首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procedures for the histochemical demonstration of DPN and TPN diaphorases have been presented by other workers. These techniques rely on the coenzyme-dependent dehydrogenases present in the tissue slice to generate the substrate required by the diaphorases. In vitro studies were carried out on kidney and adrenal tissue of the rat, using NT (neotetrazolium) and INT (2-p-iodophenyl-3-p-nitrophenyl-5-phenyl tetrazolium chloride) with various substrates of DPN-dependent dehydrogenases. The solutions used for study contained alcohol and alcohol dehydrogenase, glutamate and malate, malate, glutamate, beta-hydroxybutyrate, or DPNH. It has been possible to demonstrate (1) that histological distribution of dehydrogenases may differ from that of the flavoprotein oxidizing reduced coenzyme I; (2) characteristic patterns of distribution of particular dehydrogenases in the tissue proper; (3) different levels of dehydrogenase in kidney and adrenal; and (4) differences in dehydrogenase distribution in the kidneys of man and rat. The evidence presented clearly indicates the limitations inherent in the accepted procedures for the demonstration of DPN and TPN diaphorases. The possible application of the tetrazolium salts to the study of particular coenzyme-dependent dehydrogenases and the pitfalls which might occur are also discussed.  相似文献   

2.
Summary Catechol amine secretion is achieved by exocytosis. In this, ATP and protein are also lost from the chromaffin cells. Histochemically various specific coenzyme linked dehydrogenases associated with ATP production have been demonstrated in the adrenals of ox and sheep. These included cytochrome oxidase, DPN and TPN diaphorases, isocitric dehydrogenase, malate dehydrogenase, glutamate dehydrogenase, succinic dehydrogenase, lactic dehydrogenase, alcohol dehydrogenase, -glycerophosphate dehydrogenase and -hydroxybutyrate dehydrogenase. Enzymes of the pentose shunt were found histochemically and biochemically. The RNA content of the adrenal medulla and cortex was also investigated.  相似文献   

3.
A histochemical method is described for the localization of triphosphopyridine nucleotide diaphorase using a recently synthesized tetrazolium salt (Nitro-BT). By virtue of the favorable histochemical properties of this reagent, it has been possible to demonstrate that whereas DPN diaphorase is usually restricted to the mitochondria, the TPN diaphorase activity of corresponding cells was distributed throughout the cytoplasm in granules too fine to be considered mitochondria. Furthermore, although the diaphorase alone is responsible for the passage of electrons from TPNH to the tetrazole, it has been found that sites of activity of different TPN-linked dehydrogenases can be visualized in tissue sections, and characteristic loci for each enzyme may be observed. For example, whereas TPN diaphorase and isocitric dehydrogenase have an extensive distribution in the kidney cortex, 6-phosphogluconic dehydrogenase is limited to the cells of the macula densa.  相似文献   

4.
A method of obtaining an extract of soluble enzymes from peaseedling mitochondria is described. Evidence is presented thatthe mitochondrial extract contains the following enzymes: Diphosphopyridinenucleotide (DPN) and triphosphopy-ridine nucleotide (TPN) specificwocitric dehydrogenases, alcohol dehydrogenase, formic dehydrogenase,aldehyde dehydrogenase, glutamic dehydrogenase, malic enzyme,lactic dehydrogenase, fumarase, aconitase, DPN and TPN cytochrome-creductases, adenylate kinase, phosphopyridine nucleotide transhydrogenaseand oxaloacetic carboxylase. The relative activities of theseenzymes have been quantitatively determined and the resultsdiscussed.  相似文献   

5.
The spectra of the circular polarization of luminescence of a number of dehydrogenases with the fluorescent coenzyme nicotinamide-1,-N6-ethenoadenine dinucleotide were measured. By use of this technique it is demonstrated that there is a difference in structure between the adenine subsite in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase on the one hand and pig heart lactate dehydrogenase, horse liver alcohol dehydrogenase, beef liver glutamate dehydrogenase, and pig heart malate dehydrogenase on the other hand. It is concluded that the non-co-operative dehydrogenases have similar, if not identical, adenine subsites whereas in glyceraldehyde-3-phosphate dehydrogenase, a strongly co-operative enzyme, a different structure of the adenine subsite has evolved.  相似文献   

6.
The present investigation concerning the histochemical demonstration of DPN diaphorase follows the development of a new reagent, Nitro-BT, which has already been used successfully for the cytochemical localization of the succinic dehydrogenase system. The most consistently favorable results were obtained with the lactate-lactic dehydrogenase system buffered at pH 7.4. Using sections of rat kidney and stomach, it was found that the intensity of stain was optimal after 15 minutes incubation at 37°C., conducted aerobically. By appropriate variations in the substrate mixture it was possible to selectively demonstrate the histochemical distribution of certain DPN-linked dehydrogenases in addition to DPN diaphorase. This was made possible by the special distribution of some of these dehydrogenases which distinguished them from one another. Of the dehydrogenases studied the distribution pattern of β-hydroxybutyric dehydrogenase was the most singular. In the gastric mucosa β-hydroxybutyric dehydrogenase was restricted to the cells of the mucous lining epithelium and the gland necks; and in the kidney the enzyme was limited to the cells of the proximal convoluted tubule and thick limbs of Henle's loop. In contrast, lactic dehydrogenase like DPN diaphorase was demonstrable in almost all cytologic elements of both the stomach and the kidney.  相似文献   

7.
The segmentation of the proximal tubules in the kidney of the female rat was studied by means of enzyme histochemical reactions and the results compared with those observed in male and recently described by Jacobsen and J0rgensen (1973 a). Reactions were performed for the following soluble, coezyme-dependent oxido-reductases: glucose 6-phosphate dehydrogenase, alpha-glycerophosphate dehydrogenase, 3 alpha-hydroxysteroid dehydrogenase, NAD-as well as NADP-dependent isocitrate dehydrogenases, NAD-dependent malate dehydrogenase, NADP-dependent, decarboxylating malate dehydrogenase, uridine diphosphate glucose dehydrogenase. Measures were taken to reduce enzyme diffusion and eliminate interference from tissue tetrazolium reductases. Furthermore, reactions were performed for a number of less soluble or insoluble enzymes: glucose 6-phosphatase, mitochondrial alpha-glycerophosphate dehydrogenase, beta-hydroxybutyrate dehydrogenase, succinate dehydrogenase and tetrazolium reductases. In the proximal tubules of the female rat all enzymes studied--except beta-hydroxybutyrate dehydrogenase--showed segmental differences, most of them clearly revealing three segments. Sex differences were found concerning all enzymes except uridine diphosphate glucose dehydrogenase and NADP-dependent isocitrate dehydrogenase. The most pronounced sex-related differences were seen in the third segment in which part the male rat showed highest activity in respect to tetrazolium reductases, NAD-dependent isocitrate dehydrogenase, succinate dehydrogenase, beta-hydroxybutyrate dehydrogenase, 3 alpha-hydroxysteroid dehydrogenase and glucose 6-phosphate dehydrogenase and the female in respect to glucose 6-phosphatase, alpha-glycerophosphate dehydrogenases, and NADP-dependent, decarboxylating malate dehydrogenase. A few of the enzymes exhibited minor sex differences in the first two segments.  相似文献   

8.
The object of the study was to investigate the occurrence and localization of oxidative enzymes in the redia -- the third larval stage of Fasciola hepatica L. The author detected cytochrome oxidase, peroxidase, NADH and NADPH tetrazolium reductases (diaphorases), as well as succinate, isocitrate, malate, lactate, alpha-glycerophosphate, glyceraldehyde phosphate, glucose-6-phosphate, 6-phosphogluconate, beta-hydroxybutyrate, L-glutamate, and alcohol dehydrogenases. The presence and localization of the enzymes in various periods of development of the redia were detected with histochemical methods. Out of the studied oxidases and dehydrogenases only cytochrome oxidase was found to be absent from the stages of young rediae. It was ascertained that the redia uses all three paths of release of energy i.e. the glycolytic, Krebs, and pentose cycles, glycolysis being presumably the principal mode of energy production.  相似文献   

9.
Quantitative enzyme histochemistry in the brain   总被引:3,自引:0,他引:3  
P Kugler 《Histochemistry》1988,90(2):99-107
Two main groups of quantitative methods are used in the brain to relate enzymatic processes to cellular structures, i.e. the methods of microchemistry and microscopic histochemistry. Microchemistry tries to quantify enzyme activities in very small brain regions by miniaturizing biochemical methods, whereas microscopic histochemistry applies staining procedures to tissue sections, preserving the structural relationship that is present in situ and giving topological information on the distribution of enzymes which is indispensable in structural heterogeneous tissue as is the brain. The present review deals preferentially with microscopic methods and, in particular, with scanning microphotometry (image plane scanning). Using this technique two measuring procedures can be applied for the quantification of enzyme activities, i.e. end-point and kinetic (continuous monitoring) measurements which are described in detail. Methods for the microphotometric demonstration of certain important dehydrogenases (isocitrate dehydrogenases, succinate dehydrogenase, NAD-linked malate dehydrogenase, glutamate dehydrogenase and glycerol 3-phosphate dehydrogenase), of cytochrome c oxidase, hexokinase and acetylcholinesterase are presented. These methods were adapted for giving optimal demonstration of enzyme activities in the rat hippocampus. The examples are given to illustrate the aptitude and possibilities of this technique in the quantification of enzymes in the complex matrix of the brain.  相似文献   

10.
When α-ketoglutarate is the substrate, malate is a considerably more effective inhibitor of glutamate dehydrogenase than glutamate, oxalacetate, aspartate, or glutarate. Malate is a considerably poorer inhibitor when glutamate is the substrate. Malate is competitive with α-ketoglutarate, uncompetitive with TPNH, and noncompetitive with glutamate. The above, plus the fact that malate is a considerably more potent inhibitor when TPNH rather than TPN is the coenzyme, indicates that malate is predominantly bound to the α-ketoglutarate site of the enzyme-TPNH complex and has a considerably lower affinity for the enzyme-TPN complex. Ligands which decrease binding of TPNH to the enzyme such as ADP and leucine markedly decrease inhibition by malate. Conversely, GTP, which increases binding of TPNH to the enzyme also enhances inhibition by malate. Malate also decreases interaction between mitochondrial aspartate aminotransferase and glutamate dehydrogenase. This effect of malate on enzyme-enzyme interaction is enhanced by DPNH and GTP which also increase inhibition of glutamate dehydrogenase by malate and is decreased by TPN, ADP, ATP, α-ketoglutarate, and leucine which decrease inhibition of glutamate dehydrogenase by malate. These results indicate that malate could decrease α-ketoglutarate utilization by inhibiting glutamate dehydrogenase and retarding transfer of α-ketoglutarate from the aminotransferase to glutamate dehydrogenase. These effects of malate would be most pronounced when the mitochondrial level of α-ketoglutarate is low and the level of malate and reduced pyridine nucleotide is high.  相似文献   

11.
A L Metsis 《Tsitologiia》1988,30(7):882-887
By the means of light-microscopic cytological enzymatic methods, the presence of several enzymes (NAD.H and NADP.H-tetrazolium reductases, in addition to alcohol, succinate, isocitrate, glucose-6-phosphate, beta-hydroxybutyrate and glutamate dehydrogenases) has been studied in the tissue cysts of S. bovicanis. A mixed character of oxidative metabolism in the cyst stages is suggested, the involvement of gluconeogenesis being proposed. Neither beta-hydroxybutyrate nor alcohol dehydrogenase activity was demonstrated indicating the absence or a very low rate of lipid metabolism, and suggesting that the process of glycolysis may end with malate formation. From the low activity level of succinate dehydrogenases it is concluded that the citric acid cycle plays presumably a secondary role, if at all, in the energy supply of the cyst stages. Also, a low activity of glucose-6-phosphate dehydrogenases is pointed out. Thus, it is proposed that glycolysis may be primary, if not the only, oxidative pathway in the cyst stages.  相似文献   

12.
The steady-state kinetics of alcohol dehydrogenases (alcohol:NAD+ oxidoreductase, EC 1.1.1.1 and alcohol:NADP+ oxidoreductase, EC 1.1.1.2), lactate dehydrogenases (l-lactate:NAD+ oxidoreductase, EC 1.1.1.27 and d-lactate:NAD+ oxidoreductase, EC 1.1.1.28), malate dehydrogenase (l-malate:NAD+ oxidoreductase, EC 1.1.1.37), and glyceraldehyde-3-phosphate dehydrogenases [d-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12] from different sources (prokaryote and eukaryote, mesophilic and thermophilic organisms) have been studied using NAD(H), N6-(2-carboxyethyl)-NAD(H), and poly(ethylene glycol)-bound NAD(H) as coenzymes. The kinetic constants for NAD(H) were changed by carboxyethylation of the 6-amino group of the adenine ring and by conversion to macromolecular form. Enzymes from thermophilic bacteria showed especially high activities for the derivatives. The relative values of the maximum velocity (NAD = 1) of Thermus thermophilus malate dehydrogenase for N6-(2-carboxyethyl)-NAD and poly(ethylene glycol)-bound NAD were 5.7 and 1.9, respectively, and that of Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase for poly(ethylene glycol)-bound NAD was 1.9.  相似文献   

13.
Summary A method has been developed for the histochemical demonstration of a variety of dehydrogenases in freeze-dried or fixed resin-embedded tissue. Seven dehydrogenases were studied. Lactate dehydrogenase, NADH dehydrogenase and NADPH tetrazolium reductase were all demonstrable in sections of paraformaldehyde-fixed resin-embedded tissue. Freeze-dried specimens were embedded, without fixation, in glycol methacrylate resin or LR Gold resin at either 4°C or –20°C. All the dehydrogenases except succinate dehydrogenase retained their activity in freeze-dried, resin-embedded tissue. Enzyme activity was maximally preserved by embedding the freeze-dried tissue specimens in glycol methacrylate resin at –20°C. The dehydrogenases were accurately localized without any diffusion when the tissue sections were incubated in aqueous media. Addition of a colloid stabilizer to the incubating medium was not required. Freeze-drying combined with low-temperature resin embedding permits accurate enzyme localization without diffusion, maintenance of enzyme activity and excellent tissue morphology.  相似文献   

14.
In extension of a previous study with yeast glucose-6-P dehydrogenase (Kawaguchi, A., and Bloch, K. (1974) J. Biol. Chem. 249, 5793-5800), the structural changes accompanying the inhibition of glutamate dehydrogenase and several malate dehydrogenases by palmitoyl-CoA and by sodium dodecyl sulfate have been investigated. Palmitoyl-CoA converts liver glutamate dehydrogenase to enzymatically inactive dimeric subunits (Mr = 1.2 X 10(5)) and tightly binds to the dissociated enzyme. Removal of the inhibitor from the palmitoyl-CoA-dimer complex fails to regenerate enzyme activity. The Ki values for palmitoyl-CoA inhibition of malate dehydrogenases (oxalacetate reduction) are, for the enzyme from pig heart mitochondria, 1.8 muM, 500 muM from pig heart supernatant, and 10 muM from chicken heart supernatant. These inhibitions are readily reversible. Palmitoyl-CoA does not alter the quaternary structure of any of the malate dehydrogenases and binds only weakly to these enzymes. Mitochondrial malate dehydrogenase assayed in the direction malate to oxalacetate is much less sensitive to palmitoyl-CoA, with Ki values of 50 muM at pH 10 and greater than 50 muM at pH 7.4. While the differences in palmitoyl-CoA sensitivity in the forward and backward reactions catalyzed by mitochondrial dehydrogenase are unexplained, a physiological rationale for these differential effects is offered. Sodium dodecyl sulfate dissociates the various dehydrogenases to monomeric subunits in contrast to the more selective effects of palmitoyl-CoA.  相似文献   

15.
Complex I binds several mitochondrial NAD-coupled dehydrogenases   总被引:5,自引:0,他引:5  
NADH:ubiquinone reductase (complex I) of the mitochondrial inner membrane respiratory chain binds a number of mitochondrial matrix NAD-linked dehydrogenases. These include pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, mitochondrial malate dehydrogenase, and beta-hydroxyacyl-CoA dehydrogenase. No binding was detected between complex I and cytosolic malate dehydrogenase, glutamate dehydrogenase, NAD-isocitrate dehydrogenase, lipoamide dehydrogenase, citrate synthase, or fumarase. The dehydrogenases that bound to complex I did not bind to a preparation of complex II and III, nor did they bind to liposomes. The binding of pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and mitochondrial malate dehydrogenase to complex I is a saturable process. Based upon the amount of binding observed in these in vitro studies, there is enough inner membrane present in the mitochondria to bind the dehydrogenases in the matrix space. The possible metabolic significance of these interactions is discussed.  相似文献   

16.
This paper describes experiments conducted with membranous and soluble fractions obtained from Escherichia coli that had been grown on succinate, malate, or enriched glucose media. Oxidase and dehydrogenase activities were studied with the following substrates: nicotinamide adenine dinucleotide, reduced form (NADH), nicotinamide adenine dinucleotide phosphate, reduced form (NADPH), succinate, malate, isocitrate, glutamate, pyruvate, and α-ketoglutarate. Respiration was virtually insensitive to poisons that are commonly used to inhibit mitochondrial systems, namely, rotenone, antimycin, and azide. Succinate dehydrogenase and NADH, NADPH, and succinate oxidases were primarily membrane-bound whereas malate, isocitrate, and NADH dehydrogenases were predominantly soluble. It was observed that E. coli malate dehydrogenase could be assayed with the dye 2,6-dichlorophenol indophenol, but that porcine malate dehydrogenase activity could not be assayed, even in the presence of E. coli extracts. The characteristics of E. coli NADH dehydrogenase were shown to be markedly different from those of a mammalian enzyme. The enzyme activities for oxidation of Krebs cycle intermediates (malate, succinate, isocitrate) did not appear to be under coordinate genetic control.  相似文献   

17.
Summary The segmentation of the proximal tubules of the male rat kidney was studied by means of enzyme histochemical reactions. Soluble oxidoreductases (glucose 6-phosphate dehydrogenase, -glycerophosphate dehydrogenase, 3-hydroxysteroid dehydrogenase, NAD- and NADP-dependent isocitrate dehydrogenases, NAD-dependent malate dehydrogenase, NADP-dependent, decarboxylating malate dehydrogenase, uridine diphosphate glucose dehydrogenase) were demonstrated using methods which reduce enzyme diffusion (incubating in presence of polyvinyl alcohol) and eliminate interference from tissue tetrazolium reductases. Less soluble or insoluble enzymes (glucose 6-phosphatase, -hydroxybutyrate dehydrogenase, succinate dehydrogenase and tetrazolium reductases) were demonstrated by incubation in conventional watery media.Segmental differences were observed in respect to all enzymes studied, and most reactions clearly visualized the three segments known to exist from ultrastructural as well as previous histochemical studies: The pars convoluta includes the first (P1) and most of the second (P2) segment. The transition to the third segment (P3) is in the beginning of the pars recta. Also these reactions revealed a difference between the first part of the P3, which runs through the cortex in the medullary rays, and the terminal part transversing the outer stripe of the medulla. In most instances intensity of reaction decreased in the last portion of the P3.A number of the enzymes studied were mainly or solely localized to the P3 (glucose 6-phosphate dehydrogenase, -glycerophosphate dehydrogenases, -hydroxybutyrate dehydrogenase, 3-hydroxysteroid dehydrogenase, decarboxylating malate dehydrogenase and uridine diphosphate glucose dehydrogenase). Some possible functional implications of the findings are discussed.Supported by grants from Fonden til Lægevidenskabens Fremme and the Danish Medical Research Council. — Mr. Kaj L. Pedersen is thanked for valuable photographic assistance.  相似文献   

18.
1. Glutamate dehydrogenase and malate dehydrogenase solubilized from liver microsomes were able to rebind to microsomal vesicles while the corresponding dehydrogenases extracted from mitochondria showed no affinity for microsomes. 2. Competition was noticed between microsomal glutamate dehydrogenase and microsomal malate dehydrogenase in the binding to microsomal membranes. Mitochondrial malate dehydrogenase or bovine serum albumin did not inhibit the binding of microsomal glutamate dehydrogenase to microsomes. 3. Binding of microsomal glutamate dehydrogenase to microsomal membranes decreased when microsomes was preincubated with trypsin. 4. Rough microsomal glutamate dehydrogenase was more efficiently bound to rough microsomes than smooth microsomes. Conversely, smooth microsomal glutamate dehydrogenase had higher affinity for smooth microsomes than for rough microsomes. 5. A difference was noticed among the glutamate dehydrogenase isolated from rough and smooth microsomes, and from mitochondria, which suggested the possibility of minor post-translational modification of enzyme molecules in the transport from the site of synthesis to mitochondria.  相似文献   

19.
A cytochemical method of detection of dehydrogenases in blood leucocytes is proposed. Native smears are dried up in the air to be incubated at 37 degrees C in gel-containing medium composed of polyvinyl alcohol, sucrose, a corresponding substrate, cofactors and inhibitors of cytochrome oxidases activity. Using corresponding media, activities of succinate, malate, glutamate, lactate-, alpha-glycerophosphate, alcohol, beta-oxybutyrate and glucoso-5-phosphate dehydrogenases were revealed. Half-reduced diformazan providing diffuse rosy staining of cells was removed after the incubation, and the incubation medium was washed out by rinsing the smears in 60% acetone solution. As a result monochromatic micropreparations may be received. Finally, smears are fixed in formalin. The above method provides a reduced loss of enzymes, preserves a good cell morphology and eliminates non-dehydrogenase effects of tetrazolium reduction into formazan.  相似文献   

20.
The inhibitory effects of ATP, coenzyme A, and acetyl, malonyl, and oleyl derivatives of coenzyme A on the TPN and DPN dependent activities of Leuconostoc glucose-6-phosphate dehydrogenase are compared. At pH 7.8, 24°, saturating levels of DPN or TPN, and inhibitor concentrations of 2–4 mM only ATP has an appreciable effect on the TPN dependent reaction, but all were potent inhibitors of the DPN dependent reaction. Oleyl coenzyme A was the most effective (Ki ~ 0.15 mM against glucose-6-phosphate) while acetyl coenzyme A was least effective (Ki ~ 1.0 mM). A possible regulatory role of this inhibition in fatty acid synthesis is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号