首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B-cell chronic lymphocytic leukaemia (B-CLL) originates from B lymphocytes that may differ in the activation level, maturation state or cellular subgroups in peripheral blood. Tumour progression in CLL B cells seems to result in gradual accumulation of the clone of resting B lymphocytes in the early phases (G0/G1) of the cell cycle. The G1 phase is impaired in B-CLL. We investigated the gene expression of five key cell cycle regulators: TP 53, c-Myc, cyclin D2, p21WAF1/CIP1 and p27KIP1, which primarily regulate the G1 phase of the cell cycle, or S-phase entry and ultimately control the proliferation and cell growth as well as their role in B-CLL progression. The study was conducted in peripheral blood CLL lymphocytes of 40 previously untreated patients. Statistical analysis of correlations of TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expressions in B-CLL patients with different Rai stages demonstrated that the progression of disease was accompanied by increases in p53, cyclin D2 and c-Myc mRNA expression. The expression of p27KIP1 was nearly statistically significant whereas that of p21 WAF1/CIP1 showed no such correlation. Moreover, high expression levels of TP53 and c-Myc genes were found to be closely associated with more aggressive forms of the disease requiring earlier therapy.  相似文献   

2.
We have recently shown that curcumin induces apoptosis in prostate cancer cells through Bax translocation to mitochondria and caspase activation, and enhances the therapeutic potential of TRAIL. However, the molecular mechanisms by which it causes growth arrest are not well-understood. We studied the molecular mechanism of curcumin-induced cell cycle arrest in prostate cancer androgen-sensitive LNCaP and androgen-insensitive PC-3 cells. Treatment of both cell lines with curcumin resulted in cell cycle arrest at G1/S phase and that this cell cycle arrest is followed by the induction of apoptosis. Curcumin induced the expression of cyclin-dependent kinase (CDK) inhibitors p16/INK4a, p21/WAF1/CIP1 and p27/KIP1, and inhibited the expression of cyclin E and cyclin D1, and hyperphosphorylation of retinoblastoma (Rb) protein. Lactacystin, an inhibitor of 26 proteasome, blocks curcumin-induced down-regulation of cyclin D1 and cyclin E proteins, suggesting their regulation at level of posttranslation. The suppression of cyclin D1 and cyclin E by curcumin may inhibit CDK-mediated phosphorylation of pRb protein. The inhibition of p21/WAF1/CIP1 by siRNA blocks curcumin-induced apoptosis, thus establishing a link between cell cycle and apoptosis. These effects of curcumin result in the proliferation arrest and disruption of cell cycle control leading to apoptosis. Our study suggests that curcumin can be developed as a chemopreventive agent for human prostate cancer.  相似文献   

3.
TGF-beta1 modulation of cell cycle components was assessed in an experimental model in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary tumors in Balb/c mice. TGF-beta1 inhibited both MPA-induced proliferation of progestin-dependent C4HD epithelial cells and proliferation of the progestin-independent variant cell type C4HI, arresting cells in G(1) phase of the cell cycle. Progestin-independent 60 epithelial cells evidenced reduced response to TGF-beta1 antiproliferative effects. TGF-beta1 inhibition of cyclins D1 and A expression and up-regulation of p21(CIP1) levels were the common findings in all three cell types. In addition, a significant content reduction of cyclin D1/cdk4 and cyclin A/cdk2 complexes was found after TGF-beta1 inhibition of MPA-dependent and -independent proliferation. TGF-beta1 inhibited cyclin D2 expression and up-regulated p27(KIP1) levels only when acting as inhibitor of MPA-induced proliferation of C4HD cells. Regulation of these two cell cycle components resulted in decreased cyclin D2/cdk2 complex and in increased p27(KIP1) association with cdk2 in C4HD cells treated with TGF-beta1. These two molecular mechanisms, unobserved in progestin-independent growth of C4HI or 60 cells, were associated with a significantly higher degree of inhibition of cdk2 kinase activity in C4HD cells compared to that found in TGF-beta-treated C4HI or 60 cells. Reduced sensitivity of 60 cells to the growth-inhibitory effects of TGF-beta1 correlated with significantly lower levels of p15(INK4B), p21(CIP1), and p27(KIP1) expressed in these cells, compared to the levels present in C4HD or C4HI cells, and correlated as well with lack of expression of p16(INK4). Thus, common targets were found to exist in TGF-beta1 inhibitory action on breast cancer cells, but regulation of specific targets was found when TGF-beta1-inhibited proliferation driven by the progesterone receptor.  相似文献   

4.
The conditional kinase DeltaMEKK3:ER allows activation of JNK, p38 and ERK1/2 without overt cellular stress or damage and has proved useful in understanding how these pathways regulate apoptosis and cell cycle progression. We have previously shown that activation of DeltaMEKK3:ER causes a sustained G(1) cell cycle arrest which requires p21(CIP1), with ERK1/2 and p38 cooperating to promote p21(CIP1) expression. In cells lacking p21(CIP1), DeltaMEKK3:ER causes only a transient delay in cell cycle re-entry. We now show that this delay in cell cycle re-entry is due to a reduction in cyclin D1 levels. Activation of DeltaMEKK3:ER promotes the proteasome-dependent turnover of cyclin D1; this requires phosphorylation of threonine 286 (T(286)) and expression of cyclin D1T(286)A rescues the delay in G(1)/S progression. DeltaMEKK3:ER-dependent phosphorylation of T(286) does not appear to be mediated by GSK3beta but requires activation of the ERK1/2 and p38 pathways. ERK1/2 can physically associate with cyclin D1 but activation of ERK1/2 alone is not sufficient for phosphorylation of T(286). Rather, cyclin D1 phosphorylation appears to require coincident activation of ERK1/2 and p38. Thus activation of DeltaMEKK3:ER promotes a sustained G(1) cell cycle arrest by a bipartite mechanism involving the rapid destruction of cyclin D1 and the slower more prolonged expression of p21(CIP1). This has parallels with the bipartite response to ionizing radiation and p53-independent mechanisms of G(1) cell cycle arrest in simple organisms such as yeast.  相似文献   

5.
High expression of the epidermal growth factor receptor (EGFR) has been implicated in the development of squamous-cell carcinomas of head and neck (SCCHN). ZD1839 ('Iressa') is an orally active, selective EGFR-TKI (EGFR-tyrosine kinase inhibitor) that blocks signal transduction pathways implicated in proliferation and survival of cancer cells, and other host-dependent processes promoting cancer growth. We have demonstrated that ZD1839 induces growth arrest in SCCHN cell lines by inhibiting EGFR-mediated signaling. Cell cycle kinetic analysis demonstrated that ZD1839 induces a delay in cell cycle progression and a G1 arrest together with a partial G2/M block; this was associated with increased expression of both p27(KIP1) and p21(CIP1/WAF1) cyclin-dependent kinase (CDK) inhibitors. The activity of CDK2, the main target of CIP/KIP CDK inhibitors, was reduced in a dose-dependent fashion after 24 h of ZD1839 treatment and this effect correlated to the increased amount of p27(KIP1) and p21(CIP1/WAF1) proteins associated with CDK2-cyclin-E and CDK2-cyclin-A complexes. In addition, ZD1839-induced growth inhibition was significantly reduced in cell transfectants expressing p27(KIP1) or p21(CIP1/WAF1) antisense constructs. Overall, these results as well as the timing of the effect of ZD1839 on G1 arrest and p27(KIP1) and p21(CIP1/WAF1) upregulation, suggest a mechanistic connection between these events.  相似文献   

6.
Cardiomyocytes withdraw from cell cycle after terminal differentiation due in part to impaired nuclear import of cyclin D1. Thus, we have previously shown that expression of nuclear localization signal-tagged cyclin D1 (D1NLS) and cyclin-dependent kinase 4 promotes cardiomyocyte proliferation both in vitro and in vivo. Here we show that cyclin D2 fails to stimulate cell cycle in cardiomocytes through a mechanism distinct from that of cyclin D1. We demonstrate that cyclin D2 can express in the nucleus much more efficiently than cyclin D1. Cyclin D2, however, was much less effective in activating CDK2 and cell proliferation than cyclin D1 when expressed transiently in the nucleus of cardiomyocytes using nuclear localization signals. Consistent with such an observation, CDK inhibitors p21cip1 and p27kip1 remained bound to CDK2 in cells expressing cyclin D2, whereas p21 and p27 were sequestered to cyclin D1 in cells expressing D1NLS. These data suggest that cyclin D2 has weaker affinities to the CDK inhibitors and therefore is less efficient in activating cell cycle than cyclin D1. According to such a notion, double knockdown of p21 and p27 in cells expressing D2NLS induced activation of CDK2/CDC2 and BrdU incorporation to levels similar to those in cells expressing D1NLS. Taken together, our data suggest that distinct mechanisms keep cyclin D1 and cyclin D2 from activating cell cycle in terminally differentiated cardiomyocytes.  相似文献   

7.
Ichikawa A  Ando J  Suda K 《Human cell》2008,21(2):28-37
Treatment of exponentially growing MCF-7 human breast carcinoma cells with tamoxifen (TAM) inhibits cell growth in a dose-dependent manner. However, the molecular basis for the drug's activity and its relationship to the cell cycle have not yet been clearly established. In this study, we analyzed cell cycle-related proteins used for immunoblotting and flow cytometry in TAM-treated MCF-7 cells. In addition, the ratio of apoptosis in the cell was analyzed using labeling of DNA strand breaks (TdT assay). In flow-cytometric DNA distribution analysis, the S-phase fraction showed a marked decrease and a concomitant increase in G1- and G2-phase cells accompanying the inhibitory effect of TAM; these changes were time- and dose-dependent. Immunoblotting revealed that the levels of p53 and p21(WAF1/CIP1) in TAM-treated cells increased in a time- and dose-dependent manner, whereas those of p27(KIP1) and p16 slightly increased or remained unchanged. Furthermore, cyclin D3 and B showed sharp decreases, in contrast with p53 and p21(WAF1/CIP1) DNA-apoptosis dual analysis using flow cytometry revealed that the TAM-treated samples contained apoptotic cells, the majority of which were arrested in G1 or G2 and showed suppression of Bcl-2 protein. These results suggest that the tumorigenic effect of TAM on MCF-7 cells arises through antitumor effects that are due to the expression of cyclin-dependent kinase inhibitors, especially p21(WAF1/CIP1) and these are regulated by the decrease of wild-type p53. The proposed mechanism is similar to that underlying the cytotoxic effects of other agents and ionizing irradiation that cause DNA damage.  相似文献   

8.
Kuo YL  Giam CZ 《The EMBO journal》2006,25(8):1741-1752
The human T-lymphotropic virus type 1 (HTLV-1) Tax binds the anaphase promoting complex (APC) and activates it ahead of schedule. Here, we show that APC activation by Tax induces rapid senescence (tax-IRS) independently of p53 and pRB. In response to tax, cyclin A, cyclin B1, securin, and Skp2 becomes polyubiquitinated and degraded starting in S phase. This is followed by a surge in p21(CIP1/WAF1) and p27(KIP1) in mid to late S and G2/M leading to a permanent G1 arrest. Tax-positive HTLV-1-transformed T-cell lines express elevated levels of p21(CIP1/WAF1), but low levels of p27(KIP1). Finally, Tax can be stably expressed in p27(KIP1)-null NIH3T3 cells. These results indicate that APC activation by Tax causes inactivation of SCF(Skp2) and stabilization of p21(CIP1/WAF1) and p27(KIP1). The build-up of p21(CIP1/WAF1) and especially p27(KIP1) commits cells to senescence. Evading tax-IRS through a loss of p27(KIP1) function is likely to be critical for cell transformation by Tax and development of adult T-cell leukemia after HTLV-1 infection. Finally, activation of APC ahead of schedule may be exploited to arrest cancer cell growth.  相似文献   

9.
10.
The members of the CIP/KIP family of cyclin-dependent kinase (CDK) inhibitory proteins (CKIs), including p57(KIP2), p27(KIP1), and p21(CIP1), block the progression of the cell cycle by binding and inhibiting cyclin/CDK complexes of the G1 phase. In addition to this well-characterized function, p57(KIP2) and p27(KIP1) have been shown to participate in an increasing number of other important cellular processes including cell fate and differentiation, cell motility and migration, and cell death/survival, both in peripheral and central nervous systems. Increasing evidence over the past few years has characterized the functions of the newest CIP/KIP member p57(KIP2) in orchestrating cell proliferation, differentiation, and migration during neurogenesis. Here, we focus our discussion on the multiple roles played by p57(KIP2) during cortical development, making comparisons to p27(KIP1) as well as the INK4 family of CKIs.  相似文献   

11.
The cyclin-dependent kinase 2 (Cdk2) inhibitors p21(CIP1) and p27(KIP1) are negatively regulated by anchorage during cell proliferation, but it is unclear how integrin signaling may affect these Cdk2 inhibitors. Here, we demonstrate that integrin ligation led to rapid reduction of p21(CIP1) and p27(KIP1) protein levels in three distinct cell types upon attachment to various extracellular matrix (ECM) proteins, including fibronectin (FN), or to immobilized agonistic anti-integrin monoclonal antibodies. Cell attachment to FN did not rapidly influence p21(CIP1) mRNA levels, while the protein stability of p21(CIP1) was decreased. Importantly, the down-regulation of p21(CIP1) and p27(KIP1) was completely blocked by three distinct proteasome inhibitors, demonstrating that integrin ligation induced proteasomal degradation of these Cdk2 inhibitors. Interestingly, ECM-induced proteasomal proteolysis of a ubiquitination-deficient p21(CIP1) mutant (p21K6R) also occurred, showing that the proteasomal degradation of p21(CIP1) was ubiquitin independent. Concomitant with our finding that the small GTPases Cdc42 and Rac1 were activated by attachment to FN, constitutively active (ca) Cdc42 and ca Rac1 promoted down-regulation of p21(CIP1). However, dominant negative (dn) Cdc42 and dn Rac1 mutants blocked the anchorage-induced degradation of p21(CIP1), suggesting that an integrin-induced Cdc42/Rac1 signaling pathway activates proteasomal degradation of p21(CIP1). Our results indicate that integrin-regulated proteasomal proteolysis might contribute to anchorage-dependent cell cycle control.  相似文献   

12.
13.
Cyclin E-Cdk2 kinase activation is an essential step in Myc-induced proliferation. It is presumed that this requires sequestration of G(1) cell cycle inhibitors p27(Kip1) and p21(Cip1) (Ckis) via a Myc-induced protein. We provide biochemical and genetic evidence to show that this sequestration is mediated via induction of cyclin D1 and/or cyclin D2 protein synthesis rates. Consistent with this conclusion, primary cells from cyclin D1(-/-) and cyclin D2(-/-) mouse embryos, unlike wild-type controls, do not respond to Myc with increased proliferation, although they undergo accelerated cell death in the absence of serum. Myc sensitivity of cyclin D1(-/-) cells can be restored by retroviruses expressing either cyclins D1, D2 or a cyclin D1 mutant forming kinase-defective, Cki-binding cyclin-cdk complexes. The sequestration function of D cyclins thus appears essential for Myc-induced cell cycle progression but dispensable for apoptosis.  相似文献   

14.
14-3-3 sigma, implicated in cell cycle arrest by p53, was cloned by expression cloning through cyclin-dependent kinase 2 (CDK2) association. 14-3-3 sigma shares cyclin-CDK2 binding motifs with different cell cycle regulators, including p107, p130, p21(CIP1), p27(KIP1), and p57(KIP2), and is associated with cyclin.CDK complexes in vitro and in vivo. Overexpression of 14-3-3 sigma obstructs cell cycle entry by inhibiting cyclin-CDK activity in many breast cancer cell lines. Overexpression of 14-3-3 sigma can also inhibit cell proliferation and prevent anchorage-independent growth of these cell lines. These findings define 14-3-3 sigma as a negative regulator of the cell cycle progression and suggest that it has an important function in preventing breast tumor cell growth.  相似文献   

15.
A delicate balance between proliferation and differentiation must be maintained in the developing pituitary to ensure the formation of the appropriate number of hormone producing cells. In the adult, proliferation is actively restrained to prevent tumor formation. The cyclin dependent kinase inhibitors (CDKIs) of the CIP/KIP family, p21, p27 and p57, mediate cell cycle inhibition. Although p21 is induced in the pituitary upon loss of Notch signaling or initiation of tumor formation to halt cell cycle progression, its role in normal pituitary organogenesis has not been explored. In wildtype pituitaries, expression of p21 is limited to a subset of cells embryonically as well as during the postnatal proliferative phase. Mice lacking p21 do not have altered cell proliferation during early embryogenesis, but do show a slight delay in separation of proliferating progenitors from the oral ectoderm. By embryonic day 16.5, p21 mutants have an alteration in the spatial distribution of proliferating pituitary progenitors, however there is no overall change in proliferation. At postnatal day 21, there appears to be no change in proliferation, as assessed by cells expressing Ki67 protein. However, p21 mutant pituitaries have significantly less mRNA of Myc and the cyclins Ccnb1, Ccnd1, Ccnd2 and Ccne1 than wildtype pituitaries. Interestingly, unlike the redundant role in cell cycle inhibition uncovered in p27/p57 double mutants, the pituitary of p21/p27 double mutants has a similar proliferation profile to p27 single mutants at the time points examined. Taken together, these studies demonstrate that unlike p27 or p57, p21 does not play a major role in control of progenitor proliferation in the developing pituitary. However, p21 may be required to maintain normal levels of cell cycle components.  相似文献   

16.
Elevation of cellular cyclic AMP (cAMP) levels inhibits cell cycle reentry in a variety of cell types. While cAMP can prevent the activation of Raf-1 and extracellular signal-regulated kinases 1 and 2 (ERK1/2) by growth factors, we now show that activation of ERK1/2 by DeltaRaf-1:ER is insensitive to cAMP. Despite this, DeltaRaf-1:ER-stimulated DNA synthesis is still inhibited by cAMP, indicating a cAMP-sensitive step downstream of ERK1/2. Although cyclin D1 expression has been proposed as an alternative target for cAMP, we found that cAMP could inhibit DeltaRaf-1:ER-induced cyclin D1 expression only in Rat-1 cells, not in CCl39 or NIH 3T3 cells. DeltaRaf-1:ER-stimulated activation of CDK2 was strongly inhibited by cAMP in all three cell lines, but cAMP had no effect on the induction of p21(CIP1). cAMP blocked the fetal bovine serum (FBS)-induced degradation of p27(KIP1); however, loss of p27(KIP1) in response to DeltaRaf-1:ER was less sensitive in CCl39 and Rat-1 cells and was completely independent of cAMP in NIH 3T3 cells. The most consistent effect of cAMP was to block both FBS- and DeltaRaf-1:ER-induced expression of Cdc25A and cyclin A, two important activators of CDK2. When CDK2 activity was bypassed by activation of the ER-E2F1 fusion protein, cAMP no longer inhibited expression of Cdc25A or cyclin A but still inhibited DNA synthesis. These studies reveal multiple points of cAMP sensitivity during cell cycle reentry. Inhibition of Raf-1 and ERK1/2 activation may operate early in G(1), but when this early block is bypassed by DeltaRaf-1:ER, cells still fail to enter S phase due to inhibition of CDK2 or targets downstream of E2F1.  相似文献   

17.
In addition to its central role in blood coagulation and hemostasis, human alpha-thrombin is a growth factor for a variety of cell types. We recently demonstrated that interferon-gamma (IFNgamma)-differentiated U937 cells show increased expression of the proteolytically activated receptor for thrombin (PAR-1) relative to undifferentiated U937. In the present study we show that cell proliferation is inhibited in IFNgamma-differentiated cells relative to undifferentiated U937. Addition of thrombin to the differentiated cells, however, overcomes the inhibition and restores the cells to a highly proliferative state. Ribonuclease protection assays indicate that the IFNgamma-induced growth arrest is associated with an increased expression of the cyclin-dependent kinase inhibitor p21(CIP1/WAF1) and downregulation of cyclin D(1). Treatment of cells with thrombin downregulates p21(CIP1/WAF1) expression in these cells and upregulates cyclin D(1) mRNA expression, thus overcoming the differentiation-related effects in a coordinated manner. Treating differentiated cells with the PAR-1 activation peptide, SFLLRN, stimulates proliferation and has effects similar to those of thrombin on expression of p21(CIP1/WAF1). Thus, it appears that these thrombin stimulated proliferative effects are mediated through activation of PAR-1. These results may help explain how thrombin can overcome growth arrest in normal tissue to initiate tissue repair and why thrombin and thrombin-like enzymes may contribute to unrestricted proliferation observed in certain malignancies.  相似文献   

18.
The effect of exposure to 50 Hz, 1 mT magnetic fields (MF) on the cell cycle in general, on the DNA synthesis in S-phase, and on the G1-phase regulating proteins Cdk4, cyclin D1, p16INK4a, and p21CIP1 was investigated in human amniotic fluid cells. The BrdU-incorporation assay revealed a significant diminution of S-phase cells in MF-exposed cultures. The protein level of Cdk4 did not change, but MF induced a decreased expression of cyclin D1 after 24 h and 30 h exposures. The level of p16INK4a increased at 1 h and 12 h after exposure, whereas the expression of p21CIP1 was enhanced at 6 h and 12 h after exposure. Reduced levels of both Cdk inhibitors were observed at longer exposure times (24 h, 30 h). Our results suggest an inhibitory effect of MF on the G1-phase induced by altered expression of p16INK4a and p21CIP1.  相似文献   

19.
8-Chloroadenosine, an active dephosphorylated metabolite of the antineoplastic agent 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP), induces growth inhibition in multiple carcinomas. Here we report that 8-chloroadenosine inhibits growth in human promyelocytic leukemia HL-60 cells by a G(0)/G(1) phase arrest and terminates cell differentiation along the granulocytic lineage. The mechanism of 8-chloroadenosine-induced G(0)/G(1) arrest is independent of apoptosis. The expressions of cyclin D1 and c-myc in HL-60 are suppressed by 8-chloroadenosine, whereas the cyclin-dependent kinases inhibitor p21(WAF1/CIP1) is up-regulated. 8-Chloroadenosine has less effect on the expressions of cyclin-dependent kinase (cdk)2 and cdk4, G(1) phase cyclin-dependent kinases, and only moderately induces the expression of transforming growth factor beta1 (TGFbeta1) and the mitotic inhibitor p27(KIP1). Telomerase activity is reduced in extracts of 8-chloroadenosine treated HL-60 cells, but 8-chloroadenosine does not directly inhibit the catalytic activity of telomerase in vitro. Therefore, anti-proliferation of HL-60 cells by 8-chloroadenosine involves coordination of cyclin D1 suppression, reduction of telomerase activity, and up-regulation of p21(WAF1/CIP1) that arrest cell-cycle progression at G(0)/G(1) phase and terminate cell differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号