首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
I factors are LINE-like transposable elements in the genome of Drosophila melanogaster. They normally transpose infrequently but are activated in the germline of female progeny of crosses between males of a strain that contains complete elements, an I or inducer strain and females of a strain that does not, an R or reactive strain. This causes a phenomenon known as I-R hybrid dysgenesis. We have previously shown that the I factor promoter lies between nucleotides 1 and 30. Here we demonstrate that expression of this promoter is regulated by nucleotides 41-186 of the I factor. This sequence can act as an enhancer as it stimulates expression of the hsp7O promoter in ovaries in the absence of heat-shock. Within this region there is a site that is required for promoter activity and that is recognized by a sequence-specific binding protein. We propose that this protein contributes to the enhancer activity of nucleotides 41-186 and that reduced I factor expression in inducer strains is due to titration of this protein or others that interact with it.  相似文献   

2.
3.
4.
BS a novel LINE-like element in Drosophila melanogaster.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

5.
This is the first report on the existence in Drosophila of a protein with properties similar to those of vertebrate fibronectin that we shall refer to as Drosophila fibronectin. Rabbit antibodies against human plasma fibronectin have allowed the detection of this molecule in Drosophila haemolymph; common epitopes are shared by the two proteins. Drosophila fibronectin with a subunit mol. wt of approximately 230 kd is a glycoprotein which binds to denatured mammalian collagen. It is present throughout development and is as abundant in embryos as in larvae and adult flies. Drosophila fibronectin is differentially expressed during embryogenesis, a small amount being present before the blastoderm stage. Its concentration increases at gastrulation and reaches a steady-state value at the end of organogenesis. Drosophila fibronectin is predominantly detected by immunofluorescence on frozen sections of 16 h embryos in the extracellular spaces lying between the different tissues and organs. In mature third instar larvae, most of the staining is concentrated in fat body and imaginal discs, and the pattern strongly supports an extracellular localization of the protein. In addition, it is shown that Drosophila embryonic cells can functionally utilize vertebrate fibronectin for their spreading and differentiation. Finally, injection of antihuman plasma fibronectin antibodies in early embryos leads to the same phenotype as injection of Arg-Gly-Asp-containing peptides. This result suggests that one of the Arg-Gly-Asp-bearing protein(s) involved in gastrulation might be fibronectin.  相似文献   

6.
7.
LINE-like retrotransposons, the so-called I elements, control the system of I-R (inducer-reactive) hybrid dysgenesis in Drosophila melanogaster. I elements are present in many Drosophila species. It has been suggested that active, complete I elements, located at different sites on the chromosomes, invaded natural populations of D. melanogaster recently (1920–1970). But old strains lacking active I elements have only defective I elements located in the chromocenter. We have cloned I elements from D. melanogaster and the melanogaster subgroup. In D. melanogaster, the nucleotide sequences of chromocentral I elements differed from those on chromosome arms by as much as 7%. All the I elements of D. mauritiana and D. sechellia are more closely related to the chromosomal I elements of D. melanogaster than to the chromocentral I elements in any species. No sequence difference was observed in the surveyed region between two chromosomal I elements isolated from D. melanogaster and one from D. simulans. These findings strongly support the idea that the defective chromocentral I elements of D. melanogaster originated before the species diverged and the chromosomal I elements were eliminated. The chromosomal I elements reinvaded natural populations of D. melanogaster recently, and were possibly introduced from D. simulans by horizontal transmission.  相似文献   

8.
9.
10.
11.
We have discovered a member of a new family of copia-like transposable elements inserted into the non-transcribed spacer between two ribosomal genes (rDNA). This family, which we call 3S18, consists of at least 15 elements which are scattered throughout the Drosophila melanogaster genome. The elements of this family are approximately 6.5 kb long and have 0.5 kb terminal direct repeats. All of the elements appear to have the same restriction sites. The element is mobile as the size pattern of homologous fragments varies among different strains. In situ hybridization results confirm the scattered location and transposable qualities of 3S18. The element is not transcribed into abundant RNA.  相似文献   

12.
The Drosophila melanogaster transposable element 412 is transiently unstable in Saccharomyces cerevisiae when present on a freely replicating plasmid. The 412 element undergoes recombination to form two circular molecules, a 412 deletion plasmid and, presumably, a 412 circle. The 412 deletion plasmid contains a single long terminal repeat which most likely is the result of homologous recombination within the long terminal repeats. This recombination occurs at or shortly after transformation and is independent of both the RAD52 gene product and the Flp gene of 2 micron DNA.  相似文献   

13.
14.
15.
A 320 nucleotide repeated DNA sequence within the copia coding element of Drosophila melanogaster has been identified and characterized. This sequence has been localized by DNA-DNA hybridization and electron microscopic analysis of heteroduplexes to the approximate middle of the 5 kb copia coding region. The primary sequence of this repeated DNA has been determined. The sequence is composed of three related subunits, 35-37 nucleotides in length (A, B and C). This 105 nucleotide higher order repeat has apparently been duplicated twice to yield a complex repeated sequence, ABCA'B'C'A"B"C", which exhibits divergence among the individual subunits. This sequence is AT rich, as are the direct terminal repeats which flank the copia coding region, but does not contain any apparent homology with the terminal repeats. This repeated sequence contains three presumptive polyadenylation signals and two 25 nucleotide, imperfectly matched, inverted repeat sequences adjacent to two of the polyadenylation sequences.  相似文献   

16.
We report the purification and some of the biochemical properties of yolk protein factor I (YPF1). This protein binds to a specific site in the yolk protein 1 gene (yp1) of Drosophila melanogaster. YPF1 has been purified to 95% homogeneity and consists of a heterodimer of two subunits with molecular weights 85,000 and 69,000. The protein is highly asymmetric with a frictional ratio of 1.56 which leads to calculated dimensions of 510 x 51 A when modeled as a prolate ellipsoid of revolution. It binds the yp1 DNA site with a protein/DNA stoichiometry of 1:1. Binding to that site is essentially irreversible with a dissociation rate constant of koff less than or equal to 2 x 10(-7) s-1, which gives the complex a dissociation half-life of approximately 55 days. The measured apparent second order association rate constant is 4 x 10(8) M-1 s-1 resulting in a calculated equilibrium dissociation constant of KD less than or equal to 5 x 10(-16) M. YPF1 also has a 10(8) selectivity for the yp1 site over poly(dA).poly(dT) (KDapp = 2 x 10(-8) M(nucleotide].  相似文献   

17.
A 9.3 kb transposable element of the roo family has been found inserted 3' to the Sgs-4 glue protein gene of Drosophila. The X chromosome which carries this insert also carries wDZL, a dominant, unstable allele of the white locus caused by the insertion of the 13 kb wDZL element. Three deletions isolated from the wDZL strain have molecular breakpoints 3' to Sgs-4 that are associated with the roo element. Though the deletions eliminate much of the DNA between white and Sgs-4, none of the distal breakpoints fall at or near the wDZL element. The results suggest that this copia-like element, which is structurally similar to an integrated retrovirus, is capable of promoting chromosomal deletions.  相似文献   

18.
Genetic and molecular evidence presented in this paper demonstrate that the Mos factor for inherited mosaicism is a special copy of the transposable element mariner. Mosaicism observed in the presence of the Mos (Mosaic) factor results from a high frequency of excision of the mariner element from an insertion site near the white-eye gene in Drosophila mauritiana. The Mos factor promotes the excision of mariner elements from genomic insertion sites other than the site in wpch, and it also promotes its own loss from the genome. Putative transpositions of Mos to new genomic sites have also been observed. A copy of mariner present at a particular site in a Mos strain has been shown to be missing in derived strains in which the Mos factor has been lost, and in strains with putative transpositions. We propose that this copy of mariner is identical to the Mos factor.  相似文献   

19.
Sucrose synthase (SS), a key enzyme in plant carbohydrate metabolism, has recently been isolated from Anabaena sp. strain PCC 7119, and biochemically characterized; two forms (SS-I and SS-II) were detected (Porchia et al. 1999, Planta 210: 34–40). The present study describes the first isolation and characterization of a prokaryotic SS gene, susA, encoding SS-II from that strain of Anabaena. A 7 kbp DNA fragment containing an open reading frame (EMBL accession number AJ010639) with about 30–40% amino acid identity with plant SSs was isolated from an Anabaena subgenomic library. The putative SS gene was demonstrated to encode an SS protein by expression in Escherichia coli. The biochemical properties of the recombinant enzyme were identical to those of the enzyme purified from the cyanobacterial cells. The deduced amino acid sequence of the Anabaena SS diverged from every plant SS reported. The occurrence of SS in cyanobacteria of different taxonomic groups was investigated. The enzyme occurs in several filamentous nitrogen-fixing cyanobacteria but not in two species of unicellular, non-diazotrophic cyanobacteria. Received: 5 January 2000 / Accepted: 7 March 2000  相似文献   

20.
Transposable elements contribute significantly to plant genome evolution in myriad ways, ranging from local insertional mutations to global effects exerted on genome size through accumulation. Differential accumulation and deletion of transposable elements may profoundly affect genome size, even among members of the same genus. One example is that of Gossypium (cotton), where much of the 3-fold genome size variation is due to differential accumulation of one gypsy-like LTR retrotransposon, Gorge3. Copia and non-LTR LINE retrotransposons are also major components of the Gossypium genome, but unlike Gorge3, their extant copy numbers do not correlate with genome size. In the present study, we describe the nature and timing of transposition for copia and LINE retrotransposons in Gossypium. Our findings indicate that copia retrotransposons have been active in each lineage since divergence from a common ancestor, and that they have proliferated in a punctuated manner. However, the evolutionary history of LINEs contrasts markedly with that of the copia retrotransposons. Although LINEs have also been active in each lineage, they have accumulated in a stochastically regular manner, and phylogenetic analysis suggests that extant LINE populations in Gossypium are dominated by ancient insertions. Interestingly, the magnitude of transpositional bursts in each lineage corresponds directly with extant estimated copy number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号