首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The correct mobilization of cytoplasmic granules is essential for the proper functioning of human neutrophils in host defense and inflammation. In this study, we have found that human peripheral blood neutrophils expressed high levels of Rab27a, whereas Rab27b expression was much lower. This indicates that Rab27a is the predominant Rab27 isoform present in human neutrophils. Rab27a was up-regulated during neutrophil differentiation of HL-60 cells. Subcellular fractionation and immunoelectron microscopy studies of resting human neutrophils showed that Rab27a was mainly located in the membranes of specific and gelatinase-enriched tertiary granules, with a minor localization in azurophil granules. Rab27a was largely absent from CD35-enriched secretory vesicles. Tertiary and specific granule-located Rab27a population was translocated to the cell surface upon neutrophil activation with PMA that induced exocytosis of both tertiary and specific granules. Specific Abs against Rab27a inhibited Ca(2+) and GTP-gamma-S activation and PMA-induced exocytosis of CD66b-enriched tertiary and specific granules in electropermeabilized neutrophils, whereas secretion of CD63-enriched azurophil granules was scarcely affected. Human neutrophils lacked or expressed low levels of most Slp/Slac2 proteins, putative Rab27 effectors, suggesting that additional proteins should act as Rab27a effectors in human neutrophils. Our data indicate that Rab27a is a major component of the exocytic machinery of human neutrophils, modulating the secretion of tertiary and specific granules that are readily mobilized upon neutrophil activation.  相似文献   

2.
TNF-alpha can incite neutrophil-mediated endothelial cell damage and neutrophil H2O2 release. Both effects require adherent neutrophils. Using specific mAb, we showed in this in vitro study that the CD18 beta 2-chain and the CD11b alpha M-chain of the CD11/CD18 integrin heterodimer have a major role in both TNF-alpha-induced neutrophil-mediated detachment of human umbilical vein endothelial cells and H2O2 release by TNF-alpha-activated human neutrophils. In contrast to anti-CD18 mAb, which consistently prevented neutrophil activation, anti-CD11a mAb and two of three anti-CD11b mAb did not reduce endothelial cell detachment and neutrophil H2O2 release, although they decreased neutrophil adhesion to human umbilical vein endothelial cells. mAb 904, directed against the bacterial LPS binding region of CD11b, reduced endothelial cell detachment for about 40% and neutrophil H2O2 release for more than 50%, demonstrating that CD11b/CD18 is engaged in TNF-induced neutrophil activation. Dependence on CD11b/CD18 could not be overcome by CD18-independent anchoring of neutrophils via PHA. Additionally, neither induction of increased expression of the endothelial cell adhesion molecules ICAM-1 and ELAM-1, nor subsequent addition of specific mAb, influenced endothelial cell injury or H2O2 release by TNF-activated neutrophils. Interaction with ICAM-1 and ELAM-1 therefore appears not to induce additional activation of TNF-stimulated neutrophils. These studies suggest that a specific, CD11b/CD18-mediated signal, instead of adherence only, triggers toxicity of TNF-activated neutrophils.  相似文献   

3.
The roles of beta 2 integrin molecules in neutrophil accumulation and tissue injury have been examined by the use of antibodies that are reactive with human CD11b and CD18 and cross-react with the homologous epitopes on rat neutrophils. Adherence to rat pulmonary artery endothelial cells by human neutrophils and endothelial cell killing by phorbol ester-activated human neutrophils required CD11b, CD11c, and CD18. Companion adherence studies between rat neutrophils and endothelial cells revealed a requirement for both CD11b and CD18. Neither anti-CD11b nor anti-CD18 depressed in vitro responses (O2- generation and chemotactic migration) of rat neutrophils. The accumulation of neutrophils in glycogen-induced peritoneal exudates was diminished substantially in rats treated with either anti-CD18 or anti-CD11b. In oxidant-mediated acute lung injury induced by rapid intravascular infusion of cobra venom factor, treatment of rats with either anti-CD18 or anti-CD11b significantly attenuated injury as assessed by increases in vascular permeability and hemorrhage. These protective effects correlated morphologically with diminished adhesion of neutrophils to interstitial intrapulmonary capillary endothelial cells. In studies of immune complex (BSA-anti-BSA)-induced alveolitis and dermal vasculitis, anti-CD18 had protective effects at all doses of anti-BSA employed. The protective effects of anti-CD18 correlated with diminished neutrophil accumulation in tissues at lower doses of anti-BSA. Although anti-CD11b was not effective under the same experimental conditions, intratracheal administration of this antibody conveyed protection against immune complex-induced lung injury, suggesting that both CD11b and CD18 are required for the full expression of injury. The current studies also demonstrated that when surface-bound IgG immune complexes were treated with fresh rat serum, the increment in O2- and TNF alpha generated by alveolar macrophages was suppressed by anti-CD18, but not by anti-CD11b, suggesting a heretofore unrecognized role for CD18 in the O2- and TNF-alpha responses of alveolar macrophages. Thus, neutrophil beta 2 integrins play a requisite role for the full expression of complement-dependent and oxygen radical-mediated injury of the lung and dermal vasculature.  相似文献   

4.
Monocyte cell surface molecules play an important role in the regulation of monocyte function. To investigate the molecular basis of monocyte-mediated cytotoxicity, we tested the ability of a variety of mediators to stimulate human monocyte-mediated cytotoxicity. Phorbol myristic acetate (PMA) stimulated significant monocyte-mediated killing of tumor cells in an 18-hr indium-111 release assay. Five other cytoactive substances did not induce monocyte-mediated cytotoxicity. The acquisition of monocyte cytotoxicity was associated with nearly a twofold increase in surface expression of three CD18-bearing cell surface molecules (CD11a, CD11b, CD11c). The direct involvement of the CD18-bearing molecules in monocyte-mediated cytotoxicity was investigated using monoclonal antibody (MAb) inhibition. MAb recognizing the CD18 subunit significantly inhibited monocyte-mediated killing. The inhibition by anti-CD18 MAb could not be attributed to LFA-1 (CD11a) alone, suggesting that CR3 (CD11b) and p150,95 (CD11c) may also participate in monocyte-mediated cytotoxicity. In contrast, seven of eight other cell surface structures were not affected by PMA treatment, and MAb to all eight cell surface structures did not inhibit killing. These findings suggest that CD18-bearing molecules are upregulated with monocyte activation and may play a functional role in monocyte-mediated killing.  相似文献   

5.
《The Journal of cell biology》1989,109(6):3435-3444
The leukocyte CD11/CD18 adhesion molecules (beta 2 integrins) are a family of three heterodimeric glycoproteins each with a distinct alpha subunit (CD11a, b, or c) and a common beta subunit (CD18). CD11/CD18 mediate crucial leukocyte adhesion functions such as chemotaxis, phagocytosis, adhesion to endothelium, aggregation, and cell-mediated cytotoxicity. The enhanced cell adhesion observed upon activation of leukocytes is associated with increased surface membrane expression of CD11/CD18, as well as a qualitative upregulation of CD11/CD18 functions. To elucidate the nature of the qualitative modifications that occur, we examined the phosphorylation status of these molecules in resting human leukocytes and upon activation with PMA or with the chemotactic peptide F-met-leu-phe (FMLP). In unstimulated cells, all three CD11 subunits were found to be constitutively phosphorylated. In contrast, phosphorylation of the common CD18 subunit was minimal. PMA induced rapid and sustained phosphorylation of CD18 that occurred at high stoichiometry, but had only minimal effects on phosphorylation of the associated CD11 subunits. FMLP also induced rapid phosphorylation of CD18, but the effect was of short duration. FMLP-induced phosphorylation of CD18 was not related to its Ca++-mobilizing effect, as CD18 phosphorylation was not observed upon treatment of leukocytes with the Ca++ ionophore, ionomycin. Phosphoamino acid analysis of CD11/CD18 in PMA- or FMLP-treated monocytes revealed a predominance of phosphoserine residues in all CD11/CD18 subunits. A small component of phosphothreonine was present in CD11c and CD18 and a minor component of phosphotyrosine was also detected in CD18 upon leukocyte activation may regulate the adhesion functions mediated by the CD11/CD18 family of molecules.  相似文献   

6.
Intracellular location of T200 and Mo1 glycoproteins in human neutrophils   总被引:12,自引:0,他引:12  
Mo1 (CD11b), a glycoprotein heterodimer that is involved in cellular adhesion processes and functions as the C3bi receptor of human myeloid cells, and T200 (CD45), a panleukocyte glycoprotein family whose function is still not well understood, increased their expression in the plasma membrane of human neutrophils after exposure to various stimuli which induce degranulation, such as formylmethionylleucylphenylalanine or calcium ionophore A23187. This increment in the expression of both molecules shows a good correlation with the release to the extracellular environment of gelatinase, a marker for an intracellular organelle named "tertiary granule" (Mollinedo, F., and Schneider, D. L. (1984) J. Biol. Chem. 259, 7143-7150). Flow cytometry studies indicate that at least 50% of the total Mo1 and T200 molecules are located in intracellular organelles. Furthermore, the subcellular distribution of Mo1 and T200 glycoproteins in resting human neutrophils was investigated by immunoprecipitation of the radiolabeled membrane proteins obtained from the distinct subcellular fractions. Both Mo1 and T200 were mainly localized in tertiary or specific intracellular granules, which were resolved from the azurophilic granules as well as from the cell membrane fraction. These findings suggest that the mobilization of intracellular Mo1 and T200 to the plasma membrane may regulate early events occurring upon neutrophil activation.  相似文献   

7.
The lymphocyte function-associated molecule 1 (LFA-1, CD11a/CD18) is an integrin that mediates adhesion of immune cells by interaction with two members of the Ig superfamily, ICAM-1 and ICAM-2. LFA-1 consists of an alpha subunit (Mr = 180,000) and a beta subunit (Mr = 95,000). We report here the isolation and expression of the murine alpha subunit cDNA (GenBank accession no. M60778). The deduced sequence comprises a 1061 amino acid extracellular domain, a 29 amino acid transmembrane region, and a 50 amino acid cytoplasmic domain. It has a 72% amino acid identity with its human counterpart and 34% identity with the murine Mac-1 alpha subunit. The murine LFA-1 alpha subunit could be expressed on the cell surface of a fibroblastoid cell line, COS, by cotransfection with either the human or murine beta subunit cDNA.  相似文献   

8.
Children with leukocyte adherence deficiency (LAD), or leukocyte cell adhesion molecule deficiency, experience recurrent, life-threatening bacterial infections related to severe deficiency in surface expression of the leukocyte integrin molecules. The leukocyte integrins consist of a common CD18 (beta) subunit and individual, noncovalently associated alpha subunits designated CD11a, CD11b, and CD11c. Defects in the CD18 subunit prevent surface expression of the CD11/CD18 complexes in children with this disease. We investigated the molecular basis of the disease in a child with the severe deficiency form of LAD and identified two molecular defects in the CD18 subunit. The first defect is a single-base pair C----T transposition resulting in an amino acid substitution of a leucine for a proline at amino acid 178. This amino acid substitution is located in a region that is highly conserved among the integrin beta subunits and where two previous defects have been located in LAD. The second mutation involves a deletion of 220 base pairs in the cDNA coding for a portion of the extracellular domain and results in a frameshift into a premature stop codon. The deleted region corresponds to a single exon in the CD18 gene. Identification of these two molecular defects in a single child with this disease indicates the compound heterozygous nature of the disorder in this child and identifies regions of the CD18 subunit that may be important for CD11/CD18 heterodimer formation and surface expression.  相似文献   

9.
Human neutrophils exposed to protein-coated polystyrene or cultured endothelial monolayers produce large quantities of H2O2 in response to soluble stimuli that elicit little or no secretion of reactive oxygen species from cells in suspension. To characterize the mechanisms involved in this adherence-dependent respiratory burst, we have investigated the possible role of one integrin known to participate in the adhesion of neutrophils to endothelial cells, CD11b/CD18 (Mac-1). H2O2 production was examined with chemotactic factor-stimulated human and canine neutrophils exposed to protein-coated surfaces and cultured human and canine endothelial cells. The two protein-coated surfaces used were type I collagen-coated glass or plastic, a surface to which neither human nor canine neutrophils adhered, and keyhole limpet hemocyanin (KLH)-coated glass or plastic, a surface to which human and canine neutrophils adhered only after chemotactic stimulation. FMLP-stimulated human neutrophils and platelet activating factor-stimulated canine neutrophils failed to produce detectable H2O2 when in contact with type I collagen, but secreted large amounts of H2O2 when adherent to KLH or endothelial cell monolayers. FMLP-stimulated neutrophils from patients with CD18-deficiency failed to adhere to any of these surfaces and failed to produce H2O2 under these conditions. mAb reactive with CD18 and CD11b were equally effective in markedly inhibiting the adhesion of normal human neutrophils to these surfaces and markedly inhibited the production of H2O2. A mAb reactive with CD18 blocked adhesion of stimulated canine neutrophils, and mAb directed against both CD18 and CD11b blocked H2O2 production by canine neutrophils on KLH and endothelium. A nonbinding mAb and a mAb reactive with CD11a did not inhibit H2O2 production of human cells on KLH or endothelial monolayers, and nonbinding and binding control mAb did not inhibit H2O2 production by canine neutrophils. These results indicate that Mac-1 (CD11b/CD18) can mediate adhesion-dependent H2O2 production by human and canine neutrophils exposed to chemotactic factors.  相似文献   

10.
Culture of human monocyte-depleted peripheral blood mononuclear cells with recombinant IL2 (rIL2) induced adherence to plastic by 24 hr and subsequent proliferation in a subpopulation of lymphocytes with phenotypic and functional characteristics of activated natural killer (NK) cells. Purified human NK cells activated in the presence of IL2 for 24 hr upregulated the expression of the CD11c (p150.95) and CD11a antigen but not other cellular adhesion molecules (CAM). After further incubation with IL2, NK cells displayed upregulation of all of the antigens in the CD11/CD18 family of CAM. The process of adhesion was strictly dependent on culture in the presence of IL2, divalent cations, and active cellular metabolism. Adhesion also was dependent on expression of CAM on the cell surface, since monoclonal antibodies to CAM inhibited adhesion of activated NK cells to varying degrees (from 50 to 80%). An antibody (LeuM5) to the CD11c antigen (p150.95) gave the highest level of inhibition, and anti-CD11a (LFA-1) also was inhibitory, while anti-CD56 (NKH1) or anti-CD11b did not interfere with adhesion to plastic. Anti-CD11c was also the most effective in initiating the detachment of adherent-phase NK cells. Antibodies to CD18 or CD2 antigen also inhibited binding of NK cells to plastic. The blocking effects of anti-CD2 and anti-CD11a were additive in this system. On the surface of plastic-adherent and motile NK cells, all CAM except the CD56 antigen had a polar or bipolar distribution, as determined by staining with anti-CAM antibodies. Surface antigens CD11b, CD11c, CD2, and CD18 on nonadherent NK cells were clustered at the cellular poles by both immunofluorescence and immunogold electron microscopy, whereas CD11a (LFA-1) and CD56 antigens were distributed diffusely. CAM, especially CD11c, were also detected in cytoplasmic granules by immunostaining in IL2-activated NK cells. Thus, CAM may be stored in granules, allowing for their rapid transfer to the cell membrane in response to activation. Our results indicate that CAM are upregulated in IL2-activated NK cells and that some of these molecules (e.g., CD11c) play an important role in the development of plastic adherence by a subpopulation of these cells.  相似文献   

11.
We characterized the surface antigen and mRNA expression for the CD11c (alpha X, p150) subunit of the human leukocyte adherence receptor family during hematopoietic cell differentiation. The CD11c subunit antigen and mRNA are constitutively expressed in undifferentiated HL-60 promyelocytic leukemia cells, and levels increase markedly with differentiation along the monocyte/macrophage pathway using phorbol myristate acetate. Human monocyte-derived macrophages and human alveolar macrophages express elevated levels of the CD11c subunit antigen and mRNA, indicating that the changes observed in vitro are present in vivo. Dot blot analysis of immature and mature lymphoid and myeloid cells and cell lines demonstrate equivalent levels of CD11c mRNA expression. We conclude that CD11c gene expression is selectively increased during hematopoietic cell differentiation along the monocyte/macrophage pathway.  相似文献   

12.
CD157 is a GPI-anchored cell surface glycoprotein expressed by human peripheral blood neutrophils. Cross-linking of CD157 induces intracellular Ca2+ mobilization and re-shaping in neutrophils, thus regulating their adhesive and migratory properties. Results obtained by immunolocalization and confocal microscopy indicate that CD157 lies in close proximity to the CD11b/CD18 complex which is strongly expressed on the activated neutrophil cell membrane where it plays a predominant role in adhesion. This study analyses the physical association between CD157 and CD18 in human neutrophils by co-immunoprecipitation experiments. The anti-CD157 monoclonal antibody RF3 co-precipitates CD18, and the anti-CD18 antibody TS1/18 co-precipitates CD157 from human neutrophil lysates. These results confirm that CD157 physically interacts with CD11b/CD18 complex in human neutrophils.  相似文献   

13.
Mo1 (complement receptor type 3, CR3; CD11b/CD18) is an adhesion-promoting human leukocyte surface membrane heterodimer (alpha subunit 155 kD [CD11b] noncovalently linked to a beta subunit of 95 kD [CD18]). The complete amino acid sequence deduced from cDNA of the human alpha subunit is reported. The protein consists of 1,136 amino acids with a long amino-terminal extracytoplasmic domain, a 26-amino acid hydrophobic transmembrane segment, and a 19-carboxyl-terminal cytoplasmic domain. The extracytoplasmic region has three putative Ca2+-binding domains with good homology and one with weak homology to the "lock washer" Ca2+-binding consensus sequence. These metal-binding domains explain the divalent cation-dependent functions mediated by Mo1. The alpha subunit is highly homologous to the alpha subunit of leukocyte p150,95 and to a lesser extent, to the alpha subunit of other "integrin" receptors such as fibronectin, vitronectin, and platelet IIb/IIIa receptors in humans and position-specific antigen-2 (PS2) in Drosophila. Mo1 alpha, like p150, contains a unique 187-amino acid stretch NH2-terminal to the metal-binding domains. This region could be involved in some of the specific functions mediated by these leukocyte glycoproteins.  相似文献   

14.
Myeloperoxidase (MPO), a major component of neutrophils, catalyzes the production of hypochlorous acid (HOCl) from hydrogen peroxide and chloride anion. Phagocytosis is a critical event induced by neutrophils for host defense and inflammation. Interestingly, we found that MPO-deficient (MPO?/?) neutrophils engulfed larger amounts of zymosan than wild-type neutrophils. Blocking of the CD11b subunit of complement receptor 3 (CR3) as well as inhibition of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK) dramatically reduced zymosan phagocytosis. In contrast, blocking of dectin-1, toll-like receptor 2 (TLR2), or spleen tyrosine kinase (Syk) had no significant effects on phagocytosis. Western blotting analysis showed that inhibition of FAK decreased the phosphorylation of ERK1/2, indicating that ERK1/2 is a downstream regulator of FAK in neutrophils. Importantly, we found that cell surface expression of CD11b and phosphorylation of ERK1/2 was significantly higher in zymosan-stimulated MPO?/? neutrophils than in zymosan-stimulated wild-type neutrophils. Pretreatment with the MPO inhibitor 4-aminobenzoic acid hydrazide dramatically enhanced both zymosan phagocytosis and the surface expression of CD11b in wild-type neutrophils, but not in MPO?/? neutrophils. Collectively, these results strongly suggest that up-regulation of the CD11b/FAK/ERK signaling pathway due to absence of MPO enhances the zymosan phagocytic activity of mouse neutrophils.  相似文献   

15.
Kinhult J  Egesten A  Uddman R  Cardell LO 《Peptides》2002,23(10):1735-1739
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide with strong bronchodilator capacity, present in the human airways. There is recent evidence that PACAP decreases the release of proinflammatory cytokines. We have previously shown that PACAP inhibits neutrophil chemotaxis, but altogether little is known about the effects of PACAP on granulocytes. The present study was designed to investigate if PACAP and the closely related peptide vasoactive intestinal peptide (VIP) could affect the cell surface expression of CD11b, CD63 and CD66b in human neutrophils. Neutrophils isolated from 12 healthy blood donors were incubated with either PACAP or VIP, and the expression of neutrophil cell surface markers was assessed using flowcytometry. Neutrophils incubated with PACAP38 exhibited a marked, concentration-dependent increase in their expression of CD11b, CD63 and CD66b. In contrast, neutrophils incubated with VIP showed no increase of the investigated surface markers. This indicates a role for PACAP in granulocyte activation, mediated via a pathway not shared with VIP. Together with the previously presented data on leukocyte migration it suggests that PACAP acts as a regulator of neutrophil inflammation.  相似文献   

16.
FcgammaRIIIb (CD16) is a glycosyl phosphatidylinositol (GPI)-anchored low-affinity IgG receptor, exclusively expressed on human neutrophils. FcgammaRIIIb associates with complement receptor 3 (CR3, Mac-1, CD11b/CD18), which may indirectly link FcgammaRIIIb to the actin cytoskeleton. Upon neutrophil activation, apoptosis, or chemotaxis, FcgammaRIIIb is shed from the cell surface. In all of these events, actin rearrangements play an important role. To establish a role for the actin cytoskeleton in the control of FcgammaRIIIb shedding, we treated human neutrophils with jasplakinolide, an actin-polymerizing peptide. We show that enhanced actin polymerization induces time- and dose-dependent shedding of FcgammaRIIIb. This effect was not restricted to FcgammaRIIIb, because the cell surface expression of CD43, CD44, and L-selectin was also downregulated after induction of actin polymerization. This actin-dependent pathway is staurosporine sensitive but does not appear to involve activation of PKC or CR3. These data show that the actin cytoskeleton can regulate protein ectodomain shedding from human neutrophils.  相似文献   

17.
Accumulating evidence suggests that enhanced peroxynitrite (ONOO-) formation occurs during inflammation. We have studied the impact and the mechanisms of ONOO- action on expression of adhesion molecules on human neutrophils and coronary artery endothelial cells (HCAEC) and binding of neutrophils to HCAEC. Addition of ONOO- (0.1 to 200 5M) to isolated neutrophils resulted in a concentration-dependent down-regulation of L-selectin expression, and up-regulation of CD11b/CD18 expression. ONOO- stimulation of Erk activity was accompanied by activation of Ras, Raf-1 and MEK (mitogen-activated protein kinase kinase), and was sensitive to the MEK inhibitor PD 98059. We have observed a tight association between Erk activation and changes in CD11b/CD18 expression. ONOO- also evoked activation of neutrophil p38 MAPK. Neither ONOO--induced up-regulation of CD11b/CD18 expression nor Erk activation was affected by SB 203580, a selective inhibitor of p38 MAPK. ONOO- by itself had little effect on expression of ICAM-1 and E-selectin on HCAEC, whereas it markedly enhanced attachment of neutrophils to lipopolysaccharide-activated HCAEC only when it was added together with neutrophils. Increases in neutrophil adhesion evoked by ONOO- were blocked by an anti-CD18 monoclonal antibody. These data suggest that ONOO- activates Erk in neutrophils via the Ras/Raf-1/MEK signal transduction pathway, leading to up-regulation of surface expression of CD11b/CD18 and consequently to increased neutrophil adhesion to endothelial cells.  相似文献   

18.
The beta2 integrin CD11b/CD18 is an integral membrane protein that is present in the plasma membrane and secondary granules of neutrophils and functions as a major adhesion molecule. Upon cellular activation, there is translocation of intracellular pools of CD11b/CD18 to the plasma membrane in concert with enhanced cellular adhesion. Although much is known about the function of CD11b/CD18, how this protein is transported within the cell is less well defined. Here we report that CD11b/CD18 specifically binds to BAP31, a member of a novel class of sorting proteins regulating cellular anterograde transport. Through experiments aimed at identifying CD11b/CD18-binding proteins, we produced a monoclonal antibody termed E1B2 that recognizes a 28-kDa membrane protein that co-precipitates with CD11b/CD18. Microsequence analysis of the E1B2 antigen revealed that it is BAP31. Co-association of CD11b/CD18 and BAP31 was confirmed in co-immunoprecipitation and protein binding assays. Additional experiments revealed that the binding of BAP31 to CD11b/CD18 was not dependent on divalent cations nor mediated by the I-domain of CD11b. Using glutathione S-transferase fusion chimeras, we determined that binding of CD11b/CD18 to BAP31 is mediated through interactions with the cytoplasmic tail of BAP31. Immunolocalization studies revealed colocalization of BAP31 and CD11b/CD18 within neutrophil secondary granules. Subcellular fractionation studies in polymorphonuclear leukocytes (PMN) revealed similar patterns of redistribution of BAP31 and CD11b/CD18 from fractions enriched in secondary granules to the plasma membrane following stimulation with formylmethionylleucylphenylalanine (fMLP). Given the known sorting properties of BAP31, these findings suggest that BAP31 may play a role in regulating intracellular trafficking of CD11b/CD18 in neutrophils.  相似文献   

19.
BACKGROUND: Epithelial dysfunction and patient symptoms in inflammatory intestinal diseases such as ulcerative colitis and Crohn's disease correlate with migration of neutrophils (PMN) across the intestinal epithelium. In vitro modeling of PMN transepithelial migration has revealed distinct differences from transendothelial migration. By using polarized monolayers of human intestinal epithelia (T84), PMN transepithelial migration has been shown to be dependent on the leukocyte integrin CD11b/CD18 (Mac-1), but not on CD11a/CD18 (LFA-1). Since intercellular adhesion molecule-I (ICAM-1) is an important endothelial counterreceptor for these integrins, its expression in intestinal epithelia and role in PMN-intestinal epithelial interactions was investigated. MATERIALS AND METHODS: A panel of antibodies against different domains of ICAM-1, polarized monolayers of human intestinal epithelia (T84), and natural human colonic epithelia were used to examine the polarity of epithelial ICAM-1 surface expression and the functional role of ICAM-1 in neutrophil-intestinal epithelial adhesive interactions. RESULTS: While no surface expression of ICAM-1 was detected on unstimulated T84 cells, interferon-gamma (IFN gamma) elicited a marked expression of ICAM-1 that selectively polarized to the apical epithelial membrane. Similarly, apically restricted surface expression of ICAM-1 was detected in natural human colonic epithelium only in association with active inflammation. With or without IFN gamma pre-exposure, physiologically directed (basolateral-to-apical) transepithelial migration of PMN was unaffected by blocking monoclonal antibodies (mAbs) to ICAM-1. In contrast, PMN migration across IFN gamma-stimulated monolayers in the reverse (apical-to-basolateral) direction was inhibited by anti-ICAM-1 antibodies. Adhesion studies revealed that T84 cells adhered selectively to purified CD11b/CD18 and such adherence, with or without IFN gamma pre-exposure, was unaffected by ICAM-1 mAb. Similarly, freshly isolated epithelial cells from inflamed human intestine bound to CD11b/CD18 in an ICAM-1-independent fashion. CONCLUSIONS: These data indicate that ICAM-1 is strictly polarized in intestinal epithelia and does not represent a counterreceptor for neutrophil CD11b/CD18 during physiologically directed transmigration, but may facilitate apical membrane-PMN interactions after the arrival of PMN in the intestinal lumen.  相似文献   

20.
It has previously been shown that during degranulation Mac-1 (CD11b/CD18)--a glycoprotein that plays a central role in neutrophil adhesion-is up-regulated on PMN surfaces. It has been assumed that this quantitative change in adhesion Ag expression on the cell surface would in turn lead to increased cellular adhesiveness. In contrast, we found that at an incubation temperature of 16 degrees C, stimulated neutrophil adhesion to plastic tissue culture dishes in the presence of FMLP (2.5 x 10(-6) M), TNF (10 ng/ml), or PAF (1 x 10(-4) M) occurred without cellular degranulation or Mac-1 surface up-regulation as measured cytofluorometrically. As shown by functional inhibition studies employing monoclonal antibodies 60.3 (anti-CD18) and 60.1 (anti-CD11b), adhesion at 16 degrees C, where no CD11b/CD18 up-regulation was seen, is mediated by CD11b/CD18 just as it is at 37 degrees C, where degranulation and CD11b/CD18 up-regulation could be demonstrated. The physiologic importance of these findings was underscored by experiments done on endothelial monolayers, which showed that PMN association with endothelial cells is absolutely independent from the quantitative up-regulation of Mac-1 on PMN surfaces. When neutrophils were stimulated at 37 degrees C by endotoxin, an agent that does not induce aggregation (a form of intercellular adhesion), Mac-1 surface expression increased only after cells had become adherent, whereas cells held in suspension to prevent cell-substrate adhesion neither degranulated nor up-regulated their Mac-1 surface expression. Thus, not only is adherence independent of degranulation and Mac-1 cell surface up-regulation, but both degranulation and Mac-1 surface up-regulation appear to depend on the process of adhesion. Correspondingly, incubation of neutrophils with antibodies 60.1 and 60.3 inhibited not only adhesion of cells stimulated with FMLP at 37 degrees C but degranulation as well. These results indicate that Mac-1 influences degranulation as well as it controls adhesion not by its mere quantity on the cell surface, but rather by an yet undefined molecular modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号