首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The longstanding use of Drosophila as a model for cell and developmental biology has yielded an array of tools. Together, these techniques have enabled analysis of cell and developmental biology from a variety of methodological angles. Live imaging is an emerging method for observing dynamic cell processes, such as cell division or cell motility. Having isolated mutations in uncharacterized putative cell cycle proteins it became essential to observe mitosis in situ using live imaging. Most live imaging studies in Drosophila have focused on the embryonic stages that are accessible to manipulation and observation because of their small size and optical clarity. However, in these stages the cell cycle is unusual in that it lacks one or both of the gap phases. By contrast, cells of the pupal wing of Drosophila have a typical cell cycle and undergo a period of rapid mitosis spanning about 20 hr of pupal development. It is easy to identify and isolate pupae of the appropriate stage to catch mitosis in situ. Mounting intact pupae provided the best combination of tractability and durability during imaging, allowing experiments to run for several hours with minimal impact on cell and animal viability. The method allows observation of features as small as, or smaller than, fly chromosomes. Adjustment of microscope settings and the details of mounting, allowed extension of the preparation to visualize membrane dynamics of adjacent cells and fluorescently labeled proteins such as tubulin. This method works for all tested fluorescent proteins and can capture submicron scale features over a variety of time scales. While limited to the outer 20 µm of the pupa with a conventional confocal microscope, this approach to observing protein and cellular dynamics in pupal tissues in vivo may be generally useful in the study of cell and developmental biology in these tissues.  相似文献   

2.
3.
The biogenesis, organization and function of the rhoptries are not well understood. Antisera were prepared to synthetic peptides prepared as multiple antigenic peptides (MAPs) obtained from a Plasmodium yoelii merozoite rhoptry proteome analysis. The antisera were used in immunofluorescence and immunoelectron microscopy of schizont-infected erythrocytes. Twenty-seven novel rhoptry proteins representing proteases, metabolic enzymes, secreted proteins and hypothetical proteins, were identified in the body of the rhoptries by immunoelectron microscopy. The merozoite rhoptries contain a heterogeneous mixture of proteins that may initiate host cell invasion and establish intracellular parasite development.  相似文献   

4.
Nutrient starvation induces autophagy to degrade cytoplasmic materials in the vacuole/lysosomes. In the yeast, Saccharomyces cerevisiae, Atg17, Atg29, and Atg31/Cis1 are specifically required for autophagosome formation by acting as a scaffold complex essential for pre-autophagosomal structure (PAS) organization. Here, we show that these proteins constitutively form an Atg17-Atg29-Atg31 ternary complex, in which phosphorylated Atg31 is included. Reconstitution analysis of the ternary complex in E. coli indicates that the three proteins are included in equimolar amounts in the complex. The molecular mass of a monomeric Atg17-Atg29-Atg31 complex is calculated at 97 kDa; however, analytical ultracentrifugation shows that the molecular mass of the ternary complex is 198 kDa, suggesting a dimeric complex. We propose that this ternary complex acts as a functional unit for autophagosome formation.  相似文献   

5.
6.
We have used analytical ultracentrifugation to explore the oligomeric states of AcrB and CusA in micellar solution of detergent. These two proteins belong to the resistance, nodulation and cell division (RND) family of efflux proteins that are involved in multiple drug and heavy metal resistance. Only the structure of AcrB has been determined so far. Although functional RND proteins should assemble as trimers as AcrB does, both AcrB and CusA form a mixture of quaternary structures (from monomer to heavy oligomer) in detergent solution. The distribution of the oligomeric states was studied as a function of different parameters: nature and concentration of the detergent, ionic strength, pH, protein concentration. This pseudo-heterogeneity does not hamper the crystallization of AcrB as a homotrimer.  相似文献   

7.
Genome sequencing projects has led to an explosion of large amount of gene products in which many are of hypothetical proteins with unknown function. Analyzing and annotating the functions of hypothetical proteins is important in Staphylococcus aureus which is a pathogenic bacterium that cause multiple types of diseases by infecting various sites in humans and animals. In this study, ten hypothetical proteins of Staphylococcus aureus were retrieved from NCBI and analyzed for their structural and functional characteristics by using various bioinformatics tools and databases. The analysis revealed that some of them possessed functionally important domains and families and protein-protein interacting partners which were ABC transporter ATP-binding protein, Multiple Antibiotic Resistance (MAR) family, export proteins, Helix-Turn-helix domains, arsenate reductase, elongation factor, ribosomal proteins, Cysteine protease precursor, Type-I restriction endonuclease enzyme and plasmid recombination enzyme which might have the same functions in hypothetical proteins. The structural prediction of those proteins and binding sites prediction have been done which would be useful in docking studies for aiding in the drug discovery.  相似文献   

8.
9.
Jordan D. Ward 《Genetics》2015,201(4):1279-1294
Recent and rapid advances in genetic and molecular tools have brought spectacular tractability to Caenorhabditis elegans, a model that was initially prized because of its simple design and ease of imaging. C. elegans has long been a powerful model in biomedical research, and tools such as RNAi and the CRISPR/Cas9 system allow facile knockdown of genes and genome editing, respectively. These developments have created an additional opportunity to tackle one of the most debilitating burdens on global health and food security: parasitic nematodes. I review how development of nonparasitic nematodes as genetic models informs efforts to import tools into parasitic nematodes. Current tools in three commonly studied parasites (Strongyloides spp., Brugia malayi, and Ascaris suum) are described, as are tools from C. elegans that are ripe for adaptation and the benefits and barriers to doing so. These tools will enable dissection of a huge array of questions that have been all but completely impenetrable to date, allowing investigation into host–parasite and parasite–vector interactions, and the genetic basis of parasitism.  相似文献   

10.
11.
Mago nashi (Mago) and Y14 proteins, highly conserved among eukaryotes, participate in mRNA localization and splicing, and as such play important roles in oogenesis, embryogenesis and germ-line sex determination during animal development. Here we identified mago (Acmago) and Y14 (AcY14) homologues derived from Antrodia cinnamomea. Acmago encodes 149 amino acids and AcY14 encodes 168 amino acids. Multiple amino acid sequence alignment as well as secondary and tertiary structure prediction showed that AcMago and AcY14 have similar protein structure to the reported crystal structures of other Mago and Y14 proteins. During fungal development both Acmago and AcY14 genes were abundantly expressed in natural basidiomes. This is the first report of the molecular characterization and expression analysis of the mago and Y14 genes from fungi.  相似文献   

12.
Cymbidium spp. are important potted flowers with extremely high ornamental and economic value. The present study reports the development of 14 new simple sequence repeat (SSR) markers through the construction of an enriched Cymbidium goeringii library and cross-amplification in Cymbidium sinensis and Cymbidium hybridium. Of 525, 322 (61.33%) clones had SSR motifs and among motifs di-nucleotides were predominant and followed by tri-nucleotide and tetra-nucleotide type. In polymorphic analysis using 14 newly developed SSRs, a total of 201 alleles across 96 Cymbidium accessions were detected with an average of 14.4 per locus. The average heterozygosity was 0.394. The average gene diversity and polymorphism information content values were 0.394 and 0.639, respectively. The mean genetic similarity coefficient was 0.4297, indicating a wide genetic variation among the Cymbidium accessions. These newly developed SSRs will be useful tools for genotype identification, germplasm conservation, molecular breeding, and assessments of genetic diversity and population structure in Cymbidium.  相似文献   

13.
14.
15.
16.
17.
Cuticular compounds of three species of blowfly, Calliphora vomitoria (Linnaeus), Calliphora vicina (Robineau-Desvoidy) and Protophormia terraenovae (Robineau-Desvoidy), were analysed during ontogeny (eggs to 8-day-old adults) by gas chromatography. Discrimination among species is mainly due to quantitative rather than qualitative variations. Two different analytical approaches were used to judge if the cuticular hydrocarbons might be of interest as phylogenetic markers. Both methods, classical discriminant analysis and an original distance calculation method, led us to assume that the best phylogenetic congruence between cuticular compound profiles and both morphological and molecular phylogenies were found for young adult females.  相似文献   

18.
The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system.  相似文献   

19.
The aerobic gram positive bacterium Corynebacterium diphtheriae causes diphtheria, a respiratory tract illness characterized by symptoms such as sore throat, low fever, and an adherent membrane on the tonsils, pharynx, and/or nasal cavity. Therefore, it is important to develop preventive vaccines for diphtheria. The availability of the 2,488,635 bp long complete sequence for the C. diphtheriae genome provides an opportunity to understand cell mediated immune response using Computational Biology tools from the bacterial proteome sequence data. We selected 355 membrane proteins from the C. diphtheriae proteome using annotation data to identify potential HLA-DRB1 binding short peptide using modeling, simulations and predictions. This exercise identified 30 short peptides in membrane proteins showing binding capability to HLA-DRB1 alleles. These peptides serve as outline for the understanding of cell mediated immune response to C. diphtheriae. It should be noted that the predicted data to be verified using binding assays for further consideration.  相似文献   

20.
Sea lice (Copepoda, Caligidae) are the most widely distributed marine pathogens in the salmon industry. Vaccination could be an environmentally friendly alternative for sea lice control; however, research on the development of such vaccines is still at an early stage of development. Recent results have suggested that subolesin/akirin/my32 are good candidate antigens for the control of arthropod infestations, including sea lice, but background knowledge about these genes in crustaceans is limited. Herein, we characterize the my32 gene/protein from two important sea lice species, Caligus rogercresseyi and Lepeophtheirus salmonis, based on cDNA sequence isolation, phylogenetic relationships, three dimensional structure prediction and expression analysis. The results show that these genes/proteins have the main characteristics of akirins from invertebrates. In addition, immunization with purified recombinant my32 from L. salmonis elicited a specific antibody response in mice and fish. These results provide an improvement to our current knowledge about my32 proteins and their potential use as vaccine candidates against sea lice in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号