首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Summary 1. To understand better the mechanisms which govern the sensitivity of secretory vesicles to a calcium stimulus, we compared the abilities of injected chromaffin granule membranes and of endogenous cortical granules to undergo exocytosis inXenopus laevis oocytes and eggs in response to cytosolic Ca2+. Exocytosis of chromaffin granule membranes was detected by the appearance of dopamine--hydroxylase of the chromaffin granule membrane in the oocyte or egg plasma membrane. Cortical granule exocytosis was detected by release of cortical granule lectin, a soluble constituent of cortical granules, from individual cells.2. Injected chromaffin granule membranes undergo exocytosis equally well in frog oocytes and eggs in response to a rise in cytosolic Ca2+ induced by incubation with ionomycin.3. Elevated Ca2+ triggered cortical granule exocytosis in eggs but not in oocytes.4. Injected chromaffin granule membranes do not contribute factors to the oocyte that allow calcium-dependent exocytosis of the endogenous cortical granules.5. Protein kinase C activation by phorbol esters stimulates cortical granule exocytosis in bothXenopus laevis oocytes andX. laevis eggs (Bement, W. M., and Capco, D. G.,J. Cell Biol. 108, 885–892, 1989). Activation of protein kinase C by phorbol ester also stimulated chromaffin granule membrane exocytosis in oocytes, indicating that although cortical granules and chromaffin granule membranes differ in calcium responsiveness, PKC activation is an effective secretory stimulus for both.6. These results suggest that structural or biochemical characteristics of the chromaffin granule membrane result in its ability to respond to a Ca2+ stimulus. In the oocytes, cortical granule components necessary for Ca2+-dependent exocytosis may be missing, nonfunctional, or unable to couple to the Ca2+ stimulus and downstream events.  相似文献   

2.
Stimulation-induced chromaffin cell cortical F-actin disassembly allows the movement of vesicles towards exocytotic sites. Scinderin (Sc), a Ca2+-dependent protein, controls actin dynamics. Sc six domains have three actin, two PIP2 and two Ca2+-binding sites. F-actin severing activity of Sc is Ca2+-dependent, whereas Sc-evoked actin nucleation is Ca2+-independent. Sc domain role in secretion was studied by co-transfection of human growth hormone (hGH) reporter gene and green fluorescent protein (GFP)-fusion Sc constructs. Cells over-expressing actin severing Sc1-6 or Sc1-2 (first and second actin binding sites) constructs, increased F-actin disassembly and hGH release upon depolarization. Over-expression of nucleating Sc5-6, Sc5 or ScABP3 (third actin site) constructs decreased F-actin disassembly and hGH release upon stimulation. Over-expression of ScL5-6 or ScL5 (lack of third actin site) produced no changes. During secretion, actin sites 1 and 2 are involved in F-actin severing, whereas site 3 is responsible for nucleation (polymerization). Sc functions as a molecular switch in the control of actin (disassembly left arrow over right arrow assembly) and release (facilitation left arrow over right arrow inhibition). The position of the switch (severing left arrow over right arrow nucleation) may be controlled by [Ca2+]i. Thus, increase in [Ca2+]i produced by stimulation-induced Ca2+ entry would increase Sc-evoked cortical F-actin disassembly. Decrease in [Ca2+]i by either organelle sequestration or cell extrusion would favor Sc-evoked actin nucleation.  相似文献   

3.
Assays for real-time investigation of exocytosis typically measure what is released from the granule. From this, inferences are made about the dynamics of membrane remodeling as fusion progresses from start to finish. We have recently undertaken a different approach to investigate the fusion process, by focusing not primarily on the granule, but rather its partner in exocytosis - the plasma membrane. We have been guided by the idea that biochemical interactions between the granule and plasma membranes before and during fusion, cause changes in membrane conformation. To enable study of membrane conformation, a novel imaging technique was developed combining polarized excitation of an oriented membrane probe 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (diI) with total internal reflection fluorescence microscopy (pTIRFM). Because this technique measures changes in membrane conformation (or deformations) directly, its usefulness persists even after granule cargo reporter (catecholamine, or protein), is no longer present. In this mini-review, we first summarize the workings of pTIRFM. We then discuss the application of the technique to investigate deformations in the membrane preceding fusion, and later, during fusion pore expansion. Finally, we discuss how expansion of the fusion pore may be regulated by the GTPase activity of dynamin.  相似文献   

4.
Summary Synexin (annexin VII) is a Ca2+- and phospholid-binding protein which has been proposed to play a role in Ca2+-dependent membrane fusion processes. Using a monoclonal antibody against synexin, Mab 10E7, and immunogold, we carried out a semiquantitative localization study of synexin in bovine adrenal medullary chromaffin granules, and in resting and nicotine-stimulated adrenal chromaffin cells. Isolated chromaffin granules contained very little synexin, whereas chromaffin granules aggregated with synexin (24 g/mg) and Ca2+ (1 mM) clearly showed synexin-associated immunogold particles in the vicinity of the granule membrane (1.88 gold particles per granule profile). In isolated, cultured adrenal chromaffin cells, synexin was present in the nucleus (5.5 particles/m2) and in the cytosol (5.3 particles/m2), but mainly around the granule membrane in the granular cell area (11.7 particles/m2). During the active phase of cholinergically stimulated catecholamine secretion, the amount of synexin label was reduced by 33% in the nucleus, by 23% in the cytosol, and by 51% in the granule area. The plasma membrane contained a small amount of synexin, which did not significantly change upon stimulation of the cells. We conclude that synexin is involved in the secretory process in chromaffin cells.  相似文献   

5.
Glutathione S-transferase (GST) from Schistosoma japonicum, which is widely used for the production of fusion proteins in the cytoplasm of Escherichia coli, was employed as a functional fusion module that effects dimer formation of a recombinant protein and confers enzymatic reporter activity at the same time. For this purpose GST was linked via a flexible spacer to the C-terminus of the thiol-protease inhibitor cystatin, whose binding properties for papain were to be studied. The fusion protein was secreted into the bacterial periplasm by means of the OmpA signal peptide to ensure formation of the two disulfide bonds in cystatin. The formation of wrong crosslinks in the oxidizing milieu was prevented by replacing three of the four exposed cysteine residues in GST. Using the tetracycline promoter for tightly controlled gene expression the soluble fusion protein could be isolated from the periplasmic protein fraction. Purification to homogeneity was achieved in one step by means of an affinity column with glutathione agarose. Alternatively, the protein was isolated via streptavidin affinity chromatography after the Strep-tag had been appended to its C terminus. The GST moiety of the fusion protein was enzymatically active and the kinetic parameters were determined using glutathione and 1-chloro-2,4-dinitrobenzene as substrates. Furthermore, strong binding activity for papain was detected in an ELISA. The signal with the cystatin-GST fusion protein was much higher than with cystatin itself, demonstrating an avidity effect due to the dimer formation of GST. The quaternary structure was further confirmed by chemical crosslinking, which resulted in a specific reaction product with twice the molecular size. Thus, engineered GST is suitable as a moderately sized, secretion-competent fusion partner that can confer bivalency to a protein of interest and promote detection of binding interactions even in cases of low affinity.  相似文献   

6.
In this report, we examined the gene expression related to carotenoid transport for a silkworm F1 hybrid with yellow cocoon generated by crossing two white-cocoon strains, Qiubai and 12-260. Our results showed that, in Qiubai, Cameo2, a transmembrane protein gene belonging to the CD36 family genes, was expressed normally in the silk gland, but no intact carotenoid-binding protein (CBP) mRNA (only the truncated CBP mRNA) was detected in the midgut. In 12-260, we detected the intact CBP mRNA expression in the midgut, but no Cameo2 expression in the silk gland. Regarding the F1 hybrid from crossing Qiubai and 12-260, both Cameo2 and intact CBP mRNA expressed normally in the silk gland and midgut. HPLC detection confirmed that in the F1 hybrid the carotenoids could be absorbed from dietary mulberry leaves through the midgut and transferred to silk gland via the hemolymph, which eventually colored cocoons into yellow. We also identified four CBP mRNA isoforms expressed in the midgut of the F1 hybrid, subsequently named as variants 5–8. Our results provide further evidences for the roles of Cameo2 and CBP in the formation of yellow cocoon of silkworm.  相似文献   

7.
Proteins that pass through the periplasm in an unfolded state are highly sensitive to proteolysis and aggregation and, therefore, often require protection by chaperone-like proteins. The periplasm of Gram-negative bacteria is well equipped with ATP-independent chaperones and folding catalysts, including peptidyl-prolyl isomerases (PPIases). The filamentous hemagglutinin of Bordetella pertussis, which is secreted by the two-partner secretion pathway, crosses the periplasm in an unfolded conformation. By affinity chromatography, we identified a new periplasmic PPIase of the parvulin family, Par27, which binds to an unfolded filamentous hemagglutinin fragment. Par27 differs from previously characterized bacterial and eukaryotic parvulins. Its central parvulin-like domain is flanked by atypical N- and C-terminal extensions that are found in a number of putative PPIases present mostly in β proteobacteria. Par27 displays both PPIase and chaperone activities in vitro. In vivo, Par27 might function as a general periplasmic chaperone in B. pertussis.  相似文献   

8.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号