首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimicrobial peptides produced by epithelial cells and neutrophils represent essential elements of innate immunity, and include the defensin and cathelicidin family of antimicrobial polypeptides. The human cathelicidin cationic antimicrobial protein-18 is an antimicrobial peptide precursor predominantly expressed in neutrophils, and its active peptide LL-37 is released from the precursor through the action of neutrophil serine proteinases. LL-37 has been shown to display antimicrobial activity against a broad spectrum of microorganisms, to neutralize LPS bioactivity, and to chemoattract neutrophils, monocytes, mast cells, and T cells. In this study we show that LL-37 activates airway epithelial cells as demonstrated by activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and increased release of IL-8. Epithelial cell activation was inhibited by the MAPK/ERK kinase (MEK) inhibitors PD98059 and U0126, by the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478, by blocking anti-EGFR and anti-EGFR-ligand Abs, and by the metalloproteinase inhibitor GM6001. These data suggest that LL-37 transactivates the EGFR via metalloproteinase-mediated cleavage of membrane-anchored EGFR-ligands. LL-37 may thus constitute one of the mediators by which neutrophils regulate epithelial cell activity in the lung.  相似文献   

2.
Human LL-37 is a multifunctional cathelicidin peptide that has shown a wide spectrum of antimicrobial activity by permeabilizing microbial membranes similar to other antimicrobial peptides; however, its molecular mechanism has not been clarified. Two independent experiments revealed LL-37 bound to membranes in the α-helical form with the axis lying in the plane of membrane. This led to the conclusion that membrane permeabilization by LL-37 is a nonpore carpet-like mechanism of action. Here we report the detection of transmembrane pores induced by LL-37. The pore formation coincided with LL-37 helices aligning approximately normal to the plane of the membrane. We observed an unusual phenomenon of LL-37 embedded in stacked membranes, which are commonly used in peptide orientation studies. The membrane-bound LL-37 was found in the normal orientation only when the membrane spacing in the multilayers exceeded its fully hydrated value. This was achieved by swelling the stacked membranes with excessive water to a swollen state. The transmembrane pores were detected and investigated in swollen states by means of oriented circular dichroism, neutron in-plane scattering, and x-ray lamellar diffraction. The results are consistent with the effect of LL-37 on giant unilamellar vesicles. The detected pores had a water channel of radius 23–33 Å. The molecular mechanism of pore formation by LL-37 is consistent with the two-state model exhibited by magainin and other small pore-forming peptides. The discovery that peptide-membrane interactions in swollen states are different from those in less hydrated states may have implications for other large membrane-active peptides and proteins studied in stacked membranes.  相似文献   

3.
The role of angiotensin II (Ang II) in the control of systemic blood pressure and volume homeostasis is well known and has been extensively studied. Recently, Ang II was suggested to also have a function in skin wound healing. In the present study, the in vivo function of Ang II in skin wound healing was investigated using Ang II type 1 receptor (AT1R) knock-out mice. Wound healing in these mice was found to be markedly delayed. Keratinocytes and fibroblasts play important roles in wound healing, and thus the effect of Ang II on the migration of these cells was examined. Ang II stimulated keratinocyte and fibroblast migration in a dose-dependent manner. It has been reported that G protein-coupled receptor (GPCR) activation induces epidermal growth factor (EGF) receptor (EGFR) transactivation through the shedding of heparin-binding EGF-like growth factor (HB-EGF). As AT1R is a GPCR, it was hypothesized that Ang II-induced keratinocyte and fibroblast migration is mediated by EGFR transactivation. Ang II induced EGFR phosphorylation, which was inhibited by an AT1R antagonist, HB-EGF neutralizing antibody, and an HB-EGF antagonist in both keratinocytes and in fibroblasts. Moreover, Ang II-induced migration of keratinocytes and fibroblasts was also prevented by these inhibitors. Taken together, these findings clearly demonstrate, for the first time, that Ang II plays an important role in skin wound healing and that it functions by accelerating keratinocyte and fibroblast migration in a process mediated by HB-EGF shedding.  相似文献   

4.
The present report provides evidence that, in A431 cells, interferon gamma (IFNgamma) induces the rapid (within 5 min), and reversible, tyrosine phosphorylation of the epidermal growth factor receptor (EGFR). IFNgamma-induced EGFR transactivation requires EGFR kinase activity, as well as activity of the Src-family tyrosine kinases and JAK2. Here, we show that IFNgamma-induced STAT1 activation in A431 and HeLa cells partially depends on the kinase activity of both EGFR and Src. Furthermore, in these cells, EGFR kinase activity is essential for IFNgamma-induced ERK1,2 activation. This study is the first to demonstrate that EGFR is implicated in IFNgamma-dependent signaling pathways.  相似文献   

5.
Proteolysis of extracellular matrix proteins by membrane-type 1 matrix metalloproteinase (MT1-MMP) plays a pivotal role in tumor and endothelial cell migration. In addition to its proteolytic activity, several studies indicate that the proinvasive properties of MT1-MMP also involve its short cytoplasmic domain, but the specific mechanisms mediating this function have yet to be fully elucidated. Having previously shown that the serum factor sphingosine 1-phosphate stimulates MT1-MMP promigratory function through a process that involves its cytoplasmic domain, we now extend these findings to show that this cooperative interaction is permissive to cellular migration through MT1-MMP-dependent transactivation of the epidermal growth factor receptor (EGFR). In the presence of sphingosine 1-phosphate, MT1-MMP stimulates EGFR transactivation through a process that is dependent upon the cytoplasmic domain of the enzyme but not its catalytic activity. The MT1-MMP-induced EGFR transactivation also involves G(i) protein signaling and Src activities and leads to enhanced cellular migration through downstream extracellular signal-regulated kinase activation. The present study, thus, elucidates a novel role of MT1-MMP in signaling events mediating EGFR transactivation and provides the first evidence of a crucial role of this receptor activity in MT1-MMP promigratory function. Taken together, our results suggest that the inhibition of EGFR may represent a novel target to inhibit MT1-MMP-dependent processes associated with tumor cell invasion and angiogenesis.  相似文献   

6.
In vascular smooth muscle cells (VSMCs), angiotensin II (AngII) induces transactivation of the EGF receptor (EGFR) which involves a metalloprotease that stimulates processing of heparin-binding EGF from its precursor. However, the identity and pharmacological sensitivity of the metalloprotease remain unclear. Here, we screened the effects of several metalloprotease inhibitors on AngII-induced EGFR transactivation in VSMCs. We found that an N-phenylsulfonyl-hydroxamic acid derivative [2R-[(4-biphenylsulfonyl)amino]-N-hydroxy-3-phenylpropinamide] (BiPS), previously known as matrix metalloprotease (MMP)-2/9 inhibitor, markedly inhibited AngII-induced EGFR transactivation, whereas the MMP-2 or -9 inhibition by other MMP inhibitors failed to block the transactivation. BiPS markedly inhibited AngII-induced ERK activation and protein synthesis without affecting AngII-induced intracellular Ca2+ elevation. VSMC migration induced by AngII was also inhibited not only by an EGFR inhibitor but also by BiPS. Thus, BiPS is a specific candidate to block AngII-induced EGFR transactivation and subsequent growth and migration of VSMCs, suggesting its potency to prevent vascular remodeling.  相似文献   

7.
Pancreatic cancer is characterized by aggressive local invasion and early metastasis formation. Active migration of the pancreatic cancer cells is essential for these processes. We have shown previously that the pancreatic cancer cells lines CFPAC1 and IMIM-PC2 show high migratory activity, and we have investigated herein the reason for this observation. Cell migration was assessed using a three-dimensional, collagen-based assay and computer-assisted cell tracking. The expression of receptor tyrosine kinases was determined by flow-cytometry and cytokine release was measured by an enzyme-linked immunoassay. Receptor function was blocked by antibodies or pharmacological enzyme inhibitors. Both cells lines express the epidermal growth factor receptor (EGFR) as well as its family-member ErbB2 and the platelet-derived growth factor receptor (PDGFR)α, whereas only weak expression was detected for ErbB3 and no expression of PDGFRβ. Pharmacological inhibition of the EGFR or ErbB2 significantly reduced the migratory activity in both cell lines, as did an anti-EGFR antibody. Interestingly, combination of the latter with an anti-PDGFR antibody led to an even more pronounced reduction. Both cell lines release detectable amounts of EGF. Thus, the high migratory activity of the investigated pancreatic cancer cell lines is due to autocrine EGFR activation and possibly of other receptor tyrosine kinases.  相似文献   

8.
Novel cancer chemotherapeutics are required to induce apoptosis by activating pro-apoptotic proteins. Both epidermal growth factor (EGF) and insulin-like growth factor (IGF) provide potent survival stimuli in many epithelia, and activation of their receptors is commonly observed in solid human tumors. Here we demonstrate that blockade of the EGF receptor by a new drug in phase III clinical trails for cancer, ZD1839, potently induces apoptosis in mammary epithelial cell lines and primary cultures, as well as in a primary pleural effusion from a breast cancer patient. We identified the mechanism of apoptosis induction by ZD1839. We showed that it prevents cell survival by activating the pro-apoptotic protein BAD. Moreover, we demonstrate that IGF transactivates the EGF receptor and that ZD1839 blocks IGF-mediated phosphorylation of MAPK and BAD. Many cancer therapies kill tumor cells by inducing apoptosis as a consequence of targeting DNA; however, the threshold at which apoptosis can be triggered through DNA damage is often different from that in normal cells. Our results indicate that by targeting a growth factor-mediated survival signaling pathway, BAD phosphorylation can be manipulated therapeutically to induce apoptosis.  相似文献   

9.
Mechanism of lipid bilayer disruption by the human antimicrobial peptide,LL-37   总被引:10,自引:0,他引:10  
LL-37 is an amphipathic, alpha-helical, antimicrobial peptide. (15)N chemical shift and (15)N dipolar-shift spectroscopy of site-specifically labeled LL-37 in oriented lipid bilayers indicate that the amphipathic helix is oriented parallel to the surface of the bilayer. This surface orientation is maintained in both anionic and zwitterionic bilayers and at different temperatures and peptide concentrations, ruling out a barrel-stave mechanism for bilayer disruption by LL-37. In contrast, electrostatic factors, the type of lipid, and the presence of cholesterol do affect the extent to which LL-37 perturbs the lipids in the bilayer as observed with (31)P NMR. The (31)P spectra also show that micelles or other small, rapidly tumbling membrane fragments are not formed in the presence of LL-37, excluding a detergent-like mechanism. LL-37 does increase the lamellar to inverted hexagonal phase transition temperature of both PE model lipid systems and Escherichia coli lipids, demonstrating that it induces positive curvature strain in these environments. These results support a toroidal pore mechanism of lipid bilayer disruption by LL-37.  相似文献   

10.
11.
Candida albicans is amajor fungal pathogen in humans. Antimicrobial peptides (AMPs) are critical components of the innate immune response in vertebrates and represent the first line of defense against microbial infection. LL-37 is the only member of the human family of cathelicidin AMPs and is commonly expressed by various tissues and cells, including surfaces of epithelia. The candidacidal effects of LL-37 have been well documented, but the mechanisms by which LL-37 kills C. albicans are not completely understood. In this study, we examined the effects of LL-37 on cell wall and cellular responses in C. albicans. Using transmission electron microscopy, carbohydrate analyses, and staining for β-1,3-glucan, changing of C. albicans cell wall integrity was detected upon LL-37 treatment. In addition, LL-37 also affected cell wall architecture of the pathogen. Finally, DNA microarray analysis and quantitative PCR demonstrated that sub-lethal concentrations of LL-37 modulated the expression of genes with a variety of functions, including transporters, regulators for biological processes, response to stress or chemical stimulus, and pathogenesis. Together, LL-37 induces complex responses in C. albicans, making LL-37 a promising candidate for use as a therapeutic agent against fungal infections.  相似文献   

12.
新颖的内含肽介导PHB纯化蛋白体系,是一种高效表达、自动切割、纯化方便、费用低廉的蛋白表达纯化体系,有利于蛋白规模化纯化。本研究选用对原核细胞具有毒害作用的小肽--人源抗菌肽LL-37作为纯化对象,通过基因工程技术,构建内含肽介导PHB纯化人源抗菌肽LL-37体系,并利用该体系纯化LL-37。研究结果表明,本研究构建的内含肽介导PHB纯化人源抗菌肽LL-37体系可高效表达LL-37融合蛋白,利用构建的纯化体系能对目的蛋白进行纯化。  相似文献   

13.
Numerous external stimuli, including G protein-coupled receptor agonists, cytokines, growth factors, and steroids activate mitogen-activated protein kinases (MAPKs) through phosphorylation of the epidermal growth factor receptor (EGF-R). In immortalized hypothalamic neurons (GT1-7 cells), agonist binding to the gonadotropin-releasing hormone receptor (GnRH-R) causes phosphorylation of MAPKs that is mediated by protein kinase C (PKC)-dependent transactivation of the EGF-R. An analysis of the mechanisms involved in this process showed that GnRH stimulation of GT1-7 cells causes release/shedding of the soluble ligand, heparin binding epidermal growth factor (HB-EGF), as a consequence of metalloprotease activation. GnRH-induced phosphorylation of the EGF-R and, subsequently, of Shc, ERK1/2, and its dependent protein, p90RSK-1 (p90 ribosomal S6 kinase 1 or RSK-1), was abolished by metalloprotease inhibition. Similarly, blockade of the effect of HB-EGF with the selective inhibitor CRM197 or a neutralizing antibody attenuated signals generated by GnRH and phorbol 12-myristate 13-acetate, but not those stimulated by EGF. In contrast, phosphorylation of the EGF-R, Shc, and ERK1/2 by EGF and HB-EGF was independent of PKC and metalloprotease activity. The signaling characteristics of HB-EGF closely resembled those of GnRH and EGF in terms of the phosphorylation of EGF-R, Shc, ERK1/2, and RSK-1 as well as the nuclear translocation of RSK-1. However, neither the selective Src kinase inhibitor PP2 nor the overexpression of negative regulatory Src kinase and dominant negative Pyk2 had any effect on HB-EGF-induced responses. In contrast to GT1-7 cells, human embryonic kidney 293 cells expressing the GnRH-R did not exhibit metalloprotease induction and EGF-R transactivation during GnRH stimulation. These data indicate that the GnRH-induced transactivation of the EGF-R and the subsequent ERK1/2 phosphorylation result from ectodomain shedding of HBEGF through PKC-dependent activation of metalloprotease(s) in neuronal GT1-7 cells.  相似文献   

14.
Paralytic peptide (PP) activates innate immunity of silkworm Bombyx mori, inducing production of anti-microbial peptides (AMPs) and phagocytosis-related proteins; however the signal pathways of PP-dependent immune responses are not clear. In present study, we characterized BmE cells as a PP-responsive cell line by examining the expression of AMP genes and activation of p38 mitogen-activated protein kinase (p38 MAPK) under PP stimulation, and we also found PP directly binds to BmE cell membrane. Then we found that PP-dependent expression of AMP genes is suppressed by tyrosine kinase inhibitor (genistein) both in BmE cells and in fat body of silkworm larvae. Moreover, the specific tyrosine kinase epidermal growth factor receptor (EGFR) inhibitor (AG1478) attenuates PP-induced expression of AMP genes in BmE cells and fat body of silkworm and RNA interference (RNAi) to BmEGFR also suppresses PP-induced expression of AMP genes. Furthermore, the PP-induced p38 MAPK phosphorylation is inhibited by AG1478. Our results suggest that BmE cells can be used as a cell model to investigate the signal pathway of PP-dependent humoral immune response and receptor tyrosine kinase EGFR/p38 MAPK pathway is involved in the production of AMPs induced by PP.  相似文献   

15.
Hepatocyte growth factor (HGF) is a potent inducer of motility in epithelial cells. Since we have previously found that activation of the epidermal growth factor receptor (EGFR) is an absolute prerequisite for induction of motility of corneal epithelial cells after wounding, we investigated whether induction of motility in response to HGF is also dependent on activation of the EGFR. We now report that HGF induces transactivation of the EGFR in an immortalized line of corneal epithelial cells, in human skin keratinocytes, and in Madin-Darby canine kidney cells. EGFR activation is unconditionally required for induction of motility in corneal epithelial cells, and for induction of a fully motile phenotype in Madin-Darby canine kidney cells. Activation of the EGFR occurs through amphiregulin and heparin-binding epidermal growth factor-like growth factor. Early after HGF stimulation, blocking EGFR activation does not inhibit extracellular-signal regulated kinase 1/2 (ERK1/2) activation by HGF, but the converse is seen after approximately 1 h, indicating the existence of EGFR-dependent and -independent routes of ERK1/2 activation. In summary, HGF induces transactivation of the EGFR in epithelial cells, and this is a prerequisite for induction of full motility.  相似文献   

16.
LL-37 is a cationic, amphipathic alpha-helical antimicrobial peptide found in humans that kills cells by disrupting the cell membrane. To disrupt membranes, antimicrobial peptides such as LL-37 must alter the hydrophobic core of the bilayer. Differential scanning calorimetry and deuterium ((2)H) NMR experiments on acyl chain perdeuterated lipids demonstrate that LL-37 inserts into the hydrophobic region of the bilayer and alters the chain packing and cooperativity. The results show that hydrophobic interactions between LL-37 and the hydrophobic acyl chains are as important for the ability of this peptide to disrupt lipid bilayers as its electrostatic interactions with the polar headgroups. The (2)H NMR data are consistent with the previously determined surface orientation of LL-37 (Henzler Wildman, K. A., et al. (2003) Biochemistry 42, 6545) with an estimated 5-6 A depth of penetration of the hydrophobic face of the amphipathic helix into the hydrophobic interior of the bilayer. LL-37 also alters the material properties of lipid bilayers, including the area per lipid, hydrophobic thickness, and coefficient of thermal expansion in a manner that varies with lipid type and temperature. Comparison of the effect of LL-37 on 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC-d(31)) and 1,2-dimyristoyl-phosphatidylcholine (DMPC-d(54)) at different temperatures demonstrates the importance of bilayer order in determining the type and extent of disordering and disruption of the hydrophobic core by LL-37. One possible explanation, which accounts for both the (2)H NMR data presented here and the known surface orientation of LL-37 under identical conditions, is that bilayer order influences the depth of insertion of LL-37 into the hydrophobic/hydrophilic interface of the bilayer, altering the balance of electrostatic and hydrophobic interactions between the peptide and the lipids.  相似文献   

17.
Cross-communication between different signaling systems allows the integration of the great diversity of stimuli that a cell receives under varying physiological situations. In this paper we have explored the possibility that tumor necrosis factor (TNF) receptor signal cross-talks with epidermal growth factor (EGF) receptor signal on the nuclear factor-kappa B (NF-kappa B) activation pathway. We have demonstrated that overexpression of the EGF receptor (EGFR) in NIH3T3 cells significantly enhances TNF-induced NF-kappa B-dependent luciferase activity even without EGF, that EGF treatment has a synergistic effect on the induction of the reporter activity, and that this enhancement is suppressed by AG1478, EGFR-specific tyrosine kinase inhibitor. We also have shown that TNF induces tyrosine phosphorylation and internalization of the overexpressed EGFR in NIH3T3 cells and the endogenously expressed EGFR in A431 cells and that the transactivation by TNF is suppressed by N-acetyl-l-cysteine or overexpression of an endogenous reducing molecule, thioredoxin, but not by phosphatidylinositol 3-kinase inhibitors and protein kinase C inhibitor. Taken together, this evidence strongly suggests that EGFR transactivation by TNF, which is regulated in a redox-dependent manner, is playing a pivotal role in TNF-induced NF-kappa B activation.  相似文献   

18.
Human acidic fibroblast growth factor (haFGF) stimulates repair of delayed healing which still remains a tremendously world-wide issue. However, most of the patients with delayed healings have to face another creeping problem - microbial infection, which is one of the most frequent complications that still lead to wound healing failure. LL-37/hCAP-18 is the only cathelicidin-derived antimicrobial peptide found in human with a wide range of antimicrobial activities. In the present study, a novel hybrid protein combining LL-37 with haFGF was designed. The DNA sequence encoding recombination fusion protein LL-37-haFGF was subcloned into the pET-21b vector for protein expression in Escherichia coli strain BL21 (DE3). The recombinant protein was expressed as a His-tagged protein and purified using a combination of Ni affinity and CM-Sepharose chromatography at a purity of 95.43% as detected by RP-HPLC and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Antimicrobial activity assays showed that the purified LL-37-haFGF had improved antimicrobial activities in vitro compared with LL-37. Methylthiazoletetrazolium (MTT) assay showed that the purified LL-37-haFGF also had a distinct mitogenic activity in NIH 3T3 cells. These data suggests the recombinant protein LL-37-haFGF has pharmaceutical potential for applications in wound healing.  相似文献   

19.

Background

Periodontitis i.e. inflammation of the periodontium is a multifactorial disease. Antimicrobial peptides (AMPs) which demonstrate a broad-spectrum of activity against varied number of bacteria, fungi, viruses, and parasites, and cancerous cells have been linked to periodontitis. The AMPs even possess the caliber of immunomodulation, and are significantly responsive to innate immuno-stimulation and infections. LL-37 plays a salubrious role by preventing and in treatment of chronic forms of periodontitis.

Objective

In the present work we will review the role of antimicrobial peptide LL-37 in periodontitis.

Methods

A systematic search was carried out from the beginning till August, 2016 using the Pubmed search engine. The keywords included “LL-37,” “periodontitis,” “Papillon–Lefevre syndrome,” “Morbus Kostmann,” “Haim-Munk syndrome” along with use of Boolean operator “and.”

Results

The search resulted in identifying 67 articles which included articles linking LL-37 with periodontitis, articles on Papillon–Lefevre syndrome, Morbus Kostmann, Haim-Munk syndrome, LL-37 and periodontitis and articles on pathogenicity of periodontitis.

Conclusion

The literature search concluded that LL-37 plays a pivotal role in preventing and treatment of severe form of periodontitis.
  相似文献   

20.
Keratinocyte proliferation and migration are essential to cutaneous wound healing and are, in part, mediated in an autocrine fashion by epidermal growth factor receptor (EGFR)-ligand interactions. EGFR ligands are initially synthesized as membrane-anchored forms, but can be processed and shed as soluble forms. We provide evidence here that wound stimuli induce keratinocyte shedding of EGFR ligands in vitro, particularly the ligand heparin-binding EGF-like growth factor (HB-EGF). The resulting soluble ligands stimulated transient activation of EGFR. OSU8-1, an inhibitor of EGFR ligand shedding, abrogated the wound-induced activation of EGFR and caused suppression of keratinocyte migration in vitro. Soluble EGFR-immunoglobulin G-Fcgamma fusion protein, which is able to neutralize all EGFR ligands, also suppressed keratinocyte migration in vitro. The application of OSU8-1 to wound sites in mice greatly retarded reepithelialization as the result of a failure in keratinocyte migration, but this effect could be overcome if recombinant soluble HB-EGF was added along with OSU8-1. These findings indicate that the shedding of EGFR ligands represents a critical event in keratinocyte migration, and suggest their possible use as an effective clinical treatment in the early phases of wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号