduced photosynthetic rate with raised carbohydrate levelsin leaves maintained at 30°C throughout, whilst the restof the plant was cooled to 13°C in the light implies feedbackinhibition of photosynthesis. This may reduce the imbalancebetween source and sink in sunflower during the first days oflong-term cooling. Key words: Temperature, carbon export, carbohydrates, photosynthesis, sunflower  相似文献   

15.
The fourth fully expanded leaf on the main stolon of white cloverplants was exposed to 14CO2. Thereafter, quantitative and fractionalanalysis of the partitioning, storage and remobilization afterdefoliation of the 14C labelled assimilate was sequentiallyconducted over a 2- to 3-week period. In undefoliated plants, most 14C reached its final destinationwithin 24 h of feeding. Forty percent of assimilated 14C waslost through respiration, while the rest was exported, predominantlyto meristems, but also to roots, stolons and leaves. The 14Cinitially translocated to meristems was subsequently recoveredin stolon and leaf tissue as the plants matured. Approximately 10% of assimilated 14C was invested into long-termstorage in roots and stolons. These reserves were remobilizedafter both partial and total defoliation, and a portion of theremobilized 14C was incorporated into new growth, Partly defoliatedplants regrew more rapidly than totally defoliated plants, butmore 14C reserve depletion took place in the totally defoliatedtreatment. Reserve depletion took place from both stolons androots, but stolon reserves were preferentially utilized. Bothhigh and low molecular weight storage compounds were involved. Trifolium repens, white clover, assimilate partitioning, storage, remobilization, defoliation  相似文献   

16.
Preservation of labelled zooplankton by rapid freezing on dryice minimizes loss of 14C and 32P. 14C retention in frozen samplesapproximates 100% even after 24 h storage. This is a major improvementover retention in chemical preservatives such as ethanol. Isotopeloss in ethanol is rapid (on a time scale of minutes) and extensive(up to 72%). 32P appears to be more labile than 14C, and exposureof labelled animals to liquids must be minimized to effectivelyconserve this isotope. 32P retention is then improved, but mayvary between 75 and 100%. We urge continued caution in feedingexperiments using 32P, especially when dual labelling to measureselectivity.  相似文献   

17.
The rate of carbon import by tomato fruits has been relatedto their carbon metabolism by examining the effects of fruittemperature on the metabolism of imported assimilates. 14C–sucrose,–glucose, –fructose, –malic acid and –citricacid were injected individually into young growing tomato fruitswhich were subsequently maintained at 25 or 5 °C for 48h. Fruit temperature greatly affected the proportions of 14Clost from the fruits by export and respiration. Only 40 percent of the injected 14C from 14C–sugars and 20 per centfrom 14C–acids was recovered from fruits at 25 °C.Less than 10 per cent of the injected 14C was exported, thebalance being respired. In contrast, more than 50 per cent ofthe injected 14C was recovered from cooled fruits, in whichthe import rate of carbon was presumably reduced, and 20–36per cent of injected 14C was exported. Cooling enhanced thesynthesis of 14C–sucrose from injected 14C–hexosesand inhibited the incorporation of 14C into starch and insolubleresidue. When 14C–sugars were injected, radioactivityexported from the cooled fruits was detected as sucrose in thephloem of the peduncles; radioactivity was also detected instems and roots when fruits were cooled. In almost fully–grownfruits injected 14C–compounds were metabolized less readilythan in smaller fruits. Conversion of 14C–hexoses to 14C–sucrosewas again enhanced by cooling (5 °C, but was less in fruitsmaintained at 35 °C than in controls. Lycopersicon esculentum, tomato, fruit, translocation, carbon metabolism  相似文献   

18.
The distribution of 14C assimilates from 14C-sucrose was studiedin relation to premature fruit abscission in two cowpea cultivars,Adzuki and Mala. In both cultivars most of the radioactivitywas recovered in the fruits, constituting 63–85 per centof the total 14C imported from the fed leaflet. This was followedby the root, leaves and stem in descending order, except thatin Mala, import by the stem was greater than that by the leaves.Adzuki imported 56 per cent more 14C than Mala, from the fedleaflet. In Adzuki, which exhibits a relatively low degree ofabscission of young fruits, the ratio of 14C accumulated bypeduncle 1 (oldest) fruits to that of peduncle 3 (youngest)fruits was 0·31; while in Mala it was 0·61. Ratiosof the combined accumulation by peduncles 1 and 2 fruits topeduncle 3 fruits were 0·81 for Adzuki, and 1·88for Mala. The more mature fruits of Mala thus constituted amore potent sink for 14C assimilates than those of Adzuki. In Adzuki, benzyladenine treatment of young fruits at each pedunclewas not significantly effective in reversing or modifying thenormal gradient of assimilates in fruits of different ontogeny.However, in Mala, BA treatment of the youngest fruits caused43 per cent increase in 14C import, when compared with correspondingfruits of control plants. In Adzuki, BA had no significant effecton total fruit weight, whereas in Mala the weight was increasedby about 36 per cent.  相似文献   

19.
Changes in the distribution of 14C between free and bound aminoacids in wheat grains (Triticum aestivum L. cv. Arkas) at 10and 20 d post-anthesis are described. After 14CO2, labellingof the flag leaf, 14C was initially more rapidly transferredto the grains of 20 d post-anthesis plants than for 10 d post-anthesisplants. However, after a 460 min chase period in the light theamount of 14C in the grains of the younger and older plantswere similar. In the younger, more rapidly growing grains, agreater proportion of the 14C was incorporated into structuraltissue and starch. 14C accumulation in the grains continuedduring the dark in the younger grains but not in the older grains. Although the overall 14C distribution between the free aminoacid and protein pools of the grain was similar for both treatments,the distribution within the albumin, prolamin and globulin fractionsand between the individual non-bound amino acids differed. Ofthe protein fractions, the albumins were initially the mostheavily labelled but after 460 min chase the prolamins containedmore 14C. The majority of the 14C in the albumin and globulinfractions after 280 min chase was in hydrolysable, non-aminoacid compounds. In both tissues, the free amino acid pools lostradioactivity in the dark but the solid residues and proteinscontinued to function as 14C sinks. Daily fluctuations in the radioactivity in free and bound alanineare consistent with the role of free alanine as a diurnal metabolicnitrogen pool. Wheat, Triticum aestivum14CO2, amino acids, proteins, carbon metabolism  相似文献   

20.
Plants of watermelon [Citrullus lanatus(Thunb.) Matsum. &Nakai, cv. Early Yates] were grown for up to 3 months aftergermination in controlled environment cabinets, and variousaspects of vegetative growth and fruit development were measured.Effects of light intensity were studied by comparing growthat 8, 16 and 32 klx at constant temperature and daylength (25°C, 14 h). Effects of daylength were studied by comparing8, 14 and 24 h at constant light intensity and temperature (32klx, 25 °C), and effects of tem perature were studied bycomparing 20°, 25°, 30°, 35° and 40 °C atconstant light intensity and day- length (32 klx, 14 h). Withincreasing light intensity and daylength lateral growth waspromoted whereas main shoots were less affected. Increase intemperature above 25 °C resulted in longer main shoots andprolific lateral growth, due both to more and to longer laterals.Environmental differences had little effect on internode lengthbut did affect the size of basal leaves. However, an increasein total leaf area at higher temperatures or with Continuouslight was mainly due to more leaves rather than larger leaves.The presence of developing fruit greatly reduced vegetativegrowth of plants. Main shoot length, lateral growth, numberof leaves, and even size of individual leaves, were all reduced.This reduction did not apply to d. wt of whole plants. Fruitingplants were very efficient, on a leaf area basis, in accumulatingd. wt. At 25 °C at the two higher light intensities with14 h days the presence of one developing fruit was inhibitoryto the setting of any subsequent fruit. With short days or lowlight, more fruits were set but they were small. With continuouslight or high temperature more than one fruit could developand they were large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号