首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of the Alzheimer's amyloid beta-peptide is a sensitive function of the peptide's sequence. Increased fibril elongation rate of the E22Q Dutch mutant of the Alzheimer's amyloid beta-peptide relative to that of the wild-type peptide has been observed. The increased activity has been attributed to a larger propensity for the formation of beta structure in the monomeric E22Q mutant peptide in solution relative to the WT peptide. That hypothesis is tested using four nanosecond timescale simulations of the WT and Dutch mutant forms of the Abeta(10-35)-peptide in aqueous solution. The simulation results indicate that the propensity for formation of beta-structure is no greater in the E22Q mutant peptide than in the WT peptide. A significant measure of "flickering" of helical structure in the central hydrophobic cluster region of both the WT and mutant peptides is observed. The simulation results argue against the hypothesis that the Dutch mutation leads to a higher probability of formation of beta-structure in the monomeric peptide in aqueous solution. We propose that the greater stability of the solvated WT peptide relative to the E22Q mutant peptide leads to decreased fibril elongation rate in the former. Stability difference is due to the differing charge state of the two peptides. The other proposal leads to the prediction that the fibril elongation rates for the WT and the mutant E22Q should be similar under acid conditions.  相似文献   

2.
The initial events in protein aggregation involve fluctuations that populate monomer conformations, which lead to oligomerization and fibril assembly. The highly populated structures, driven by a balance between hydrophobic and electrostatic interactions in the protease-resistant wild-type Aβ21-30 peptide and mutants E22Q (Dutch), D23N (Iowa), and K28N, are analyzed using molecular dynamics simulations. Intrapeptide electrostatic interactions were connected to calculated pKa values that compare well with the experimental estimates. The pKa values of the titratable residues show that E22 and D23 side chains form salt bridges only infrequently with the K28 side chain. Contacts between E22-K28 are more probable in “dried” salt bridges, whereas D23-K28 contacts are more probable in solvated salt bridges. The strength of the intrapeptide hydrophobic interactions increases as D23N < WT < E22Q < K28A. Free-energy profiles and disconnectivity representation of the energy landscapes show that the monomer structures partition into four distinct basins. The hydrophobic interactions cluster the Aβ21-30 peptide into two basins, differentiated by the relative position of the DVG(23-25) and GSN(25-27) fragments about the G25 residue. The E22Q mutation increases the population with intact VGSN turn compared to the wild-type (WT) peptide. The increase in the population of the structures in the aggregation-prone Basin I in E22Q, which occurs solely due to the difference in charge states between the Dutch mutant and the WT, gives a structural explanation of the somewhat larger aggregation rate in the mutant. The D23N mutation dramatically reduces the intrapeptide interactions. The K28A mutation increases the intrapeptide hydrophobic interactions that promote population of structures in Basin I and Basin II whose structures are characterized by hydrophobic interaction between V24 and K28 side chains but with well-separated ends of the backbone atoms in the VGSN turn. The intrapeptide electrostatic interactions in the WT and E22Q peptides roughen the free-energy surface compared to the K28A peptide. The D23N mutation has a flat free-energy surface, corresponding to an increased population of random coil-like structures with weak hydrophobic and electrostatic interactions. We propose that mutations or sequences that enhance the probability of occupying Basin I would promote aggregation of Aβ peptides.  相似文献   

3.
Han W  Wu YD 《Proteins》2007,66(3):575-587
To study the early stage of amyloid-beta peptide (Abeta) aggregation, hexamers of the wild-type (WT) Abeta(16-35) and its mutants with amyloid-like conformations have been studied by molecular dynamics simulations in explicit water for a total time of 1.7 micros. We found that the amyloid-like structures in the WT oligomers are destabilized by the solvation of ionic D23/K28 residues, which are buried in the fibrils. This means that the desolvation of D23/K28 residues may contribute to the kinetic barrier of aggregation in the early stage. In the E22Q/D23N, D23N/K28Q, and E22Q/D23N/K28Q mutants, hydration becomes much less significant because the mutated residues have neutral amide side-chains. These amide side-chains can form linear cross-strand hydrogen bond chains, or "polar zippers", if dehydrated. These "polar zippers" increase the stability of the amyloid-like conformation, reducing the barrier for the early-stage oligomerization. This is in accord with experimental observations that both the D23/K28 lactamization and the E22Q/D23N mutation promote aggregation. We also found that the E22Q/D23N mutant prefers an amyloid-like conformation that differs from the one found for WT Abeta. This suggests that different amyloid structures may be formed under different conditions.  相似文献   

4.
Using a coarse-grained model of the Aβ peptide, we analyze the Arctic (E22G), Dutch (E22Q), and Flemish (A21G) familial Alzheimer's disease (FAD) mutants for any changes in the stability of amyloid assemblies with respect to the wild-type (WT) sequence. Based on a structural reference state of two protofilaments aligned to create the “agitated” protofibril as determined by solid-state NMR, we determine free energy trends for Aβ assemblies for the WT and FAD familial sequences. We find that the structural characteristics and oligomer size of the critical nucleus vary dramatically among the hereditary mutants. The Arctic mutant's disorder in the turn region introduces new stabilizing interactions that better align the two protofilaments, yielding a well-defined protofibril axis at relatively small oligomer sizes with respect to WT. By contrast, the critical nucleus for the Flemish mutant is beyond the 20 chains characterized in this study, thereby showing a strong shift in the equilibrium toward monomers with respect to larger protofibril assemblies. The Dutch mutant forms more ordered protofilaments than WT, but exhibits greater disorder in protofibril structure that includes an alternative polymorph of the WT fibril. An important conclusion of this work is that the Dutch mutant does not support the agitated protofibril assembly. We discuss the implications of the structural ensembles and free energy profiles for the FAD mutants in regards to interpretation of the kinetics of fibril assembly using chromatography and dye-binding experiments.  相似文献   

5.
Pathogenic effects of D23N Iowa mutant amyloid beta -protein.   总被引:4,自引:0,他引:4  
Cerebral amyloid beta-protein angiopathy (CAA) is a key pathological feature of patients with Alzheimer's disease and certain related disorders. In these conditions the CAA is characterized by the deposition of Abeta within the cerebral vessel wall and, in severe cases, hemorrhagic stroke. Several mutations have been identified within the Abeta region of the Abeta protein precursor (AbetaPP) gene that appear to enhance the severity of CAA. We recently described a new mutation within the Abeta region (D23N) of AbetaPP that is associated with severe CAA in an Iowa kindred (Grabowski, T. J., Cho, H. S., Vonsattel, J. P. G., Rebeck, G. W., and Greenberg, S. M. (2001) Ann. Neurol. 49, 697-705). In the present study, we investigated the effect of this new D23N mutation on the processing of AbetaPP and the pathogenic properties of Abeta. Neither the D23N Iowa mutation nor the E22Q Dutch mutation affected the amyloidogenic processing of AbetaPP expressed in H4 cells. The A21G Flemish mutation, in contrast, resulted in a 2.3-fold increase in secreted Abeta peptide. We also tested synthetic wild-type and mutant Abeta40 peptides for fibrillogenesis and toxicity toward cultured human cerebrovascular smooth muscle (HCSM) cells. The E22Q Dutch, D23N Iowa, and E22Q,D23N Dutch/Iowa double mutant Abeta40 peptides rapidly assembled in solution to form fibrils, whereas wild-type and A21G Flemish Abeta40 peptides exhibited little fibril formation. Similarly, the E22Q Dutch and D23N Iowa Abeta40 peptides were found to induce robust pathologic responses in cultured HCSM cells, including elevated levels of cell-associated AbetaPP, proteolytic breakdown of smooth muscle cell alpha-actin, and cell death. Double mutant E22Q,D23N Dutch/Iowa Abeta40 was more potent than either single mutant form of Abeta in causing pathologic responses in HCSM cells. These data suggest that the different CAA mutations in AbetaPP may exert their pathogenic effects through different mechanisms. Whereas the A21G Flemish mutation appears to enhance Abeta production, the E22Q Dutch and D23N Iowa mutations enhance fibrillogenesis and the pathogenicity of Abeta toward HCSM cells.  相似文献   

6.
Cerebral amyloid angiopathy is commonly associated with normal aging and Alzheimer's disease and it is also the principal feature of hereditary cerebral hemorrhage with amyloidosis Dutch type, a familial condition associated to a point mutation G to C at codon 693 of the amyloid beta (Abeta) precursor protein gene resulting in a Glu to Gln substitution at position 22 of the Abeta (E22Q). The patients carrying the AbetaE22Q variant usually present with lobar cerebral hemorrhages before 50 years of age. A different mutation described in several members of three Italian kindred who presented with recurrent hemorrhagic strokes late in life, between 60 and 70 years of age, also associated with extensive cerebrovascular amyloid deposition has been found at the same position 22, this time resulting in a Glu to Lys substitution (E22K). We have compared the secondary structure, aggregation, and fibrillization properties of the two Abeta40 variants and the wild type peptide. Using flow cytometry analysis after staining with propidium iodide and annexin V, we also evaluated the cytotoxic effects of the peptides on human cerebral endothelial cells in culture. Under the conditions tested, the E22Q peptide exhibited the highest content of beta-sheet conformation and the fastest aggregation/fibrillization properties. The Dutch variant also induced apoptosis of cerebral endothelial cells at a concentration of 25 micrometer, whereas the wild type Abeta and the E22K mutant had no effect. The data suggest that different amino acids at position 22 confer distinct structural properties to the peptides that appear to influence the onset and aggressiveness of the disease rather than the phenotype.  相似文献   

7.
Development of extracellular plaques characteristic of Alzheimer's disease is related to aggregation of amyloid peptides. The Aβ-42 peptide is the most aggregation prone species, and some missense mutant forms increase this aggregation ability. Due to its poor solubility as monomer in aqueous solutions, Aβ-42 conformational transitions in water have been largely investigated by molecular dynamics. Here we report an all-atom molecular dynamics analysis of the Aβ-42 peptide in aqueous environment using as starting conformation a structure obtained in an isotropic, low-polarity medium, representing a plausible model for the membrane-bound species. While previous studies commonly show that Aβ-42 is largely unstructured in aqueous solution, here we report that this peptide can adopt partially folded structures. Importance of ionic strength has been also investigated, showing that at physiological ionic strength condition a loop stabilizing electrostatic interaction involving Lys28 builds up. In addition, besides stable α-helix structures, we observe the appearance of 310 helix, similar to what was reported experimentally for the Aβ-40 species. The effect of E22Q (Dutch) mutation in high ionic strength condition has been explored. We show that this mutation has a dramatic impact on the Aβ-42 structure. Instead of a partially folded, but extended, conformation obtained with the wild type, the E22Q assumes a two-helix collapsed one due to the clustering of hydrophobic residues.  相似文献   

8.
Hereditary cerebral hemorrhage with amyloidosis-Dutch type is a disorder associated with a missense mutation (E693Q) in the β-amyloid (Aβ)-coding region of the amyloid precursor protein (APP). This familial disease is characterized by cognitive deficits secondary to intracerebral hemorrhage and, in some cases, progressive Alzheimer's disease (AD)-like dementia. Although this mutation was the first ever reported in the human APP gene, little is known about the molecular mechanisms underlying the direct toxic effects of this mutated Aβ on central neurons. In the present study, we assessed the role of calpain-mediated toxicity in such effects using an AD primary culture model system. Our results showed that Dutch mutant Aβ (E22Q) induced calpain-mediated cleavage of dynamin 1 and a significant decrease in synaptic contacts in mature hippocampal cultures. These synaptic deficits were similar to those induced by wild-type (WT) Aβ. In contrast, calpain-mediated tau cleavage leading to the generation of a 17-kDa neurotoxic fragment, as well as neuronal death, were significantly reduced in E22Q Aβ-treated neurons when compared with WT Aβ-treated ones. This complex regulation of the calpain-mediated toxicity pathway by E22Q Aβ could have some bearing in the pathobiology of this familial AD form.  相似文献   

9.
Single point mutations of the amyloid precursor protein generate Aβ variants bearing amino acid substitutions at positions 21-23. These mutants are associated with distinct hereditary phenotypes of cerebral amyloid angiopathy, manifesting varying degrees of tropism for brain vessels, and impaired microvessel remodeling and angiogenesis. We examined the differential effects of E22Q (Dutch), and E22G (Arctic) variants in comparison to WT Aβ on brain endothelial cell proliferation, angiogenic phenotype expression triggered by fibroblast growth factor (FGF-2), pseudo-capillary sprouting, and induction of apoptosis. E22Q exhibited a potent anti-angiogenic profile in contrast to E22G, which had a much weaker effect. Investigations on the FGF-2 signaling pathway revealed the greatest differences among the peptides: E22Q and WT peptides suppressed FGF-2 expression while E22G had barely any effect. Phosphorylation of the FGF-2 receptor, FGFR-1, and the survival signal Akt were abolished by E22Q and WT peptides, but not by E22G. The biological dissimilar effect of the mutant and WT peptides on cerebral EC cannot be assigned to a particular Aβ structure, suggesting that the toxic effect of the Aβ assemblies goes beyond mere multimerization.  相似文献   

10.
Mutations in the fasciclin 1 domain 4 (FAS1–4) of transforming growth factor β-induced protein (TGFBIp) are associated with insoluble extracellular deposits and corneal dystrophies (CDs). The decrease in solubility upon mutation has been implicated in CD; however, the exact molecular mechanisms are not well understood. Here, we performed molecular dynamics simulations followed by solvation thermodynamic analyses of the FAS1–4 domain and its three mutants—R555W, R555Q, and A546T—linked to granular corneal dystrophy type 1, Thiel-Behnke corneal dystrophy and lattice corneal dystrophy, respectively. We found that both R555W and R555Q mutants have less affinity toward solvent water relative to the wild-type protein. In the R555W mutant, a remarkable increase in solvation free energy was observed because of the structural changes near the mutation site. The mutation site W555 is buried in other hydrophobic residues, and R557 simultaneously forms salt bridges with E554 and D561. In the R555Q mutant, the increase in solvation free energy is caused by structural rearrangements far from the mutation site. R558 separately forms salt bridges with D575, E576, and E598. Thus, we thus identified the relationship between the decrease in solubility and conformational changes caused by mutations, which may be useful in designing potential therapeutics and in blocking FAS1 aggregation related to CD.  相似文献   

11.
The conformation of the inactivating peptide of the Shaker B K+ channel (ShB peptide) and that of a noninactivating mutant (ShBL7E peptide) have been studied. Under all experimental conditions explored, the mutant peptide remains in a predominantly nonordered conformation. On the contrary, the inactivating ShB peptide has a great tendency to adopt a highly stable beta structure, particularly when challenged "in vitro" by anionic phospholipid vesicles. Because the putative peptide binding elements at the inner mouth of the channel comprise a ring of anionic residues and a hydrophobic pocket, we hypothesize that the conformational restrictions imposed on the ShB peptide by its interaction with the anionic lipid vesicles could partly imitate those imposed by the above ion channel elements. Thus, we propose that adoption of beta structure by the inactivating peptide may also occur during channel inactivation. Moreover, the difficulties encountered by the noninactivating ShBL7E peptide mutant to adopt beta structure and the observation that trypsin hydrolysis of the ShB peptide prevent both structure formation and channel inactivation lend further support to the hypothesis that adoption of beta structure by the inactivating peptide in a hydrophobic environment is important in determining channel blockade.  相似文献   

12.
Abstract

Protection of telomere 1 (POT1) is a key component of shelterin complex, essential for maintaining telomere length and its regulation. It consists of N-terminal domain (residues 1–299), which interacts with telomeric ssDNA, and the C-terminal domain (residues 320–634) that binds to the tripeptidyl-peptidase I (TPP1). A large number of naturally occurring mutations in the POT1 gene are associated with glioma, cardiac angiosarcoma and cutaneous familial melanoma (FM). In particular, Q94E mutation disrupts the interaction of POT1 with telomeric DNA which subsequently enhances telomere uncapping and elongation and promotes the development of cutaneous familial melanoma. To understand the underlying mechanism of familial melanoma developed by Q94E-mutation, we have performed extensive structure analysis of WT and mutant protein followed by molecular dynamics simulations. Q94E mutation causes a dramatic change in the structure and stability of POT1 protein. A considerable decrease in the flexibility, fluctuation and solvent accessibility of Q94E was observed in comparison to the WT, indicating overall destabilization of protein. Essential dynamics and Anisotropic Network Mode analysis have quantified a significant change in direction and magnitude of conformational motion in Q94E mutant compared to WT. A significant loss of frustration due to Q94E mutation was also observed. Our findings indicate the loss of protein stability and dynamics of POT1 protein by Q94E mutation may be associated with the familial melanoma. Abbreviations ANM anisotropic network mode

ED essential dynamics

FM familial melanoma

MD molecular dynamics

POT1 protection of telomere 1

Rg radius of gyration

RMSD root-mean-square deviation

RMSF root-mean-square fluctuations

SASA solvent accessible surface area

SIFT sorting Intolerant from Tolerant

TPP1 tripeptidyl-peptidase I

WT wild type

Communicated by Ramaswamy H. Sarma  相似文献   

13.
The ΔE693 (Japanese) mutation of the β-amyloid precursor protein leads to production of ΔE22-Aβ peptides such as ΔE22-Aβ(1-39). Despite reports that these peptides do not form fibrils, here we show that, on the contrary, the peptide forms fibrils essentially instantaneously. The fibrils are typical amyloid fibrils in all respects except that they cause only low levels of thioflavin T (ThT) fluorescence, which, however, develops with no lag phase. The fibrils bind ThT, but with a lower affinity and a smaller number of binding sites than wild-type (WT) Aβ(1-40). Fluorescence depolarization confirms extremely rapid aggregation of ΔE22-Aβ(1-39). Size exclusion chromatography (SEC) indicates very low concentrations of soluble monomer and oligomer, but only in the presence of some organic solvent, e.g., 2% (v/v) DMSO. The critical concentration is approximately 1 order of magnitude lower for ΔE22-Aβ(1-39) than for WT Aβ(1-40). Several lines of evidence point to an altered structure for ΔE22-Aβ(1-39) compared to that of WT Aβ(1-40) fibrils. In addition to differences in ThT binding and fluorescence, PITHIRDS-CT solid-state nuclear magnetic resonance (NMR) measurements of ΔE22-Aβ(1-39) are not compatible with the parallel in-register β-sheet generally observed for WT Aβ(1-40) fibrils. X-ray fibril diffraction showed different D spacings: 4.7 and 10.4 ? for WT Aβ(1-40) and 4.7 and 9.6 ? for ΔE22-Aβ(1-39). Equimolar mixtures of ΔE22-Aβ(1-39) and WT Aβ(1-40) also produced fibrils extremely rapidly, and by the criteria of ThT fluorescence and electron microscopic appearance, they were the same as fibrils made from pure ΔE22-Aβ(1-39). X-ray diffraction of fibrils formed from 1:1 molar mixtures of ΔE22-Aβ(1-39) and WT Aβ(1-40) showed the same D spacings as fibrils of the pure mutant peptide, not the wild-type peptide. These findings are consistent with extremely rapid nucleation by ΔE22-Aβ(1-39), followed by fibril extension by WT Aβ(1-40), and "conversion" of the wild-type peptide to a structure similar to that of the mutant peptide, in a manner reminiscent of the prion conversion phenomenon.  相似文献   

14.
Interaction of E5 of papillomavirus-16 based on its three transmembrane domains (TMDs) with a peptide mimicking the fourth TMD (TMD-A) of the 16 kDa c subunit of the human vacuolar H+-ATPase, ATP6V0C, and one of its mutant is investigated. Docking reveals binding of the peptide between the second and third TMD of E5. A series of hydrophobic residues are responsible for the contact. Estimated weak binding energies based on potential of mean force calculations reveal marginal differences of the estimated binding energies between wild type (WT) and mutant peptide. Also differences in estimated binding energies of dimers of the individual TMDs of E5 with the WT peptide are marginal. Correlation of rotational data derived from coarse-grained molecular dynamics simulations of the peptides and the protein as well as from the principal component analysis reveal that the binding of TMD-A with TMD3 is enthalpy driven and binding with TMD2 is guided by entropic conditions.  相似文献   

15.
Multiple long molecular dynamics simulations are used to probe the oligomerization mechanism of Abeta(16-22) (KLVFFAE) peptides. The peptides, in the monomeric form, adopt either compact random-coil or extended beta strand-like structures. The assembly of the low-energy oligomers, in which the peptides form antiparallel beta sheets, occurs by multiple pathways with the formation of an obligatory alpha-helical intermediate. This observation and the experimental results on fibrillogenesis of Abeta(1-40) and Abeta(1-42) peptides suggest that the assembly mechanism (random coil --> alpha helix --> beta strand) is universal for this class of peptides. In Abeta(16-22) oligomers both interpeptide hydrophobic and electrostatic interactions are critical in the formation of the antiparallel beta sheet structure. Mutations of either hydrophobic or charged residues destabilize the oligomer, which implies that the 16-22 fragments of Arctic (E22G), Dutch (E22Q), and Italian (E22K) mutants are unlikely to form ordered fibrils.  相似文献   

16.
The N-end rule targets specific proteins for destruction in prokaryotes and eukaryotes. Here, we report a crystal structure of a bacterial N-end rule adaptor, ClpS, bound to a peptide mimic of an N-end rule substrate. This structure, which was solved at a resolution of 1.15 A, reveals specific recognition of the peptide alpha-amino group via hydrogen bonding and shows that the peptide's N-terminal tyrosine side chain is buried in a deep hydrophobic cleft that pre-exists on the surface of ClpS. The adaptor side chains that contact the peptide's N-terminal residue are highly conserved in orthologs and in E3 ubiquitin ligases that mediate eukaryotic N-end rule recognition. We show that mutation of critical ClpS contact residues abrogates substrate delivery to and degradation by the AAA+ protease ClpAP, demonstrate that modification of the hydrophobic pocket results in altered N-end rule specificity, and discuss functional implications for the mechanism of substrate delivery.  相似文献   

17.
A new early-onset form of Alzheimer's disease (AD) was described recently where a point mutation was discovered in codon 693 of the beta-amyloid (Abeta) precursor protein gene, the Arctic mutation. The mutation translates into a single amino acid substitution, glutamic acid-->glycine, in position 22 of the Abeta peptide. The mutation carriers have lower plasma levels of Abeta than normal, while in vitro studies show that Abeta1-40E22G protofibril formation is significantly enhanced. We have explored the nature of the Abeta1-40E22G peptide in more detail, in particular the protofibrils. Using size-exclusion chromatography (SEC) and circular dichroism spectroscopy (CD) kinetic and secondary structural characteristics were compared with other Abeta1-40 peptides and the Abeta12-28 fragment, all having single amino acid substitutions in position 22. We have found that Abeta1-40E22G protofibrils are a group of comparatively stabile beta-sheet-containing oligomers with a heterogeneous size distribution, ranging from >100 kDa to >3000 kDa. Small Abeta1-40E22G protofibrils are generated about 400 times faster than large ones. Salt promotes their formation, which significantly exceeds all the other peptides studied here, including the Dutch mutation Abeta1-40E22Q. Position 22 substitutions had significant effects on aggregation kinetics of Abeta1-40 and in Abeta12-28, although the qualitative aspects of the effects differed between the native peptide and the fragment, as no protofibrils were formed by the fragments. The rank order of protofibril formation of Abeta1-40 and its variants was the same as the rank order of the length of the nucleation/lag phase of the Abeta12-28 fragments, E22V>E22A?E22G>E22Q?E22, and correlated with the degree of hydrophobicity of the position 22 substituent. The molecular mass of peptide monomers and protofibrils were estimated better in SEC studies using linear rather than globular calibration standards. The characteristics of the Abeta1-40E22G suggest an important role for the peptide in the neuropathogenesis in the Arctic form of AD.  相似文献   

18.
Amyloid beta (Aβ) peptide plays an important role in Alzheimer’s disease. A number of mutations in the Aβ sequence lead to familial Alzheimer’s disease, congophilic amyloid angiopathy, or hereditary cerebral hemorrhage with amyloid. Using molecular dynamics simulations of ∼200 μs for each system, we characterize and contrast the consequences of four pathogenic mutations (Italian, Dutch, Arctic, and Iowa) for the structural ensemble of the Aβ monomer. The four familial mutations are found to have distinct consequences for the monomer structure.Amyloid beta (Aβ) peptides have long been thought to play a central role in Alzheimer’s disease (AD). Usually 40 or 42 residues in length, Aβ peptides are proteolytic products of the Aβ precursor protein and they aggregate to form the fibrillar plaques in AD patients’ brains. Besides fibrillar plaques, Aβ oligomers are also neurotoxic. The significance and nature of Aβ oligomerization has recently become a focus of intensive research studies and debates (1,2). Notably, numerous pathogenic mutations have been identified in the Aβ precursor protein sequence and in the enzymes involved in Aβ processing (3). These mutations generally lead to early onset of AD or cerebral amyloid angiopathy. Understanding how the pathogenic mutations alter Aβ oligomerization/aggregation is essential to our understanding of the disease mechanism.Four of these pathogenic mutations (Italian E22K, Dutch E22Q, Arctic E22G, and Iowa D23N) cluster in the region of E22 and D23 in the Aβ sequence (distal from proteolytic cleavage sites) and they have higher neurotoxicity compared to wild-type (WT) Aβ (4). These mutations are thought to modify the physicochemistry of the peptide. For example, kinetic studies (4) show that the E22K and E22Q mutations lead to faster peptide aggregation, whereas the E22G and D23N mutations result in slightly slower aggregation than WT Aβ42 (although the E22G mutation shows increased protofibril formation (5)). Recent solid-state NMR studies also suggest that rather than the in-register β-sheet conformation adopted by WT Aβ, the Iowa D23N mutant forms amyloid fibrils with antiparallel β-sheet structure (6).To understand how the mutations modify the peptide oligomerization/aggregation it is critical to characterize the starting point of the process, the monomers. Unfortunately, investigating the early phase of the oligomerization process experimentally is a challenging task due to the high aggregation propensity of Aβ and its intrinsic disorder. Therefore, a number of computational approaches have been adopted to investigate the consequences of mutations for the monomer structure (7–16). However, due to the high computational demands of explicit-solvent molecular dynamics (MD) simulations to simulate full-length Aβ peptides, most of these computational studies are either on Aβ fragments (to decrease the system size) using explicit-solvent simulations (8–12) or on full-length Aβ using implicit-solvent simulations (which are less computationally demanding and enable longer simulation times, but lack explicit water molecules in the simulations to fully describe water-peptide interactions) (13–15). In a very recent report, explicit-solvent simulations were used to study the effects of the E22Q mutation on full-length Aβ; however, rather limited data (<10 μs) were collected (16). Thus, characterizing full-length Aβ monomers remains quite a daunting task even with simulations.To characterize the effects of mutations on full-length Aβ monomer using explicit-solvent MD simulations, we employed distributed computing (17) to simulate the WT Aβ42, Aβ42-E22K, Aβ42-E22Q, Aβ42-E22G, and Aβ42-D23N monomers. MD simulations of >200 μs were performed for each system and AMBER ff99sb (18) and the tip3p water model (19) were used for force field parameters. Peptide configurations in the MD trajectories were clustered with the root mean-square deviation metric to identify representative conformations (i.e., states) and transitions between these states were counted. Markov state model analysis was then performed where the master equations were solved and the equilibrium population of each state deduced (20). Details of the MD simulation procedures and Markov state model analysis can be found in the Supporting Material.Each of the five Aβ monomer systems exhibits great structural diversity and can only be characterized in an ensemble fashion (rather than described by a handful of representative configurations). This is in accord with the notion that full-length Aβ peptides are intrinsically disordered (21,22). Using the Dictionary of Secondary Structure of Proteins program (23) to assign secondary structure, it is clear that the five Aβ monomer systems are found overall not well structured, although small β-hairpins and α-helices are observed. In Fig. 1 we plot the residue-dependent extended β propensity and α-helix propensity, in the top and bottom panels, respectively, for each Aβ monomer system. Although we are reasonably confident of the convergence behavior of the α-helix propensity, we note that the convergence of the extended β-propensity might be more challenging and demand a much longer sampling time than the current aggregate simulation time of ∼200 μs (24).Open in a separate windowFigure 1Ensemble-averaged %population of β-strand (top) and α-helix (bottom) propensity for all five monomer systems. The sequence of the WT Aβ42 is given on the x axis.We observe in Fig. 1 that all five Aβ monomer systems share a rather similar residue-dependent tendency to form an extended β-structure, although minor differences are present. On the other hand, these pathogenic mutations alter the α-helix propensity quite significantly. The E22K and E22Q mutations increase the α-helix propensity in the region of residues 20–23. All four mutations (E22K, E22Q, E22G, and D23N) decrease the α-helix propensity in the region of residues 33–36.Notably, we find that in all five systems only short stretches of α-helices are formed. That is, when a residue is involved in α-helix formation, it participates in forming mostly short helical segments (consisting of only four helical residues). To provide more insight into the changes of α-helix propensity due to the mutations, in Fig. S1 we plot the tendency of forming short α-helices along the sequence for all five systems. Each data point in Fig. S1 represents the propensity to form an α-helix of four residues in length, ending at the specific residue. For example, in the structural ensemble adopted by the WT peptide, ∼5.5% of the conformations have a short α-helix of size four, involving residues 15–18. We see from Fig. S1 that the E22K and E22Q mutations induce the formation of two short helices in residues 19–22 and 20–23. The higher α-helix propensity in this region for the E22K mutant compared to the WT was previously attributed to the elimination of the electrostatic repulsion between E22 and D23 in the WT by the mutation and the longer aliphatic chain of K22 in the mutant compared to E22 in the WT (9,22). This is consistent with the observation that the E22Q mutation also induces helix formation in this region (by eliminating the electrostatic repulsion between E22 and D23 in the WT) but to a lesser extent, possibly due to the shorter aliphatic chain of Q22 compared to K22.In the E22G mutant, although the mutation eliminates the electrostatic repulsion between E22 and D23 in the WT peptide, glycine is known to be a helix breaker (25), leading to diminished α-helix propensity in the region around residue G22 seen in Fig. S1.In the D23N mutant, although the mutation eliminates the electrostatic repulsion between E22 and D23 in the WT peptide, it does not induce (or rather even slightly decreases) helix formation around residue 23. This may be due to the short aliphatic chain of N23 but it is possible that the mutation induces some nonlocal effects on the peptide structure, disfavoring helix formation in this region.It is worth noting that all four mutations (E22K, E22Q, E22G, and D23N) virtually eliminate the α-helix propensity in the region of residues 33–36. This region is rather far away from the mutation sites in sequence but its α-helix propensity is nonetheless affected. The origin of such a nonlocal effect is less straightforward to explain and further analysis will aid untangling this behavior. Nonetheless, the diminished α-helix propensity in the region of residues 33–36 appears to be a consistent feature across all four mutants.The four mutations studied here (E22K, E22Q, E22G, and D23N) have been thought to modify the physicochemistry of the peptide and alter the oligomerization/aggregation process, leading to higher neurotoxicity. In predicting intrinsic aggregation propensities using peptide sequences, all four mutants are suggested to be more aggregation prone (26). On the other hand, kinetic studies show that only the E22K and E22Q mutants aggregate more quickly, whereas the E22G and D23N mutations result in slightly slower aggregation than WT Aβ42 (4). Our simulation results suggest these pathogenic mutations have complicated effects on the monomer structure—all four mutations decrease helix propensity in residues 33–36, whereas only the E22K and E22Q mutations increase helix propensity in residues 20–23. It is interesting to note that α-helix propensity is generally thought to anticorrelate with aggregation propensity; however, recent studies have suggested an important role of α-helical intermediates in amyloid oligomerization (27–29). Our studies suggest that it would be of great value to investigate how the distinct patterns of α-helix propensity in these five systems may propagate to give rise to different oligomerization kinetics or even mechanisms. The pathogenic mutations studied here have complex effects on the oligomerization of the peptide. The characterization of the monomer structural ensembles reported here should aid understanding of such an important and complicated process.  相似文献   

19.
The deregulated breakpoint cluster region (Bcr)–Abelson tyrosine kinase (Abl) fusion protein represents an attractive pharmacological target for the treatment of chronic myeloid leukemia (CML). The high affinity of monobody AS25 was designed to target the Src homology 2 (SH2) domain of Bcr-Abl, leading to allosteric inhibition of Bcr-Abl through formation of protein–protein interactions. An I164E mutation in the SH2 domain disrupts AS25 binding to the SH2 domain of Bcr-Abl. The detailed mechanisms, however, remain to be unresolved. Here, molecular dynamics (MD) simulations and binding free energy calculations were performed to explore the conformational and energetic differences between the wild-type (WT) complexes of Bcr-Abl SH2 domain and AS25 (SH2WT–AS25) as well as the mutated complexes (SH2I164E–AS25). The results revealed that I164E mutation not only caused an increase in the conformational flexibility of SH2–AS25 complexes, but also weakened the binding affinity of AS25 to SH2. The comparative binding modes of SH2-AS25 complexes between WT and the I164E mutant were comprehensively analyzed to unravel the disruption of hydrophobic and hydrogen bonding interactions in the interface of the SH2-AS25 complex triggered by the I164E mutation. The results obtained may help to design the next generation of higher affinity Bcr-Abl SH2-specific peptide inhibitors.  相似文献   

20.
The aggregation of α-synuclein is linked directly to the histopathology of Parkinson’s disease (PD). However, several missense mutations present in the α-synuclein gene (SNCA) have been known to be associated with PD. Several studies have highlighted the effect of SNCA mutations on the α-synuclein aggregation, but their pathological roles are not completely established. In this study, we have focused on the effects of the recently discovered α-synuclein missense mutants (H50Q and G51D) on the aggregation using computational approaches. We performed all atom molecular dynamics (MD) simulation on these mutants and compared their conformational dynamics with Wild-Type (WT) α-synuclein. We noticed the solvent accessible surface area (SASA), radius of gyration, atomic fluctuations, and beta strand content to be higher in H50Q than G51D and WT. Using PDBSum online server; we analyzed the inter-molecular interactions that drive the association of monomeric units of H50Q, WT, and G51D in forming the respective homo-dimer. We noticed the interface area, number of interacting residues and binding free energy to be higher for H50Q homo-dimer than the WT and G51D homo-dimers. Our findings in this study suggest that in comparison to WT and G51D, H50Q mutation to have a positive effect on increasing the α-synuclein aggregation propensity. Hence, we see that H50Q and G51D mutation show conflicting effect on the aggregation propensity of α-synuclein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号