首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thiazole orange dye TOTO binds to double-stranded DNA (dsDNA) by a sequence selective bis-intercalation. Each chromophore is sandwiched between two base pairs in a (5'-CpT-3'):(5'-ApG-3') site, and the linker spans two base pairs in the minor groove. We have used one- and two-dimensional NMR spectroscopy to examine the dsDNA binding of an analogue of TOTO in which the linker has been modified to contain a bipyridyl group (viologen) that has minor groove binding properties. We have investigated the binding of this analogue, called TOTOBIPY, to three different dsDNA sequences containing a 5'-CTAG-3', a 5'-CTTAG-3', and a 5'-CTATAG-3' sites, respectively, demonstrating that TOTOBIPY prefers to span three base pairs. The many intermolecular NOE connectivities between TOTOBIPY and the d(CGCTTAGCG):d(CGCTAAGCG) oligonucleotide in the complex shows that the bipyridyl-containing linker is positioned in the minor groove and spans three base pairs. Consequently, we have succeeded in designing and synthesizing a ligand that recognizes an extended recognition sequence of dsDNA as the result of a concerted intercalation and minor groove binding mode.  相似文献   

2.
One- and two-dimensional 1H NMR spectroscopy were used to characterize the binding of a homodimeric thiazole orange dye, 1,1'-(4,4,8,8-tetramethyl-4,8-diazaundecamethylene)-bis-4-(3 -methyl-2,3-dihydro-(benzo- 1,3-thiazole)-2-methylidene)-quinolinium tetraiodide (TOTO), to various double-stranded DNA oligonucleotides containing symmetric (5'-pyr-pyr-pu-pu-3')2 or (5'-pu-pu-pyr-pyr-3')2 sequences. It was found that TOTO binds preferentially to oligonucleotides containing a (5'-CTAG-3')2 or a (5'-CCGG-3')2 sequence. Binding to the (5'-CCGG-3')2 sequence is less favored than to the (5'-CTAG-3')2 sequence. The complexes of TOTO with d(CGCTAGCGCTAGCG)2 (10) and d(CGCTAGCCGGCG):d(CGCCGGCTAGCG) (11) oligonucleotides, each containing two preferential binding sites, was also examined. In both cases TOTO forms mixtures of 1:1 and 1:2 dsDNA-TOTO complexes in ratios dependent on the relative amount of TOTO and the oligonucleotides in the sample. Binding of TOTO to the two oligonucleotides is sequence selective at the (5'-CTAG-3')2 and (5'-CCGG-3')2 sites. The 1H NMR spectra of both the 1:2 complexes and the three different 1:1 complexes have been assigned. A slight negative cooperativity is observed in formation of the 1:2 complexes. The ratio between the two different 1:1 complexes formed with oligonucleotide 11 is 2.4 in favor of binding to the (5'-CTAG-3')2 site. This is very similar to results obtained when the two sites are in different oligonucleotides. Thus the distribution of TOTO among the (5'-CTAG-3')2 and (5'-CCGG-3')2 sites is independent of whether the two sites are in the same or two different oligonucleotides.  相似文献   

3.
K S Chen  N Gresh    B Pullman 《Nucleic acids research》1986,14(5):2251-2267
Theoretical computations are performed on the structural and energetical factors involved in the sequence selective binding of adriamycin (ADM) to five self-complementary double-stranded hexanucleotides. Among the two regularly alternating hexanucleotides d (TATATA)2 and d (CGCGCG)2, a stronger binding is predicted for the former. The strongest complex is computed, however, for the mixed hexanucleotide d (CGTACG)2, containing the intercalation site between two CG base pairs and an adjacent TA base pair. The overall sequence preference is the result of an intricate interplay of sequence preferences of the constituents in particular of daunosamine and the 9-OH substituent. Altogether, the selective base pair recognition by adriamycin cannot be defined in terms of the two base pairs implicated in the intercalation site alone but must be expressed in terms of a triplet of base pairs.  相似文献   

4.
LNA (Locked Nucleic Acids) is a novel oligonucleotide analogue containing a conformationally restricted nucleotide with a 2'-O, 4'-C-methylene bridge that induces unprecedented thermal affinities when mixed with complementary single stranded DNA and RNA. We have used two-dimensional 1H NMR spectroscopy obtained at 750 and 500 MHz to determine a high resolution solution structure of an LNA oligonucleotide hybridized to the complementary DNA strand. The determination of the structure was based on a complete relaxation matrix analysis of the NOESY cross peaks followed by restrained molecular dynamics calculations. Forty final structures were generated for the duplex from A-type and B-type dsDNA starting structures. The root-mean-square deviation (RMSD) of the coordinates for the forty structures of the complex was 0.32A. The structures were analysed by use of calculated helix parameters. This showed that the values for rise and buckle in the LNA duplex is markedly different from canonical B-DNA at the modification site. A value of twist similar to A-DNA is also observed at the modification site. The overall length of the helix which is 27.3 A. The average twist over the sequence are 35.9 degrees +/- 0.3 degrees. Consequently, the modification does not cause the helix to unwind. The bis-intercalation of the thiazole orange dye TOTO to the LNA duplex was also investigated by 1H NMR spectroscopy to sense the structural change from the unmodified oligonucleotide. We observed that the bis-intercalation of TOTO is much less favourable in the 5'-CT(L)AG-3' site than in the unmodified 5'-CTAG-3' site. This was related to the change in the base stacking of the LNA duplex compared to the unmodified duplex.  相似文献   

5.
The crystal structure of a hexamer duplex d(CACGTG)(2) has been determined and refined to an R-factor of 18.3% using X-ray data up to 1.2 A resolution. The sequence crystallizes as a left-handed Z-form double helix with Watson-Crick base pairing. There is one hexamer duplex, a spermine molecule, 71 water molecules, and an unexpected diamine (Z-5, 1,3-propanediamine, C(3)H(10)N(2)) in the asymmetric unit. This is the high-resolution non-disordered structure of a Z-DNA hexamer containing two AT base pairs in the interior of a duplex with no modifications such as bromination or methylation on cytosine bases. This structure does not possess multivalent cations such as cobalt hexaammine that are known to stabilize Z-DNA. The overall duplex structure and its crystal interactions are similar to those of the pure-spermine form of the d(CGCGCG)(2) structure. The spine of hydration in the minor groove is intact except in the vicinity of the T5A8 base pair. The binding of the Z-5 molecule in the minor grove of the d(CACGTG)(2) duplex appears to have a profound effect in conferring stability to a Z-DNA conformation via electrostatic complementarity and hydrogen bonding interactions. The successive base stacking geometry in d(CACGTG)(2) is similar to the corresponding steps in d(CG)(3). These results suggest that specific polyamines such as Z-5 could serve as powerful inducers of Z-type conformation in unmodified DNA sequences with AT base pairs. This structure provides a molecular basis for stabilizing AT base pairs incorporated into an alternating d(CG) sequence.  相似文献   

6.
We have used two-dimensional (1)H NMR spectroscopy obtained at 750 MHz to determine a high-resolution solution structure of the double-stranded DNA oligonucleotide d(5'-CGCTAGCG-3')(2) complexed with the bis-intercalating dye 1,1'-(5,5,9,9-tetramethyl-5, 9-diazatridecamethylene)-bis-4-[3-ethyl-2,3-dihydro(benzo-1, 3-thiazolyl)-2-methylidene]quino-linium tetraiodide (TOTO11Et). The determination of the structure was based on a complete relaxation matrix analysis of the NOESY cross-peaks followed by restrained molecular dynamics calculations. Forty final structures were generated for the TOTO11Et complex from A-form and B-form dsDNA starting structures. The root-mean-square (rms) deviation of the coordinates for the 40 structures of the complex was 0.52 A. A conformational analysis of the deoxyribose rings based on coupling constants obtained from selective DQF-COSY spectra revealed that all ring conformations were almost pure S-type. The structure of the TOTO11Et complex was compared with the structure of a similar DNA complex with a dye containing a shorter linker (TOTOEt). Substantial differences were observed between the two structures because of the difference in the length of the linker. Most prominent was a large difference in the degree of unwinding of the dsDNA part in the two complexes. Unwinding of 73 degrees and 22 degrees relative to the free dsDNA was observed for the complexes with TOTOEt and TOTO11Et, respectively. The AMBER94 force field together with the GB/SA solvation model was used for energy calculations on both of the two complexes. In the calculations, the complex formation was divided into two steps: (i) unwinding of the free oligonucleotide and (ii) association of the bis-intercalators to the unwound oligonucleotide. The complex formation was in favor of TOTO11Et, mainly because the dsDNA is distorted less in the complex with TOTO11Et than in the complex with TOTOEt.  相似文献   

7.
Matsuno H  Furusawa H  Okahata Y 《Biochemistry》2005,44(7):2262-2270
Catalytic DNA cleavage reactions by an ATP-dependent deoxyribonuclease (DNase) from Micrococcus luteus were monitored directly with a DNA-immobilized 27-MHz quartz-crystal microbalance (QCM). The 27-MHz QCM is a very sensitive mass-measuring device in aqueous solution, as the frequency decreases linearly with increasing mass on the electrode at a nanogram level. Three steps in ATP-dependent DNA hydrolysis reactions, including (1) binding of DNase to the end of double-stranded DNA (dsDNA) on the QCM electrode (mass increase), (2) degradation of one strand of dsDNA in the 3' --> 5' direction depending on ATP (mass decrease), and (3) release of the enzyme from the nonhydrolyzed 5'-free-ssDNA (mass decrease), could be monitored stepwise from the time dependencies of QCM frequency changes. Kinetic parameters for each step were obtained as follows. The binding constant (K(a)) of DNase to the dsDNA was determined as (28 +/- 2) x 10(6) M(-)(1) (k(on) = (8.0 +/- 0.3) x 10(3) M (-)(1) s(-)(1) and k(off) = (0.29 +/-0.01) x 10(-)(3) s(-)(1)), and it decreased to (0.79 +/- 0.16) x 10(6) M(-)(1) (k'(on) = (2.3 +/- 0.2) x 10(3) M (-)(1) s(-)(1) and k'(off) = (2.9 +/- 0.1) x 10(-)(3) s(-)(1)) for the completely nonhydrolyzed 5'-free ssDNA. This is the reason the DNase bound to the dsDNA substrate can easily release from the nonhydrolyzed 5'-free-ssDNA after the complete hydrolysis of the 3' --> 5' direction of the complementary ssDNA. K(a) values depended on the DNA structures on the QCM, and the order of these values was as follows: the dsDNA having a 4-base-mismatched base-pair end (3) > the dsDNA having a 5' 15-base overhanging end (2) > the dsDNA having a blunt end (1) > the ssDNA having a 3'-free end (4) > the ssDNA having a 5'-free end (5). Thus, DNase hardly recognized the free 5' end of ssDNA. Michaelis-Menten parameters (K(m) for ATP and k(cat)) of the hydrolysis process also could be obtained, and the order of k(cat)/K(m) was as follows: the dsDNA having a blunt end (1) approximately the dsDNA having a 4-base-mismatched base-pair end (3) > the ssDNA having a free 3' end (4) > the ssDNA having a free 5' end (5). Thus, DNase could not recognize and not hydrolyze the free 5' end of ssDNA. The DNA hydrolysis reaction could be driven by dATP and GTP (purine base) as well as ATP, whereas the cleavage efficiency was very low driven with UTP, CTP (pyrimidine base), ADP, and AMP.  相似文献   

8.
We have achieved recognition of all 4 bp by triple helix formation at physiological pH, using triplex-forming oligonucleotides that contain four different synthetic nucleotides. BAU [2′-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine] recognizes AT base pairs with high affinity, MeP (3-methyl-2 aminopyridine) binds to GC at higher pHs than cytosine, while APP (6-(3-aminopropyl)-7-methyl-3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one) and S [N-(4-(3-acetamidophenyl)thiazol-2-yl-acetamide)] bind to CG and TA base pairs, respectively. Fluorescence melting and DNase I footprinting demonstrate successful triplex formation at a 19mer oligopurine sequence that contains two CG and two TA interruptions. The complexes are pH dependent, but are still stable at pH 7.0. BAU, MeP and APP retain considerable selectivity, and single base pair changes opposite these residues cause a large reduction in affinity. In contrast, S is less selective and tolerates CG pairs as well as TA.  相似文献   

9.
G.U pairs occur frequently and have many important biological functions. The stability of symmetric tandem G.U motifs depends both on the adjacent Watson-Crick base pairs, e.g., 5'G > 5'C, and the sequence of the G.U pairs, i.e., 5'-UG-3' > 5'-GU-3', where an underline represents a nucleotide in a G.U pair [Wu, M., McDowell, J. A., and Turner, D. H. (1995) Biochemistry 34, 3204-3211]. In particular, at 37 degrees C, the motif 5'-CGUG-3' is less stable by approximately 3 kcal/mol compared with other symmetric tandem G.U motifs with G-C as adjacent pairs: 5'-GGUC-3', 5'-GUGC-3', and 5'-CUGG-3'. The solution structures of r(GAGUGCUC)(2) and r(GGCGUGCC)(2) duplexes have been determined by NMR and restrained simulated annealing. The global geometry of both duplexes is close to A-form, with some distortions localized in the tandem G.U pair region. The striking discovery is that in r(GGCGUGCC)(2) each G.U pair apparently has only one hydrogen bond instead of the two expected for a canonical wobble pair. In the one-hydrogen-bond model, the distance between GO6 and UH3 is too far to form a hydrogen bond. In addition, the temperature dependence of the imino proton resonances is also consistent with the different number of hydrogen bonds in the G.U pair. To test the NMR models, U or G in various G.U pairs were individually replaced by N3-methyluridine or isoguanosine, respectively, thus eliminating the possibility of hydrogen bonding between GO6 and UH3. The results of thermal melting studies on duplexes with these substitutions support the NMR models.  相似文献   

10.
Coman D  Russu IM 《Biochemistry》2002,41(13):4407-4414
Recognition of specific sites in double-helical DNA by triplex-forming oligonucleotides has been limited until recently to sites containing homopurine-homopyrimidine sequences. G*TA and T*CG triads, in which TA and CG base pairs are specifically recognized by guanine or by thymine, have now extended this recognition code to DNA target sites of mixed base sequences. In the present work, we have obtained a characterization of the stabilities of G*TA and T*CG triads, and of the effects of these triads upon canonical triads, in triple-helical DNA. The three DNA triplexes investigated are formed by the folding of the 31-mers d(GAAXAGGT(5)CCTYTTCT(5)CTTZTCC) with X = G, T, or C, Y = C, A, or G, and Z = C, G, or T. We have measured the exchange rates of imino protons in each triad of the three triplexes using nuclear magnetic resonance spectroscopy. The exchange rates are used to map the local free energy of structural stabilization in each triplex. The results indicate that the stability of Watson-Crick base pairs in the G*TA and T*CG triads is comparable to that of Watson-Crick base pairs in canonical triads. The presence of G*TA and T*CG triads, however, destabilizes neighboring canonical triads, two or three positions removed from the G*TA/T*CG site. Moreover, the long-range destabilizing effects induced by the T*CG triad are larger than those induced by the G*TA triad. These findings reveal the molecular basis for the lower overall stability of G*TA- and T*CG-containing triplexes.  相似文献   

11.
Abstract

We have used one and two dimensional exchange 1H NMR spectroscopy to characterize the dynamics of the binding of a homodimeric thiazole orange dye, 1,1′-(4,4,8,8-tetramethyl-4,8-diaza-undecamethylene)-bis-4-(3-methyl-2,3-dihydro-(benzo-1,3-thiazole)-2-methylidene)-quinolinium tetraiodide (TOTO), to double stranded DNA (dsDNA). The double stranded oligonucleotides used were d-(CGCTAGCG)2 ( 1 ) and d(CGCTAGCTAGCG)2 ( 2 ). TOTO binds preferentially to the (5′-CTAG-3′)2 sites and forms mixtures of 1:1 and 1:2 dsDNA-TOTO complexes with 2 in ratios dependent on the relative amount of TOTO and the oligonucleotide in the sample. The dynamic exchange between preferential binding sites in the case of a 2:1 1 -TOTO mixture is an intermolecular exchange process between two binding sites on different oligonucleotides. In the case of the 1:1 2 -TOTO complex an intramolecular exchange process occur between two different binding sites on the same strand. Both processes were studied. The results demonstrate the ability of TOTO to migrate along a dsDNA strand in an intramolecular exchange process. The migration process (“creeping”) along the DNA strand is 6 times faster than the rate of intermolecular exchange between sites in two different oligonucleotides.  相似文献   

12.
We have described an exonuclease III/photoreversal procedure to map, with base pair resolution, the bases which have photoreacted with 4,5',8-trimethylpsoralen (Me3-psoralen) forming either monoadducts or interstrand cross-links in DNA (20). This assay allows quantitation of relative rates of Me3-psoralen photobinding to bases in DNA at levels as low as one cross-link per 8,000 base pairs. This assay should be useful for a wide variety of applications of Me3-psoralen photobinding to DNA. Here, we demonstrate the applicability of the Me3-psoralen exo III assay for analysis of the conformation of the Z forming sequences (GT)12ATGT and GAATTC(TG)6TA(TG)6. We have shown previously that Me3-psoralen forms crosslinks in the 5'TA within the (CG)6TA(CG)6 sequence when it exists in the B conformation but not when it exists in the Z conformation (34). More recently we have confirmed this result with the exo III assay and have shown at least a hundred fold increase in Me3-psoralen photoreactivity at the 5'AT sequence within the EcoR I sites (GAATTC) which presumably represent B-Z junctions flanking (CG)6TA(CG)6 (20). Here we demonstrate both the characteristic decrease in psoralen photobinding to 5'TAs within (GT)12ATGT and (TG)6TA(TG)6 and the hyperreactivity of B-Z junctions. These characteristic properties of Me3-psoralen photobinding provide an assay for Z-DNA that is applicable in vivo. The general applicability of this approach for assaying Z-DNA in vivo is discussed.  相似文献   

13.
Hannah KC  Gil RR  Armitage BA 《Biochemistry》2005,44(48):15924-15929
A symmetrical cyanine dye was previously shown to bind as a cofacial dimer to alternating A-T sequences of duplex DNA. Indirect evidence suggested that dimerization of the dye occurred in the minor groove. 1H NMR experiments reported here verify this model based on broadening and shifting of signals due to protons on carbon 2 of adenine and imino protons at the central five A-T pairs of the 11 base pair duplex: 5'-GCGTATATGCG-3'/3'-CGCATATACGC-5'. This binding mode is similar to that of distamycin A, even though the dye lacks the hydrogen-bonding groups used by distamycin for sequence-specific recognition. Surprisingly, the third base pair (G-C) was also implicated in the binding site. UV-vis experiments were used to compare the extent of dimerization of the dye for 11 different sequence variants. These experiments verified the importance of a G-C pair at the third position: replacing this pair with A-T suppressed dimerization. These results indicate that the dye binding site spans six base pairs: 5'-GTATAT-3'. The initial G-C pair seems to be important for widening the minor groove rather than for making important contacts with the dye molecules since inverting its orientation to C-G or replacing it with I-C still led to favorable dimerization of the dye.  相似文献   

14.
15.
A RecA-single-stranded DNA (RecA-ssDNA) filament searches a genome for sequence homology by rapidly binding and unbinding double-stranded DNA (dsDNA) until homology is found. We demonstrate that pulling on the opposite termini (3' and 5') of one of the two DNA strands in a dsDNA molecule stabilizes the normally unstable binding of that dsDNA to non-homologous RecA-ssDNA filaments, whereas pulling on the two 3', the two 5', or all four termini does not. We propose that the 'outgoing' strand in the dsDNA is extended by strong DNA-protein contacts, whereas the 'complementary' strand is extended by the tension on the base pairs that connect the 'complementary' strand to the 'outgoing' strand. The stress resulting from different levels of tension on its constitutive strands causes rapid dsDNA unbinding unless sufficient homology is present.  相似文献   

16.
17.
We present a study of how substituent groups of naturally occurring and modified nucleotide bases affect the degree of hydration of right-handed B-DNA and left-handed Z-DNA. A comparison of poly(dG-dC) and poly(dG-dm5C) titrations with the lipotropic salts of the Hofmeister series infers that the methyl stabilization of cytosines as Z-DNA is primarily a hydrophobic effect. The hydration free energies of various alternating pyrimidine-purine sequences in the two DNA conformations were calculated as solvent free energies from solvent accessible surfaces. Our analysis focused on the N2 amino group of purine bases that sits in the minor groove of the double helix. Removing this amino group from guanine to form inosine (I) destabilizes Z-DNA, while adding this group to adenines to form 2-aminoadenine (A') stabilizes Z-DNA. These predictions were tested by comparing the salt concentrations required to crystallize hexanucleotide sequences that incorporate d(CG), d(CI), d(TA) and d(TA') base pairs as Z-DNA. Combining the current results with our previous analysis of major groove substituents, we derived a thermodynamic cycle that relates the systematic addition, deletion, or substitution of each base substituent to the B- to Z-DNA transition free energy.  相似文献   

18.
Alternating pyrimidine-purine sequences typically form Z-DNA, with the pyrimidines in the anti and purines in the syn conformations. The observation that dC and dT nucleotides can also adopt the syn conformation (i.e. the nucleotides are out-of-alternation) extends the range of sequences that can convert to this left-handed form of DNA. Here, we study the effects of placing two adjacent d(G*C) base pairs as opposed to a single d(G*C) base pair or two d(A*T) base pairs out-of-alternation by comparing the structure of d(m5CGGCm5CG)2with the previously published structures of d(m5CGGGm5CG)*d(m5CGCCm5CG) and d(m5CGATm5CG)2. A high buckle and loss of stacking interactions are observed as intrinsic properties of the out-of-alternation base pairs regardless of sequence and the context of the dinucleotide. From solution titrations, we find that the destabilizing effect of out-of-alternation d(G*C) base pairs are identical whether these base pairs are adjacent or isolated. We can therefore conclude that it is these intrinsic distortions in the structure of the base pairs and not neighboring effects that account for the inability of out-of-alternation base pairs to adopt the left-handed Z conformation.  相似文献   

19.
Interaction of dimeric intercalating dyes with single-stranded DNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
The unsymmetrical cyanine dye thiazole orange homodimer (TOTO) binds to single-stranded DNA (ssDNA, M13mp18 ssDNA) to form a fluorescent complex that is stable under the standard conditions of electrophoresis. The stability of this complex is indistinguishable from that of the corresponding complex of TOTO with double-stranded DNA (dsDNA). To examine if TOTO exhibits any binding preference for dsDNA or ssDNA, transfer of TOTO from pre-labeled complexes to excess unlabeled DNA was assayed by gel electrophoresis. Transfer of TOTO from M13 ssDNA to unlabeled dsDNA proceeds to the same extent as that from M13 dsDNA to unlabeled dsDNA. A substantial amount of the dye is retained by both the M13 ssDNA and M13 dsDNA even when the competing dsDNA is present at a 600-fold weight excess; for both dsDNA and ssDNA, the pre-labeled complex retains approximately one TOTO per 30 bp (dsDNA) or bases (ssDNA). Rapid transfer of dye from both dsDNA and ssDNA complexes is seen at Na+ concentrations > 50 mM. Interestingly, at higher Na+ or Mg2+ concentrations, the M13 ssDNA-TOTO complex appears to be more stable to intrinsic dissociation (dissociation in the absence of competing DNA) than the complex between TOTO and M13 dsDNA. Similar results were obtained with the structurally unrelated dye ethidium homodimer. The dsDNA- and ssDNA-TOTO complexes were further examined by absorption, fluorescence and circular dichroism spectroscopy. The surprising conclusion is that polycationic dyes, such as TOTO and EthD, capable of bis-intercalation, interact with dsDNA and ssDNA with very similar high affinity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号