首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular superoxide dismutase (EC-SOD) is the only known extracellular enzyme designed to scavenge the superoxide anion. The purified enzyme exists in two forms when visualized by reduced SDS-polyacrylamide gel electrophoresis: (i) intact EC-SOD (Trp1-Ala222) containing the C-terminal heparin-binding domain and (ii) cleaved EC-SOD (Trp1-Glu209) without the C-terminal heparin-binding domain. The proteolytic event(s) leading to proteolysis at Glu209-Arg210 and removal of the heparin-binding domain are not known, but may represent an important regulatory mechanism. Removal of the heparin-binding domain affects both the affinity of EC-SOD for and its distribution to the extracellular matrix, in which it is secreted. During the purification of human EC-SOD, the intact/cleaved ratio remains constant, suggesting that proteolytic removal of the heparin-binding domain does not occur during purification (Oury, T. D., Crapo, J. D., Valnickova, Z., and Enghild, J. J. (1996) Biochem. J. 317, 51-57). This was supported by the finding that fresh mouse tissue contains both intact and cleaved EC-SOD. To study other possible mechanisms leading to the formation of cleaved EC-SOD, we examined biosynthesis in cultured rat L2 epithelial-like cells using a pulse-chase protocol. The results of these studies suggest that the heparin-binding domain is removed intracellularly just prior to secretion. In addition, the intact/cleaved EC-SOD ratio appears to be tissue-dependent, implying that the intracellular processing event is regulated in a tissue-specific manner. The existence of this intracellular processing pathway may thus represent a novel regulatory pathway for affecting the distribution and effect of EC-SOD.  相似文献   

2.
Extracellular superoxide dismutase (EC-SOD) is responsible for the dismutation of the superoxide radical produced in the extracellular space and known to be expressed by inflammatory cells, including macrophages and neutrophils. Here we show that EC-SOD is produced by resting macrophages and associated with the cell surface via the extracellular matrix (ECM)-binding region. Upon cellular activation induced by lipopolysaccharide, EC-SOD is relocated and detected both in the cell culture medium and in lipid raft structures. Although the secreted material presented a significantly reduced ligand-binding capacity, this could not be correlated to proteolytic removal of the ECM-binding region, because the integrity of the material recovered from the medium was comparable to that of the cell surface-associated protein. The naturally occurring R213G amino acid substitution located in the ECM-binding region of EC-SOD is known to affect the binding characteristics of the protein. However, the analysis of macrophages expressing R213G EC-SOD did not present evidence of an altered cellular distribution. Our results suggest that EC-SOD plays a dynamic role in the inflammatory response mounted by activated macrophages.  相似文献   

3.
Small heat shock proteins (shsps) act as molecular chaperones by preventing heat-induced aggregation and unfolding of cellular proteins by a mechanism that is still unclear. Previously we found that the C-terminal end of Xenopus shsp, hsp30C (30C), was essential for optimal chaperone activity. Examination of the C-terminal tail of 30C revealed that it had a net negative charge. Involvement of this negative charge in chaperone activity was assessed by the creation of two mutants, D209G (Asp converted to the more neutrally charged and less polar Gly at position 209) and D209/213G (Asp to Gly at position 209 and 213). Compared to 30C and D209G, D209/213G was impaired in inhibiting heat-induced citrate synthase aggregation. In rabbit reticulocyte lysate and Xenopus oocyte microinjection refolding assays the mutants were not as efficient as 30C in maintaining heat-treated luciferase in a folding competent state. Circular dichroism analysis revealed that D209G was similar in secondary structure to 30C whereas D209/213G displayed a loss of alpha-helical-like and beta-sheet structure. Also, C-terminal truncation of 30C or 30D (an hsp30 isoform) resulted in a loss of secondary structure and function. This study clearly shows that mutation of aspartic acid residues in the C-terminal end of hsp30 or its truncation disrupts secondary structure and impairs its chaperone activity.  相似文献   

4.
Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme that attenuates brain and lung injury from oxidative stress. A polybasic region in the carboxyl terminus distinguishes EC-SOD from other superoxide dismutases and determines EC-SOD's tissue half-life and affinity for heparin. There are two types of EC-SOD that differ based on the presence or absence of this heparin-binding region. It has recently been shown that proteolytic removal of the heparin-binding region is an intracellular event (Enghild, J. J., Thogersen, I. B., Oury, T. D., Valnickova, Z., Hojrup, P., and Crapo, J. D. (1999) J. Biol. Chem. 274, 14818-14822). By using mammalian cell lines, we have now determined that removal of the heparin-binding region occurs after passage through the Golgi network but before being secreted into the extracellular space. Specific protease inhibitors and overexpression of intracellular proteases implicate furin as a processing protease. In vitro experiments using furin and purified EC-SOD suggest that furin proteolytically cleaves EC-SOD in the middle of the polybasic region and then requires an additional carboxypeptidase to remove the remaining lysines and arginines. A mutation in Arg(213) renders EC-SOD resistant to furin processing. These results indicate that furin-dependent processing of EC-SOD is important for determining the tissue distribution and half-life of EC-SOD.  相似文献   

5.
The antioxidant protein extracellular superoxide dismutase (EC-SOD) encompasses a C-terminal region that mediates interactions with a number of ligands in the extracellular matrix (ECM). This ECM-binding region can be removed by limited proteolysis before secretion, thus supporting the formation of EC-SOD tetramers with variable binding capacity. The ECM-binding region contains a cysteine residue (Cys219) that is known to be involved in an intersubunit disulfide bridge. We have determined the redox potential of this disulfide bridge and show that both EC-SOD dimers and EC-SOD monomers are present within the intracellular space. The proteolytic processing of the ECM-binding region in vitro was modulated by the redox status of Cys219, allowing cleavage under reducing conditions only. When wild-type EC-SOD or the monomeric variant Cys219Ser was expressed in mammalian cells proteolysis did not occur. However, when cells were exposed to oxidative stress conditions, proteolytic processing was observed for wild-type EC-SOD but not for the Cys219Ser variant. Although the cellular response to oxidative stress is complex, our data suggest that proteolytic removal of the ECM-binding region is regulated by the intracellular generation of an EC-SOD monomer and that Cys219 plays an important role as a redox switch allowing the cellular machinery to secrete cleaved EC-SOD.  相似文献   

6.
The C-terminal regions of the heterotrimeric G protein alpha-subunits play key roles in selective activation of G proteins by their cognate receptors. In this study, mutant G(s)alpha proteins with substitutions by C-terminal residues of transducin (G(t)alpha) were analyzed for their interaction with light-activated rhodopsin (R*) to delineate the critical determinants of the G(t)alpha/R* coupling. In contrast to G(s)alpha, a chimeric G(s)alpha/G(t)alpha protein containing only 11 C-terminal residues from transducin was capable of binding to and being potently activated by R*. Our results suggest that Cys(347) and Gly(348) are absolutely essential, whereas Asp(346) is more modestly involved in the G(t) activation by R*. In addition, the analysis of the intrinsic nucleotide exchange in mutant G(s)alpha indicated an interaction between the C terminus and the switch II region in G(t)alpha.GDP. Mutant G(s)alpha containing the G(t)alpha C terminus and substitutions of Asn(239) and Asp(240) (switch II) by the corresponding G(t)alpha residues, Glu(212) and Gly(213), displayed significant reductions in spontaneous guanosine 5'-O-(3-thiotriphosphate)-binding rates to the levels approaching those in G(t)alpha. Communication between the C terminus and switch II of G(t)alpha does not appear essential for the activational coupling between G(t) and R*, but may represent one of the mechanisms by which Galpha subunits control intrinsic nucleotide exchange.  相似文献   

7.
The stacking and hydrogen bonding abilities of Trp-(Gly)n-Glu (n = 0 approximately 3) for the interaction with 7-methylguanine (m7G) base were examined by fluorescence and 1H-NMR methods, and it was shown that they correlate with the distance between the Trp and Glu residues, and become most significant when both residues are separated from each other by two Gly residues (n = 2). Based on this insight, the sequence conserved between the human and yeast cap binding proteins (CBPs) was surveyed, and the sequence of Trp-Glu-Asp-Glu (No. 102-105 in human CBP) was selected as a probable site for the binding with mRNA cap structure. Thus, the stacking and hydrogen bonding abilities of Trp-Glu-Asp-Glu with m7G cap structure were examined by comparative experiments using its analogous peptides. The results showed that the fourth Glu residue is important not only for the construction of hydrogen bond pairing with m7G base but also for strengthening the stacking interaction between the Trp indole ring and m7G base. Taking account of the recognition analysis using the mutant CBP proteins by site-directed mutagenesis (Ueda, H., Iyo, H., Doi, M., Inoue, M., Ishida, T., Morioka, H., Tanaka, T., Nishikawa, S. and Uesugi, S. (1991) FEBS Lett. 280, 207-210), this cooperative interaction could be important for the recognition of mRNA cap structure.  相似文献   

8.
G Funatsu  M R Islam  Y Minami  K Sung-Sil  M Kimura 《Biochimie》1991,73(7-8):1157-1161
The amino acid sequences of eleven RIPs sequenced to date have been compared in the expectation that this would be useful in the location of functionally and/or structurally important sites of these molecules. In addition to several highly conserved hydrophobic amino acids, thirteen absolutely conserved residues have been found in ricin A-chain: Tyr21, Phe24, Arg29, Tyr80, Tyr123, Gly140, Ala165, Glu177, Ala178, Arg180, Glu208, Asn209 and Trp211. The role of these residues as well as of the C-terminal region have been discussed based on the results of chemical and enzymatic modifications, site-directed mutagenesis, and deletion studies.  相似文献   

9.
We recently reported that amino acid residues contained within a putative EF hand motif in the domain III S5-H5 region of the alpha(1B) subunit affected the relative barium:calcium permeability of N-type calcium channels (Feng, Z. P., Hamid, J., Doering, C., Jarvis, S. E., Bosey, G. M., Bourinet, E., Snutch, T. P., and Zamponi, G. W. (2001) J. Biol. Chem. 276, 5726-5730). Since this region partially overlaps with residues previously implicated in block of the channel by omega-conotoxin GVIA, we assessed the effects of mutations in the putative EF hand domain on channel block by omega-conotoxin GVIA and the structurally related omega-conotoxin MVIIA. Both of the toxins irreversibly block the activity of wild type alpha(1B) N-type channels. We find that in addition to previously identified amino acid residues, residues in positions 1326 and 1332 are important determinants of omega-conotoxin GVIA blockade. Substitution of residue Glu(1332) to arginine slows the time course of development of block. Point mutations in position Gly(1326) to either arginine, glutamic acid, or proline dramatically decrease the time constant for development of the block. Additionally, in the G1326P mutant channel activity was almost completely recovered following washout. A qualitatively similar result was obtained with omega-conotoxin MVIIA, suggesting that common molecular determinants underlie block by these two toxins. Taken together the data suggest that residue Gly(1326) may form a barrier, which controls the access of peptide toxins to their blocking site within the outer vestibule of the channel pore and also stabilizes the toxin-channel interaction.  相似文献   

10.
Two three-dimensional (3D) models of human cytochrome P450 26A1 (CYP26A1) were constructed using the programs Modeller and Sybyl-GeneFold, respectively. After refinement by molecular mechanics and molecular dynamics (MD) simulations, the two models were validated by structure analysis-validation online server. Subsequently, a flexible docking study was performed on the model constructed by GeneFold with the potent and specific inhibitor R115866 to examine the enzyme–inhibitor interactions. From the docking results, we can see R115866 interacts with amino acid residues at the active site by multiple hydrophobic interactions including the side chains of His111, Trp112, Ser115, Val116, Leu125, Ser126, Leu221, Phe222, Glu296, Phe299, Gly300, Glu303, Thr304, Pro371 and the cofactor heme. Trp112 and Thr304 form hydrogen bonds with R115866 and play important roles in stabilising the complex. This constructed CYP26A1 model may provide an opportunity to understand the action mode of the enzyme and could be useful in designing novel retinoic acid metabolism blocking agents (RAMBAs).  相似文献   

11.
Escherichia coli MutT protein hydrolyzes 8-oxo-7,8-dihydro-2′-dGTP (8-oxo-dGTP) to the monophosphate, thus avoiding the incorporation of 8-oxo-7,8-dihydroguanine (8-oxo-G) into nascent DNA. Bacterial and mammalian homologs of MutT protein share the phosphohydrolase module (MutT: Gly37→Gly59). By saturation mutagenesis of conserved residues in the MutT module, four of the 10 conserved residues (Gly37, Gly38, Glu53 and Glu57) were revealed to be essential to suppress spontaneous A:T→C:G transversion mutation in a mutT mutator strain. For the other six residues (Lys39, Glu44, Thr45, Arg52, Glu56 and Gly59), many positive mutants which can suppress the spontaneous mutation were obtained; however, all of the positive mutants for Glu44 and Arg52 either partially or inefficiently suppressed the mutation, indicating that these two residues are also important for MutT function. Several positive mutants for Lys39, Thr45, Glu56 and Gly59 efficiently decreased the elevated spontaneous mutation rate, as seen with the wild-type, hence, these four residues are non-essential for MutT function. As Lys38 and Glu55 in human MTH1, corresponding to the non-essential residues Lys39 and Glu56 in MutT, could not be replaced by any other residue without loss of function, different structural features between the two modules of MTH1 and MutT proteins are evident.  相似文献   

12.
The cytochrome c of Tetrahymena pyriformis GL (Phenoset A) had an isoelectric point of 6.5 and by sequence the following composition: Asp(7) Asn(2) Thr(4) Ser(8) Glu(6) Gln(2) Pro(7) Gly(13) Ala(13) Val(7) Met(2) Ile(5) Leu(6) Tyr(2) Phe(5) Lys(11) His(3) Trp(1) Arg(3) Cys(2) (total 109 residues). The peptides derived from the protein afforded complete overlap, so a complete sequence could be determined without reference of homologous proteins. Alignment with other mitochondrial cytochromes c required two internal deletions totalling three residues and an N-terminal region two residues longer than, and a C-terminal region one residue shorter than, the previously known limits. The sequence was the most divergent of the known mitochondrial cytochromes c, suggesting a distant relationship of ciliates to other eukaryotes. Details of the sequence data have been deposited as Supplementary Publication no. SUP 50068 (37 pages) at The British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7 BQ, U.K., from whom copies can be obtained on the terms given in Biochem. J. (1976) 153,5.  相似文献   

13.
The main role of superoxide dismutases (SODs) is to eliminate reactive oxygen species in cells and tissues. Extracellular SOD (EC-SOD/SOD3) is a major superoxide scavenger and it is located on cell surfaces and primarily in extracellular matrix, and binds heparan sulfates by its carboxyterminal portion. Human EC-SOD gene is located on chromosome 4 and comprises three exons and two introns. The SOD3 coding sequence is entirely located within exon 3 and has missense polymorphisms. The Arg213Gly mutation affects the function of the carboxyterminus and correlates with several diseases. In this work, we explored genetic variants within EC-SOD gene of subjects living in southern Italy. Four new variations were detected: one was silent mutation, while three were missense variations that give rise to amino acid substitutions at position 131 (F>C), 160 (V>L) and 202 (R>L) in the mature product. The Arg213Gly variant was not found. The missense mutations in the DNA of assayed 2400 chromosomes had frequencies of 5.34% for the F131C variation, 0.25% for the V160L variation and 0.84% for the R202L variation. The effect of these alterations on the metabolic activity and diseases remains to be further explained.  相似文献   

14.
Spontaneous chromophore biosynthesis in green fluorescent protein (GFP) is initiated by a main-chain cyclization reaction catalyzed by the protein fold. To investigate the structural prerequisites for chromophore formation, we have substituted the conserved residues Arg96, Glu222, and Gly67. Upon purification, the variants can be ordered based on their decreasing extent of chromophore maturation according to the series EGFP, E222Q, R96K, G67A, and R96M. Arg96 and Glu222 appear to play catalytic roles, whereas Gly67 is likely important in interior packing to enforce correct hydrogen bonding to Arg96. The effect of Arg96 can be partially compensated for by a lysine, but not by a methionine residue, confirming its electrophilic role. Limited trypsinolysis data suggest that protein stability is largely unaffected by the presence of the chromophore, inconsistent with the mechanical compression hypothesis. Trends in optical properties may be related to the degree of chromophore charge delocalization, which is modulated by residue 96.  相似文献   

15.
16.
Extracellular-superoxide dismutase (EC-SOD) is a secretory glycoprotein that is major SOD isozyme in extracellular fluids. We revealed the possible structure of the carbohydrate chain of serum EC-SOD with the serial lectin affinity technique. The structure is a biantennary complex type with an internal fucose residue attached to asparagine-linked N-acetyl-D-glucosamine and with terminal sialic acid linked to N-acetyllactosamine. EC-SOD in plasma is heterogeneous with regard to heparin affinity and can be divided into three fractions: A, without affinity; B, with intermediate affinity; and C, with high affinity. It appeared that this heterogeneity is not dependent on the carbohydrate structure upon comparison of EC-SOD A, B, and C. No effect of the glycopeptidase F treatment of EC-SOD C on its heparin affinity supported the results. A previous report showed that both lysine and arginine residues probably at the C-terminal end, contribute to heparin binding. Recombinant EC-SOD C treated with trypsin or endoproteinase Lys C, which lost three lysine residues (Lys-211, Lys-212, and Lys-220) or one lysine residue (Lys-220) at the C-terminal end, had no or weak affinity for the heparin HPLC column, respectively. The proteinase-treated r-EC-SOD C also lost triple arginine residues which are adjacent to double lysine residues. These results suggest that the heparin-binding site may occur on a "cluster" of basic amino acids at the C-terminal end of EC-SOD C. EC-SOD is speculated to be primarily synthesized as type C, and types A and B are probably the result of secondary modifications. It appeared that the proteolytic cleavage of the exteriorized lysine- and arginine-rich C-terminal end in vivo is a more important contributory factor to the formation of EC-SOD B and/or EC-SOD A.  相似文献   

17.
Escherichia coli signal peptidase I (SPase I) is a membrane-bound serine endopeptidase that catalyses the cleavage of signal peptides from the pre-forms of membrane or secretory proteins. Our previous studies using chemical modification and site-directed mutagenesis suggested that Trp(300) and Arg(77), Arg(222), Arg(315) and Arg(318) are important for the proper and stable conformation of the active site of SPase I. Interestingly, many of these residues reside in the C-terminal region of the enzyme. As a continuation of these studies, we investigated in the present study the effects of mutations in the C-terminal region including amino acid residues at positions from 319 to 323 by deletions and site-directed mutagenesis. As a result, the deletion of the C-terminal His(323) was shown to scarcely affect the enzyme activity of SPase I, whereas the deletion of Gly(321)-His(323) or Ile(319)-His(323) as well as the point mutation of Ile(322) to alanine was shown to decrease significantly both the activity in vitro and in vivo without a big gross conformational change in the enzyme. These results suggest a significant contribution of Ile(322) to the construction and maintenance of the proper and critical local conformation backing up the active site of SPase I.  相似文献   

18.
In the hydrolytic reaction catalyzed by an endoglucanase from a Bacillus strain (endoglucanase K), 2 of 12 Trp residues, Trp174 and Trp243, are responsible for binding of the substrate and/or for the catalysis (Kawaminami, S., Ozaki, K., Sumitomo, N., Hayashi, Y., Ito, S., Shimada, I., and Arata, Y. (1994) J. Biol. Chem. 269, 28752-28756). Here we report results of a stable isotope-aided NMR analysis of the active site of endoglucanase K, using Trp174 and Trp243 as structural probes. Hydrogen-deuterium exchange experiments performed for the NH protons of main and side chains of Trp residues revealed that Trp174 and Trp243 are located in the hydrophilic and hydrophobic microenvironments in the active site, respectively. We also carried out pH titration experiments for indole C2 proton resonances of Trp residues and measured the pH dependence of specific activities for wild-type endoglucanase K and its mutants in which Glu or Asp residues are replaced with their respective amide forms. On the basis of the results obtained from the present study, we conclude that (a) Glu130 and Asp191, which are in spatial proximity to Trp174 and Trp243 in the active site, play a crucial role in the enzymatic activity; (b) Glu130 and Asp191 interact with each other in the active site, leading to an increase in the pKa values to 5.5 for both amino acid residues; and (c) the pKa values of Glu130 and Asp191 would lead to an unusually narrow pH-activity profile of the endoglucanase K.  相似文献   

19.
ADP-ribosyl cyclase synthesizes two Ca(2+) messengers by cyclizing NAD to produce cyclic ADP-ribose and exchanging nicotinic acid with the nicotinamide group of NADP to produce nicotinic acid adenine dinucleotide phosphate. Recombinant Aplysia cyclase was expressed in yeast and co-crystallized with a substrate, nicotinamide. x-ray crystallography showed that the nicotinamide was bound in a pocket formed in part by a conserved segment and was near the central cleft of the cyclase. Glu(98), Asn(107) and Trp(140) were within 3.5 A of the bound nicotinamide and appeared to coordinate it. Substituting Glu(98) with either Gln, Gly, Leu, or Asn reduced the cyclase activity by 16-222-fold, depending on the substitution. The mutant N107G exhibited only a 2-fold decrease in activity, while the activity of W140G was essentially eliminated. The base exchange activity of all mutants followed a similar pattern of reduction, suggesting that both reactions occur at the same active site. In addition to NAD, the wild-type cyclase also cyclizes nicotinamide guanine dinucleotide to cyclic GDP-ribose. All mutant enzymes had at least half of the GDP-ribosyl cyclase activity of the wild type, some even 2-3-fold higher, indicating that the three coordinating amino acids are responsible for positioning of the substrate but not absolutely critical for catalysis. To search for the catalytic residues, other amino acids in the binding pocket were mutagenized. E179G was totally devoid of GDP-ribosyl cyclase activity, and both its ADP-ribosyl cyclase and the base exchange activities were reduced by 10,000- and 18,000-fold, respectively. Substituting Glu(179) with either Asn, Leu, Asp, or Gln produced similar inactive enzymes, and so was the conversion of Trp(77) to Gly. However, both E179G and the double mutant E179G/W77G retained NAD-binding ability as shown by photoaffinity labeling with [(32)P]8-azido-NAD. These results indicate that both Glu(179) and Trp(77) are crucial for catalysis and that Glu(179) may indeed be the catalytic residue.  相似文献   

20.
The single amino acid mutation G26R in human apolipoprotein A-I (apoA-IIOWA) leads to the formation of beta-secondary structure rich amyloid fibrils in vivo. Here we show that full-length apoA-IIOWA has a decreased lipid-binding capability, an increased amino-terminal sensitivity to protease, and a propensity to form annular protofibrils visible by electron microscopy. The molecular basis for the conversion of apolipoprotein A-I to a proamyloidogenic form was examined by electron paramagnetic resonance spectroscopy. Our recent findings [Lagerstedt, J. O., Budamagunta, M. S., Oda, M. N., and Voss, J. C. (2007) J. Biol. Chem. 282, 9143-9149] indicate that Gly26 in the native apoprotein separates a preceding beta-strand structure (residues 20-25) from a downstream largely alpha-helical region. The current study demonstrates that the G26R variant promotes a structural transition of positions 27-56 to a mixture of coil and beta-strand secondary structure. Microscopy and staining by amyloidophilic dyes suggest that this alteration extends throughout the protein within 1 week of incubation in vitro, leading to insoluble aggregates of distinct morphology. The severe consequences of the Iowa mutation likely arise from the combination of losing the contribution of the native Gly residue in terminating beta-strand propagation and the promotion of beta-structure when an Arg is introduced adjacent to the succeeding residue of identical charge and size, Arg27.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号