首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Rats infected orally with Trichinella spiralis developed an immunity that was induced by and expressed against separate phases of the parasite's enteral life cycle. Infectious muscle larvae generated an immune response (rapid expulsion) that was directed against the very early intestinal infection and resulted in the expulsion of worms within 24 hr. This response eliminated more than 95% of worms in an oral challenge inoculum. Developing larvae (preadults) also induced an immune response that was expressed against adult worms. The effect on adults was dependent upon continuous exposure of worms to the immune environment throughout their enteral larval development. Immunity induced by preadult T. spiralis was not expressed against adult worms transferred from nonimmune rats. While adult worms were resistant to the immunity engendered by preadults they induced an efficient immunity that was autospecific. Both “preadult” and “adult” immunities were expressed in depression of worm fecundity as well as in the expulsion of adults from the gut. However, the two reactions differed in respect to their kinetics and their efficiency against various worm burdens. Preadult immunity was directed mainly against fecundity whereas adult immunity favored worm expulsion. All responses (rapid expulsion, preadult and adult immunity, and antifecundity) acted synergistically to produce sterile immunity against challenge infections of up to 5000 muscle larvae. These findings indicate that the host protective response to T. spiralis is a complex, multifactorial process that operates sequentially and synergistically to protect the host against reinfection.  相似文献   

2.
Trichinella spiralis: acquired immunity in swine   总被引:5,自引:0,他引:5  
The ability of domestic pigs to develop protective immunity to Trichinella spiralis in response to inoculation with different doses of muscle larvae was assessed. Adult worms developing from the inoculations of 112, 500, and 10,000 larvae were expelled from the intestine about 6 weeks after inoculation. Inoculation with 25,000 larvae, however, resulted in more rapid intestinal worms expulsion, indicating that gut expulsion is dose dependent. Secondary expulsion also tended to be dependent upon primary infection level. Pigs initially inoculated with 500 to 10,000 larvae expelled the challenge infection of adult worms after 22 to 25 days; in contrast, infection by inoculation of only 112 larvae failed to induce significant enchanced gut expulsion of the challenge infection intestinal worms. However, all primary infection levels, including inoculation with 112 larvae, induced nearly absolute resistance to the muscle establishment of larvae from challenge adult worms. The fecundity of female worms recovered from immune pigs was reduced 75% in comparison to controls. These results show that, in contrast to some host species, very rapid gut expulsion does not occur in domestic swine. Yet, immune responses at the gut level are important, perhaps responsible for much of the inhibition reflected as reduction in the establishment of muscle larvae.  相似文献   

3.
Chemotaxis of rat peritoneal cells, of which the eosinophil was the predominant migratory cell type, toward incubates of Trichinella spiralis was studied using a modified Boyden chamber. Excysted muscle larvae, preadults, and adults were incubated in a buffered medium for 20 hr at 37 C. Worms were incubated alone or with serum or spleen cells, or both, from immune and nonimmune rats. Incubates of worm stages alone possessed no chemotactic activity as compared with incubation medium as a negative control and zymosan-activated serum as a positive control. Both normal and immune sera tested alone stimulated cell migration to the same degree. Incubates of spleen cells from either normal or immunized hosts did not show chemotactic activity. Chemotaxis caused by normal and immune sera were not altered by incubation with homologous spleen cells. Addition of larva, preadults, and adult worms to sera, however, enhanced chemotactic activity over sera alone. Chemotaxis caused by larvae plus immune sera was significantly greater than that stimulated by larvae plus normal sera. This difference decreased when preadults were substituted for larvae and was not observed when adult worms were used. Reversal of the chemical gradients showed that active cell migration caused by various incubates was due to Chemotaxis.  相似文献   

4.
Appropriately immunized mice display a response that is biologically equivalent to rat rapid expulsion. Only two inbred strains (NFRN and NFSN derived from NIH Swiss mice) have been shown to respond in this manner. Mice of the Balbc, CBA, AHe, C3H, SJL, or C57Bl strains are “nonresponders” which require approximately twice as much intestinal exposure (in days) to Trichinella spiralis to elicit a response half as effective. Genetically, the responder is dominant, autosomal, and does not appear to be linked to the MHC. The characteristics of mouse and rat rapid expulsion of T. spiralis are not identical but share these features: initial rejection within 24 hr of challenge; a rejection efficiency >90%, from 1 to 5 weeks after the primary; induction of response does not require exposure to the complete infection; rapid expulsion is immunologically specific for preadults; adult worms are resistant. While a genetic basis for responsiveness exists in mice there is, as yet, no evidence for genetic control in rats. In both mice and rats, rapid expulsion is distinguished from the intestinal hyperreactivity associated with rejection of the primary infection by the kinetics and amplitude of the rejection of transplanted adult worms.  相似文献   

5.
Rats infected with Trichinella spiralis for the first week of the enteral infectious cycle displayed a strong rapid expulsion reaction during a challenge infection. The response was induced with equal facility in animals given low or high immunizing doses of infectious larvae (500 to 5000 larvae). Large challenge infections resulted in a 10–15% reduction in the efficiency of rejection as assessed 24 hr after challenge. Rats became primed to express rapid expulsion within the first week of primary infection whether the infection remained patent or not. However, maximum effectiveness was not realized until the second week after the initial infection. Once induced, the capacity to express rapid expulsion persisted for 6 weeks after the primary infection. Immunized hosts were capable of resisting two challenge infections spaced by periods of from 12 to 72 hr. This finding suggests that a mediator is not consumed by the initial response.  相似文献   

6.
Analysis of the early stages of a challenge infection with Strongyloides ratti has shown that protection is expressed against the developing third-stage larval worms (L3) and prevents the maturation to adulthood of most larvae. Challenge after an immunizing infection that was restricted to the parenteral L3 migratory phase showed that some 10–40% of overall protection could be ascribed to systemic antilarval immunity. Some larvae were trapped in the skin at the site of injection whereas others failed to migrate to the head and lung of immune rats. Larvae arriving in the intestine at Days 3, 4, and 5 did not persist beyond Day 7 and 8. Studies using [75Se]methionine-labeled L3 showed a significant increase in fecal label in rats immunized by a complete infection. This loss did not occur to the same extent in rats immunized only with parenteral larvae. Significant rejection of worms transplanted to the intestine also indicated intestinal protection. The possible existence of large numbers of worms in a state of “arrested development” was excluded by their failure to appear after cortisone treatment and the absence of worm accumulation in radiolabeling studies. It is concluded that at least two responses operate against larval S. ratti, one is systemic and the other operates in the intestine against larvae in a manner that resembles the “rapid expulsion” rejection of Trichinella spiralis in immune rats.  相似文献   

7.
Four layers are present on the surface of infective larvae of Trichinella spiralis isolated from host muscle in pepsin-HCl. Trypsin treatment of pepsin-HCl isolated worms caused partial degradation and removal of large patches of the two outer surface layers. Following exposure to bile, only traces of the outer layers remained on the worms surface. These changes in the worm surface were accompanied by a shift from Type I behavior, typical of pepsin-HCl isolated larvae, to Type II behavior, (snakelike) following exposure to either trypsin or bile. Worm behavior was also temperature dependent. Type I behavior was typical of worms maintained at room temperature regardless of treatment, while Type II behavior displayed by worms held at 37 C was treatment dependent. The absorption of in vitro glucose or beta-methyl-D-glucoside was lowest in pepsin-HCl isolated first stage infective larvae, significantly higher in trypsin treated worms and greatest in worms following exposure to bile. Sugar uptake by worms isolated from the host small intestine after 1 hr of enteral infection was similar to that seen in worms isolated from host muscle in pepsin-HCl. Sugar uptake in vitro in worms 2 hr following enteral infection was similar to worms following exposure to bile. The highest levels of sugar absorption in vitro occurred in worms which had resided in the small intestine for 3 hr. The lowest rates of incorporation of label into worm tissues was seen in 1 hr enteral and pepsin-HCl isolated worms. Infective larvae treated with trypsin or bile incorporated significantly greater amounts of label than the two former groups. The highest levels of incorporation of label into worm tissues was seen in 3 hr enteral worms. These findings support the view that trypsin, bile, and temperature serve as environmental cues which lead to alteration of the parasite's behavioral and nutritional status.  相似文献   

8.
The super-infecting dose produced a marked rise in gastric pH in all sheep from the 3rd day after administration of larvae. Expulsion of the existing population of adult worms may have begun on the 4th day but was still only completed in 3/6 sheep on the 5th day. The larvae caused extensive damage in the individual glands which they parasitised. Very few of the 106 larvae survived for 27 days and only in 1/8 sheep had they developed beyond early 4th stage at 27 days. Extensive histological changes were seen in the fundic mucosa beginning as early as 2 days after the superinfection. While the pH change preceded expulsion of the adults and was consistent in its timing, the timing of the expulsion was irregular. This throws doubt on the hypothesis that the change in physico-chemical conditions produced by the superinfecting larvae is the only cause of the expulsion of the adult worms.  相似文献   

9.
Serum antibodies in suspected angiostrongyliasis patient were detected by ELISA. The antibody titre was 1:51,200 in the serum and 1:6,400 in CSF with preadult A. cantonensis antigen. Other tests like AGD and CIEP failed to show any positive reaction with both preadult and adult worm antigens. Experimental infection with 100 A. cantonensis larvae in albino rats indicated positive CIEP reaction in serum from the day 5 to 375 after infection. No precipitin line was seen on the other hand, in AGD during observation period. Different rat groups infected with larval doses of 100, 500, 2,000, and 5,000 showed positive CIEP reaction, on the 21st day of infection when preadult worms were seen in CNS. There was no CIEP reaction when a low dose of 15 larvae was used. Cerebral fluid of rats infected with heavy dose of 5,000 larvae showed positive CIEP reaction on the 21st day.  相似文献   

10.
Adult H. polygyrus are capable of surviving for many months after primary exposure of mice to infective larvae, raising the possibility that worms of this species have inherent resistance to intestinal immune responses. Accordingly experiments were carried out to determine whether H. polygyrus are resistant to the inflammatory changes elicited during the acute phase of the intestinal response to Trichinella spiralis. Adult worms were expelled from mice when their presence coincided with the most intense phase of inflammation elicited by T. spiralis. The effect was dose-dependent with more intense T. spiralis challenge resulting in a correspondingly greater loss of H. polygyrus. Even the less pathogenic species T. pseudospiralis elicited a response of sufficient intensity in NIH mice to cause the expulsion of H. polygyrus from concurrently infected animals. Tissue larval stages of H. polygyrus were protected from expulsion by their location deep in the intestinal walls and the maximum detrimental effect against H. polygyrus was observed during the adult phase or during the establishment of L3 larvae. Acceleration of the response to T. spiralis in immune challenged mice resulted in earlier loss of H. polygyrus. When the expulsion of T. spiralis was delayed (e.g. from slow responder C57BL/10 mice) the loss of H. polygyrus took place correspondingly later. These experiments demonstrate unequivocally that mouse strains which normally tolerate chronic infections with H. polygyrus have the capacity to mount intestinal inflammatory responses of sufficient vigour to remove the worms but that this potential is not normally realized. However, the observation that some H. polygyrus always survived even when the response induced by T. spiralis was of the rapid secondary type suggests that the parasites are resilient in the face of the inflammatory response capable of removing most of the worms. It is suggested that in addition to the immunomodulatory strategy employed by adult worms to prevent the intestinal response being elicited, the worms have a second line of defence which is reflected in their resilience to responses which they have been unable to prevent.  相似文献   

11.
The intestinal parasitic nematode Nippostrongylus brasiliensis is expelled rapidly from the rat in reinfection challenge compared with that of the primary infection owing to the host defense mechanisms raised against the pre-intestinal- and intestinal-stage larvae. We examined the relationship between the mucin alterations in airway and jejunal mucosae and the worm expulsion after third-stage larva reinfection. When rats had been inoculated with fourth-stage larvae and immunized with only the intestinal-stage worms for more than 8 days, the challenge larvae were expelled during the intestinal stage along with a rapid increase of the specific sialomucin in jejunal mucosa, without any effect on the bronchial mucus. When rats had been infected with third-stage larvae and immunized with only the pre-intestinal stage larvae by killing with antihelminthic, the challenge larvae were rejected during the pre-intestinal stage along with marked goblet cell hyperplasia and Muc5AC mucin hyperproduction on the bronchial mucosa, but not as a result of jejunal mucin alteration. Taking these finding together, immunization with pre-intestinal- and intestinal-stage worms independently increases the airway and intestinal goblet cell mucins, respectively, and in both cases, the mucin alterations may contribute to rapid worm expulsion upon reinfection.  相似文献   

12.
Gastrointestinal nematodes require energy for active establishment in the gut against intestinal flow and peristaltic motion. In this study we employed CellTiter-Glo Luminescent Cell Viability Assay to measure the ATP value of individual adult Nippostrongylus brasiliensis during the course of immune-mediated expulsion from the small intestine in rats. The ATP values of adult worms taken from the lumen of the distal small intestine were lower than worms collected from the lumen of the proximal small intestine. Moreover, values from worms in the lumen of the proximal small intestine were lower than those from worms in the mucosa, the preferred site of adult N. brasiliensis. The reduction of ATP values in worms from each region was observed not only at expulsion phase, but also at established phases of the infection suggesting that energy metabolism of the parasites is independent of host immune response. When adult worms with low ATP values on day 12 post-infection were implanted surgically into the small intestine of na?ve rats, the worms re-established in recipients and completely restored the ATP values. Short in vitro culture of adult worms under low oxygen tension resulted in low ATP value in the worms. These results suggested that adult worms were dislodged from their preferred site by intact energy metabolism activity.  相似文献   

13.
The mermithid nematode, Filipjevimermis leipsandra, was successfully cultivated to the preadult stage in Schneider''s Drosophila medium supplemented with 20% fetal bovine serum. Upon transfer to a solid substrate the preadults continued to develop into ovipositing adult females. Four molts were observed. The first molt occurred in the egg. The second occurred after 6-8 days in culture during which the very thin cuticle was shed completely. The third molt occurred after 18-20 days in culture; the cuticle was retained by the third-stage nematode. This stage was considered comparable to the preadult stage that emerges from host larva, Diabrotica spp. The fourth molt occurred within 12 days after the preadult was transferred from the liquid medium to a solid substrate. Adult females began ovipositing viable eggs 1-3 days after the final molt.  相似文献   

14.
Immunogenicity of adult Strongyloides ratti was studied in rats. Immunization of rats by intraduodenal implantation of adult worms could completely inhibit the egg production and hasten the expulsion of challenged worms which were developed from subcutaneously inoculated L3 or were implanted intraduodenally as adults. Enteral immunization by intraduodenal implantation of adult worms was, however, not able to affect the esophageal larval output of the challenge infection with L3. In contrast to enteral immunization with adult worms, immunization by full sequence of a primary infection or by a combination of drug-abbreviated infection and adult worm implantation could suppress the esophageal larval output of the challenge infection. The relationship between the host defense mechanism and the life cycle of S. ratti is discussed.  相似文献   

15.
Goblet-cell differentiation was studied in the intestinal epithelium of rats infected with the nematode Nippostrongylus brasiliensis. An increase in the proportion of goblet cells occurred at the time of worm expulsion in rats infected with 1000 or 4000 third stage larvae. Adoptive immunization of infected rats with immune-thoracic duct lymphocytes (TDL) induced extensive goblet-cell differentiation whereas the transfer of immune-TDL into normal rats had no effect. The extent of goblet-cell differentiation in adoptively immunized infected rats was proportional to the number of cells transferred. A goblet-cell response also occurred in adoptively immunized rats harboring implanted “normal” and “damaged” worms but recipients of normal worms which were not given cells were unable either to expel their worm burden or to induce a goblet-cell response. Experiments in which the parasites were expelled with an anthelmintic drug suggested that the goblet-cell increase was not simply a repair process associated with the expulsion of the parasites. In all situations where immune expulsion of the parasites occurred, there was a concomitant rise in the proportion of goblet cells. These experiments suggest that thoracic duct lymphocytes either directly or indirectly regulate the differentiation of intestinal goblet cells.  相似文献   

16.
Rats were immunized through an initial infection with 1,000 filariform larvae (L3) of Nippostrongylus brasiliensis and after complete expulsion of worms they were challenged with 1,000 L3 of Strongyloides venezuelensis to investigate whether cross-resistance developed against a heterologous parasite. Nippostrongylus brasiliensis-immunized rats developed a partial cross-resistance against S. venezuelensis migrating larvae (MSL3) in the lungs and adult worms in the small intestine. The population of MSL3 in the lungs were significantly lower (P < 0.05) in immunized rats (22.0 +/- 7.4) compared with controls (105.0 +/- 27.6). The populations of adult worms, egg output and fecundity were initially decreased but from day 14 post-challenge they did not show any significant difference between immunized and control rats. However, the length of worm in immunized rat was revealed as retardation. Peripheral blood eosinophilia was significantly decreased (P < 0.05) on day 7 post-challenge and then gradually increased, which peaked on day 42 post-challenge when most of the worms were expelled. These results suggest that peripheral blood eosinophilia is strongly involved in the worm establishment and expulsion mechanisms.  相似文献   

17.
Phospholipase B activity, bone marrow eosinophilia and worm burden were measured in separate groups of rats that received initial infections of 100, 400, 800, 1200, 2400, and 4800 Nippostrongylus brasiliensis larvae. The results indicated that as the numbers of larvae in the inocula were increased, the resulting higher worm burdens caused the development of earlier and more intense bone marrow eosinophilias and earlier and greater phospholipase B activities. The expulsion of the adult worms from the host was followed by equally rapid decreases in bone marrow eosinophilia and enzyme activity. It was found that as the number of intestinal adult worms was increased from low to large numbers, the degree of the inflammatory response changed from mild to severe. This suggests that the inflammatory response was responsible for the elevated phospholipase B levels.  相似文献   

18.
Parasite products were collected at three distinct phases of development of Ascaris suum, and their immunogenicity was determined after injection into rabbits and pigs. Products were derived from (1) the hatching fluid of infective eggs; (2) the conditioned medium of 2nd-stage larvae that developed to 3rd stage in vitro in defined medium; and (3) the conditioned medium of 3rd-stage larvae that developed to 4th stage in vitro in defined medium. Protein profiles from these three preparations, separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were less complex than that of extracts from homogenized A. suum larvae. Hyperimmune rabbit antiserum raised against either egg products, 2nd- to 3rd-stage larval excretory-secretory products, or 3rd- to 4th-stage larval excretory-secretory products showed strong homologous reactions after immunoelectrophoresis, but relatively weak cross-reactions with the other preparations. A combined enteral immunization of pigs with egg products and parenteral immunization with the 2nd- to 3rd-stage larval excretory-secretory products, and 3rd- to 4th-stage larval excretory-secretory products induced antibody to each preparation and significant protective immunity to a challenge exposure with 10,000 A. suum eggs. However, a marked pathological response to larvae migrating in the liver after challenge exposure was also induced.  相似文献   

19.
The role of the mucosal immune response in helminth infections is not clear. In this study, the dose dependence and kinetics of the mucosal immune response to Trichinella spiralis were determined in experimentally infected Swiss Webster and BALB/c mice. The primary mucosal isotype was sIgA, although IgG was also detected, and primary infections with 10 and 150 larvae produced an anamnestic response on challenge. The mucosal and systemic immunoglobulin responses were dose dependent in both primary and challenge infections. The fecundity and length of worms and the rate of expulsion from the gut were determined on Day 6 postchallenge in Swiss Webster mice. Adult worm recovery and fecundity were reduced by greater than 50% and worm length by 28% in mice infected and challenged with 10 larvae and by 90, 85, and 35%, respectively, in mice infected and challenged with 150 larvae. The rate of expulsion was correlated with the size of both primary and challenge doses and a reduction in fecundity was correlated with the size of the primary dose only. The reduction in worm length did not differ significantly between the infection doses, but the trend was similar to that for expulsion. In BALB/c mice the expulsion response was dissociated from a reduction in fecundity and worm length, the latter two being positively correlated with sIgA levels, supporting a role for sIgA and/or IgG in these effects. However, expulsion does not appear to be dependent on the mucosal immunoglobulin response.  相似文献   

20.
Worm expulsion is known to occur in mammalian hosts exposed to mono-species helminth infections, whilst this phenomenon is poorly described in avian hosts. Mono-species infections, however, are rather rare under natural circumstances. Therefore, we quantified the extent and duration of worm expulsion by chickens experimentally infected with both Ascaridia galli and Heterakis gallinarum, and investigated the accompanying humoral and cell-mediated host immune responses in association with population dynamics of the worms. Results demonstrated the strong co-expulsion of the two ascarid species in three phases. The expulsion patterns were characterized by non-linear alterations separated by species-specific time thresholds. Ascaridia galli burden decreased at a daily expulsion rate (e) of 4.3 worms up to a threshold of 30.5 days p.i., followed by a much lower second expulsion rate (e = 0.46), which resulted in almost, but not entirely, complete expulsion. Heterakis gallinarum was able to induce reinfection within the experimental period (9 weeks). First generation H. gallinarum worms were expelled at a daily rate of e = 0.8 worms until 36.4 days p.i., and thereafter almost no expulsion occurred. Data on both humoral and tissue-specific cellular immune responses collectively indicated that antibody production in chickens with multispecies ascarid infections is triggered by Th2 polarisation. Local Th2 immune responses and mucin-regulating genes are associated with the regulation of worm expulsion. In conclusion, the chicken host is able to eliminate the vast majority of both A. galli and H. gallinarum in three distinct phases. Worm expulsion was strongly associated with the developmental stages of the worms, where the elimination of juvenile stages was specifically targeted. A very small percentage of worms was nevertheless able to survive, reach maturity and induce reinfection if given sufficient time to complete their life cycle. Both humoral and local immune responses were associated with worm expulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号