首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure of the rat gastric mucosa to ethanol stimulates the generation of leukotriene (LTC4) and 15-hydroxyeicosatetraenoic acid, but not of thromboxanes and prostaglandins. Lipoxygenase activation is not found with other topical irritants or nonsteroidal anti-inflammatory drugs. A number of gastroprotective drugs dose-dependently inhibit the stimulatory action of ethanol on mucosal LTC4 formation closely parallel to their protective activity suggesting that ethanol-induced damage and activation of lipoxygenases may involve common targets which are simultaneously counteracted by certain types of protective agents. Selective inhibition of 5-lipoxygenase, however, does not confer protection against gastric mucosal damage caused by topical irritants or non-steroidal anti-inflammatory drugs. Thus, although leukotrienes may mediate certain reactions elicited by gastric ulcerogens such as submucosal venular constriction and mucosal microvascular engorgement, they do not appear to be major mediators of ulcerogen-induced tissue necrosis. The contribution of other products of the various pathways of arachidonic acid metabolism to gastric mucosal injury and the mechanism underlying the close interrelationship between protection and inhibition of LTC4 formation observed with certain compounds remains to be investigated.  相似文献   

2.
Nitric oxide has been suggested as a contributor to tissue injury in various experimental models of gastrointestinal inflammation. However, there is overwhelming evidence that nitric oxide is one of the most important mediators of mucosal defence, influencing such factors as mucus secretion, mucosal blood flow, ulcer repair and the activity of a variety of mucosal immunocytes. Nitric oxide has the capacity to down-regulate inflammatory responses in the gastrointestinal tract, to scavenge various free radical species and to protect the mucosa from injury induced by topical irritants. Moreover, questions can be raised regarding the evidence purported to support a role for nitric oxide in producing tissue injury. In this review, we provide an overview of the evidence supporting a role for nitric oxide in protecting the gastrointestinal tract from injury.  相似文献   

3.
The stomach is in a state of continuous exposure to potentially hazardous agents. Hydrochloric acid together with pepsin constitutes a major and serious threat to the gastric mucosa. Reflux of alkaline duodenal contents containing bile and pancreatic enzymes are additional important injurious factors of endogenous origin. Alcohol, cigarette smoking, drugs and particularly aspirin and aspirin-like drugs, and steroids are among exogenous mucosal irritants that can inflict mucosal injury. The ability of the stomach to defend itself against these noxious agents has been ascribed to a number of factors constituting the gastric mucosal defense. These include mucus and bicarbonate secreted by surface epithelial cells, prostaglandins, sulfhydryl compounds and gastric mucosal blood flow. The latter is considered by several researchers to be of paramount importance in maintaining gastric mucosal integrity. The aim of this paper is to review the experimental and clinical data dealing with the role of mucosal blood flow and in particular the microcirculation in both damage and protection of the gastric mucosa.  相似文献   

4.
Arachidonic acid metabolism by 5-lipoxygenase leads to production of the potent inflammatory mediators, leukotriene (LT) B4 and the cysteinyl LT. Relative synthesis of these subclasses of LT, each with different proinflammatory properties, depends on the expression and subsequent activity of LTA4 hydrolase and LTC4 synthase, respectively. LTA4 hydrolase differs from other proteins required for LT synthesis because it is expressed ubiquitously. Also, in vitro studies indicate that it possesses an aminopeptidase activity. Introduction of cysteinyl LT and LTB4 into animals has shown LTB4 is a potent chemoattractant, while the cysteinyl LT alter vascular permeability and smooth muscle tone. It has been impossible to determine the relative contributions of these two classes of LT to inflammatory responses in vivo or to define possible synergy resulting from the synthesis of both classes of mediators. To address this question, we have generated LTA4 hydrolase-deficient mice. These mice develop normally and are healthy. Using these animals, we show that LTA4 hydrolase is required for the production of LTB4 in an in vivo inflammatory response. We show that LTB4 is responsible for the characteristic influx of neutrophils accompanying topical arachidonic acid and that it contributes to the vascular changes seen in this model. In contrast, LTB4 influences only the cellular component of zymosan A-induced peritonitis. Furthermore, LTA4 hydrolase-deficient mice are resistant to platelet-activating factor, identifying LTB4 as one mediator of the physiological changes seen in systemic shock. We do not identify an in vivo role for the aminopeptidase activity of LTA4 hydrolase.  相似文献   

5.
As a model to perhaps better indicate potential in vivo tissue inflammatory events, the generation of leukotriene (LT)B4, 20-OH-LTB4, sulfidopeptide LT, and platelet-activating factor (PAF) from human whole blood stimulated with zymosan was compared with that produced by isolated human neutrophils suspended either in buffer or plasma. Several reports have shown that substantial LTB4 biosynthesis could be induced after addition of zymosan to whole blood, but little was known concerning the generation of other important lipid mediators, or the cellular source of these. We have shown that, in spite of some subject variation, the zymosan-induced production of 20-OH-LTB4, LTB4, and LTE4 reached maxima within 30 to 60 min with 1.1, 2.8, and 0.60 ng/10(6) neutrophils, respectively. These concentrations would be sufficient to induce significant biologic effects. Studies with isolated cell mixtures suggested that the neutrophil was the primary source of the lipid mediators or their precursors in this system, although a number of other cell types contributed as accessory cells to the final amounts and mix of mediators produced. The ratio of neutrophils to accessory cells in mixed cell experiments dramatically modified the metabolic pattern of leukotriene generation. The concentration of LTB4 was increased in the presence of RBC and that of LTE4 when platelets were present. These results suggested that cellular cooperation and transcellular biosynthesis played a key role in the overall production of eicosanoids such as LTB4 and LTC4. The concomitant synthesis of PAF in isolated cells and in whole blood was also determined as another member of the complex lipid mediator network. Maximal production of cell-associated PAF was observed within 30 min after the initiation of phagocytosis and reached levels of 3 to 5 ng PAF/10(6) neutrophils. When other cells were present in a coincubation system, the time course for production of PAF was not altered, but maximal concentration of PAF was lower, perhaps as a result of enhanced PAF metabolism. Study of eicosanoids and other lipid mediator production in mixed cell populations provides insight into those events occurring within tissues, where cross-cell signaling and transcellular biosynthesis may occur.  相似文献   

6.
Insufficient oxygen delivery to organs leads to tissue dysfunction and cell death. Reperfusion, although vital to organ survival, initiates an inflammatory response that may both aggravate local tissue injury and elicit remote organ damage. Polymorphonuclear neutrophil (PMN) trafficking to remote organs following ischaemia/reperfusion (I/R) is associated with the release of lipid mediators, including leucotriene (LT) B4, cysteinyl‐LTs (CysLTs) and platelet‐activating factor (PAF). Yet, their potentially cooperative role in regulating I/R‐mediated inflammation has not been thoroughly assessed. The present study aimed to determine the cooperative role of lipid mediators in regulating PMN migration, tissue oedema and injury using selective receptor antagonists in selected models of I/R and dermal inflammation. Our results show that rabbits, pre‐treated orally with BIIL 284 and/or WEB 2086 and MK‐0571, were protected from remote tissue injury following I/R or dermal inflammation in an additive or synergistic manner when the animals were pre‐treated with two drugs concomitantly. The functional selectivity of the antagonists towards their respective agonists was assessed in vitro, showing that neither BIIL 284 nor WEB 2086 prevented the inflammatory response to IL‐8, C5a and zymosan‐activated plasma stimulation. However, these agonists elicited LTB4 biosynthesis in isolated rabbit PMNs. Similarly, a cardioprotective effect of PAF and LTB4 receptor antagonists was shown following myocardial I/R in mice. Taken together, these results underscore the intricate involvement of LTB4 and PAF in each other's responses and provide further evidence that targeting both LTs and PAF receptors provides a much stronger anti‐inflammatory effect, regulating PMN migration and oedema formation.  相似文献   

7.
The mucosal surface of the digestive tract is a critical barrier between a broad spectrum of noxious and immunogenic substances present in the gastrointestinal lumen and the underlying mucosal immune system. Its preservation following various forms of injury or physiological damage is essential to prevent the invasion of harmful luminal factors into the host, which subsequently may lead to inflammation, uncontrolled immune response, and a disequilibrium of the homeostasis of the host. The preservation of this barrier following injuries is regulated by a broad spectrum of structurally distinct regulatory molecules, including phospholipids. Phospholipids play a pivotal role in the modulation of intestinal inflammation. They have been demonstrated to both promote and inhibit inflammation, and their overall impact in an individual setting seems to be dependent on several factors, including the level of immune cell activation and the presence of other mediators. Modulation of lipid mediators through administration of lysophosphatidic acid (LPA) or lisofylline (LSF), inhibitors of phospholipase A2 (PLA2) biosynthesis or monoclonal antibodies against thromboxane (TBX) or platelet-activating factor (PAF) as a therapeutic approach have been used in several models of inflammation; however, beneficial effects were not always convincing and further studies are warranted.  相似文献   

8.
The role of vagus nerve was studied in the development of gastric mucosal damage induced by ethanol (ETOH). The investigations were carried out on Sprague-Dawley rats. The gastric mucosal damage was produced by i.g. administration of 1 ml 96% ETOH. Acute surgical vagotomy (ASV) was carried out 30 min, chronic surgical vagotomy (CSV) 14 days before the ETOH application. The animals were sacrificed at 0, 1, 5, 15, 60 min after ETOH. Evans blue (EB) (1 mg/100 g) was given i.v. 15 min before autopsy. The number and severity of lesions the EB accumulation of the gastric juice and gastric mucosa were noted. It was found, that: 1. The vascular permeability increased after ETOH treatment at an early state (within 1-5 min) in association to the macroscopic appearance of erosions. 2. The number and extension of lesions, the EB concentrations in gastric juice and gastric mucosa were significantly higher both after ASV and CSV. 3. Surgical vagotomy alone did not increase the vascular permeability. 4. No significant ulcer formation was observed in vagotomized rats without ETOH treatment. It was concluded, that 1. Both ASV and CSV enhanced the development of gastric mucosal injury induced by ethanol. 2. Neither acute nor chronic surgical vagotomy exerted an effect of the development of mucosal injury and vascular permeability without the application of the noxious agent. 3. The further increase of enhanced vascular permeability by vagotomy probably has an etiologic role in the aggravating effect of ASV and CSV on the development of chemical-induced lesions.  相似文献   

9.
10.
The initial response of the host to noxious stimuli produces a nonspecific inflammatory response. A more specific immune response is believed to be modulated by two classes of molecules: lipid mediators (PG, LT and PAF) and cytokines, synthesized by phagocytes and parenchyreal cells. In this review we discuss the increasing evidence of the interrelationship between eicosanoids, PAF and cytokines: IL-1 and TNF induce PG synthesis in various cells and PG, in turn, modulate cytokine production. We focused on the regulatory effects of LTB(4), PGE(2) and PAF on cytokine gene expression.  相似文献   

11.
In the rat stomach, evidence has been provided that capsaicin-sensitive sensory nerves (CSSN) are involved in a local defense mechanism against gastric ulcer. In the present study capsaicin or resiniferatoxin (RTX), a more potent capsaicin analogue, was used to elucidate the role of these sensory nerves in gastric mucosal protection, mucosal permeability, gastric acid secretion and gastrointestinal blood flow in the rat. In the rat stomach and jejunum, intravenous RTX or topical capsaicin or RTX effected a pronounced and long-lasting enhancement of the microcirculation at these sites, measured by laser Doppler flowmetry technique. Introduction of capsaicin into the rat stomach in very low concentrations of ng-microg x mL(-1) range protected the gastric mucosa against damage produced by topical acidified aspirin, indomethacin, ethanol or 0.6 N HCl. Resiniferatoxin exhibited acute gastroprotective effect similar to that of capsaicin and exerted marked protective action on the exogenous HCl, or the secretagogue-induced enhancement of the indomethacin injury. The ulcer preventive effect of both agents was not prevented by atropine or cimetidine treatment. Capsaicin given into the stomach in higher desensitizing concentrations of 6.5 mM markedly enhanced the susceptibility of the gastric mucosa and invariably aggravated gastric mucosal damage evoked by later noxious challenge. Such high desensitizing concentrations of capsaicin, however, did not reduce the cytoprotective effect of prostacyclin (PGI2) or beta-carotene. Capsaicin or RTX had an additive protective effect to that of atropine or cimetidine. In rats pretreated with cysteamine to deplete tissue somatostatin, capsaicin protected against the indomethacin-induced mucosal injury. Gastric acid secretion of the pylorus-ligated rats was inhibited with capsaicin or RTX given in low non-desensitizing concentrations, with the inhibition being most marked in the first hour following pylorus-ligation. Low intragastric concentrations of RTX reduced gastric hydrogen ion back-diffusion evoked by topical acidified salicylates. It is concluded that the gastropotective effect of capsaicin-type agents involves primarily an enhancement of the microcirculation effected through local release of mediator peptides from the sensory nerve terminals. A reduction in gastric acidity may contribute to some degree in the gastric protective action of capsaicin-type agents. The vasodilator and gastroprotective effects of capsaicin-type agents do not depend on vagal efferents or sympathetic neurons, involve prostanoids, histaminergic or cholinergic pathways.  相似文献   

12.
The mechanism of the protection by human epidermal growth factor (hEGF) against the gastric mucosal lesions induced by acidified ethanol was studied in rats. At different times following the subcutaneous administration of hEGF (30 micrograms/kg), intragastric acidified ethanol (EtOH: 0.125 M HC1 = 50:50 v/v%) was administered to induce an experimental gastric mucosal lesion. Mean length of the lesion in the gastric mucosa was used as a lesion index. Extravasation of intravenously injected Evans blue into the gastric wall and gastric contents was used as an indicator of vascular permeability. Pretreatment with hEGF decreased both the gastric mucosal lesions and the increase of vascular permeability caused by acidified ethanol with similar time profiles relative to pretreatment with hEGF. Maximal protective actions of hEGF occurred about 10 to 30 min after the observed peak plasma concentration of hEGF. Indomethacin and N-ethylmaleimide, but not iodoacetamide, blocked the protective action of hEGF, indicating that endogenous prostaglandins and/or sulfhydryls may participate in the protective action of hEGF. The content of endogenous nonprotein sulfhydryls in the gastric mucosa decreased markedly after acidified ethanol. However, pretreated hEGF did not restore the sulfhydryl contents. Thus, it seemed that endogenous prostaglandins, but not sulfhydryls, are the probable mediators for protection against gastric mucosal injury caused by acidified ethanol.  相似文献   

13.
Role of polyamines in gastroprotection induced by epidermal growth factor.   总被引:1,自引:0,他引:1  
Polyamines have been shown to stimulate cellular growth and differentiation, though their role in the prevention of acute gastric lesion induced by various noxious agents has been little studied. Epidermal growth factor (EGF) exhibits gastroprotective and ulcer healing properties due to its potent mitogenic and growth promoting action. This study was designed to compare the gastroprotective effects of spermine and EGF against gastric damage induced by absolute ethanol, acidified aspirin and stress and to determine the role of endogenous polyamines in EGF-induced gastroprotection. Spermine and EGF significantly reduced the lesions induced by all three ulcerogens. Oral administration of spermine or subcutaneous infusion of EGF in 24 h fasted rats with chronic gastric fistula resulted in similar inhibition of gastric acid and pepsin secretion. Pretreatment with difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, did not affect ethanol lesions, but reversed the protective effect EGF but not spermine against ethanol. This finding indicates that polyamines mediate, at least in part, EGF-induced gastroprotection. In tests with oral administration of aminoguanidine that is known to suppress the activity of diamino-oxidase (DAO) and to inhibit the degradation of polyamines, EGF showed a markedly enhanced gastroprotective activity against ethanol damage. Since indomethacin failed to affect the gastroprotective effects of spermine and EGF and neither of these agents influenced the mucosal generation of PGE2 in intact or injured gastric mucosa, we conclude that prostaglandins are not the major factors in spermine- and EGF-induced gastroprotection. This study demonstrates that polyamines are highly effective against gastric lesions induced by various ulcerogens and that they act as primary mediators of EGF-induced gastroprotection.  相似文献   

14.
Platelet-leukocyte interactions represent an important determinant of the inflammatory response. Although mechanisms of platelet-neutrophil adhesion were studied extensively, little is known on the mechanisms of platelet-eosinophil interactions. The aim of the present study was to analyze the involvement of adhesion molecules and lipid mediators in platelet-eosinophil adhesion as compared to platelet-neutrophil adhesion. For that purpose human platelets, eosinophils and neutrophils were isolated and platelet-eosinophil and platelet-neutrophil adhesion induced by thrombin (30 mU/ml), LPS (0.01 microg/ml) and fMLP (1 microM) was quantified using the "rosettes" assay. The involvement of adhesion molecules such as selectin P, glycoprotein IIb/IIIa (GPIIb/IIIa) and lipid mediators such as of thromboxane A2 (TXA2), platelet activating factor (PAF) and cysteinyl leukotrienes (cysLTs) were studied using monoclonal antibodies and pharmacological inhibitors, respectively. Thrombin (30 mU/ml), LPS (0.01 microg/ml) and fMLP (1 microM) each of them induced platelet-eosinophil adhesion that was even more pronounced as compared with platelet-neutrophil adhesion induced by the same stimulus. Anti-CD62P antibody (1 microg/ml) and anti-GP IIb/IIIa antibody (abciximab-3 microg/ml) strongly inhibited platelet-eosinophil as well as platelet-neutrophil adhesion. Aspirin inhibited platelet-eosinophil adhesion, while MK 886-a FLAP inhibitor (10 microM), or WEB 2170-a PAF receptor antagonist (100 microM) were less active. On the other hand aspirin, MK 886 and WEB 2170 all three of them inhibited platelet-neutrophil adhesion. In summary, platelets adhered avidly to eosinophils both after activation of platelets by thrombin, eosinophils by fMLP or simultaneous activation of platelets and eosinophils by LPS. Similarly to platelet-neutrophil interaction adhesion of platelets to eosinophils involved not only adhesion molecules (selectin P, GPIIb/IIIa), but also lipid mediators such as TXA2. The involvement of PAF and cysteinyl leukotrienes in platelet-eosinophil adhesion was less pronounced as compared to platelet-neutrophil adhesion.  相似文献   

15.
A major goal in the treatment of acute ischemia of a vascular territory is to restore blood flow to normal values, i.e. to "reperfuse" the ischemic vascular bed. However, reperfusion of ischemic tissues is associated with local and systemic leukocyte activation and trafficking, endothelial barrier dysfunction in postcapillary venules, enhanced production of inflammatory mediators and great lethality. This phenomenon has been referred to as "reperfusion injury" and several studies demonstrated that injury is dependent on neutrophil recruitment. Furthermore, ischemia and reperfusion injury is associated with the coordinated activation of a series of cytokines and adhesion molecules. Among the mediators of the inflammatory cascade released, TNF-alpha appears to play an essential role for the reperfusion-associated injury. On the other hand, the release of IL-10 modulates pro-inflammatory cytokine production and reperfusion-associated tissue injury. IL-1beta, PAF and bradykinin are mediators involved in ischemia and reperfusion injury by regulating the balance between TNF-alpha and IL-10 production. Strategies that enhance IL-10 and/or prevent TNF-alpha concentration may be useful as therapeutic adjuvants in the treatment of the tissue injury that follows ischemia and reperfusion.  相似文献   

16.
Tsui CP  Sung JJ  Leung FW 《Life sciences》2003,73(9):1115-1129
Time-course studies revealed the increased susceptibility of the gastric mucosa to noxious injury in portal hypertension correlates with the level of elevated portal venous pressure and hyperglucagonemia. Whether acute elevation of portal venous pressure by exogenous glucagon aggravates such injury is not known. We tested the hypothesis that glucagon in a dose sufficient to acutely elevate portal venous pressure aggravates noxious injury of the gastric mucosa in rats with portal hypertension. Infusion of a portal hypotensive dose of somatostatin should reverse these changes. In anesthetized rats with portal vein ligation, glucagon, somatostatin or the combination was administered intravenously in a randomized, coded fashion. Acidified ethanol-induced gastric mucosal injury was determined. Portal venous pressure and gastric mucosal perfusion and oxygenation (reflectance spectrophotometry) were monitored to confirm the effects of the respective intravenous treatments. Exogenous glucagon exacerbated acidified ethanol-induced gastric mucosal injury. The exacerbation was attenuated by somatostatin. These changes paralleled the portal hypertensive and hypotensive effects of glucagon and somatostatin, respectively. Our data suggest that a unique mechanism is triggered with the onset of portal hypertension. In an antagonistic manner, glucagon and somatostatin modulate this novel mechanism that controls portal venous pressure and susceptibility of the gastric mucosa to noxious injury.  相似文献   

17.
Orexin-A, identified in the neurons and endocrine cells in the gut, has been implicated in control of food intake and sleep behavior but little is known about its influence on gastric secretion and mucosal integrity. The effects of orexin-A on gastric secretion and gastric lesions induced in rats by 3.5 h of water immersion and restraint stress (WRS) or 75% ethanol were determined. Orexin-A (5-80 microg/kg i.p.) increased gastric acid secretion and attenuated gastric lesions induced by WRS and this was accompanied by the significant rise in plasma orexin-A, CGRP and gastrin levels, the gastric mucosal blood flow (GBF), luminal NO concentration and an increase in mRNA for CGRP and overexpression of COX-2 protein and the generation of PGE(2) in the gastric mucosa. Orexin-A-induced protection was abolished by selective OX-1 receptor antagonist, vagotomy and attenuated by suppression of COX-1 and COX-2, deactivation of afferent nerves with neurotoxic dose of capsaicin, pretreatment with CCK(2)/gastrin antagonist, CGRP(8-37) or capsazepine and by inhibition of NOS with L-NNA. This study shows for the first time that orexin-A exerts a potent protective action on the stomach of rats exposed to non-topical ulcerogens such as WRS or topical noxious agents such as ethanol and these effects depend upon hyperemia mediated by COX-PG and NOS-NO systems, activation of vagal nerves and sensory neuropeptides such as CGRP released from sensory nerves probably triggered by an increase in gastric acid secretion induced by this peptide.  相似文献   

18.
Solcoseryl, a deproteinized extract of calf blood, protects the gastric mucosa against various topical irritants and enhances the healing of chronic gastric ulcerations but the mechanisms of these effects have been little studied. This study was designed to elucidate the active principle in Solcoseryl and to determine the role of prostaglandins (PG) and polyamines in the antiulcer properties of this agent. Using both, the radioimmunoassay and radioreceptor assay, EGF-like material was detected in Solcoseryl preparation. Solcoseryl given s.c. prevented the formation of stress-induced gastric lesions and this was accompanied by an increase in the generation of PGE2 in the gastric mucosa. Similar effects were obtained with EGF. Pretreatment with indomethacin, to suppress mucosal generation of prostaglandins (PG), greatly augmented stress-induced gastric ulcerations and antagonized the protection exerted by both Solcoseryl and EGF. Solcoseryl, like EGF, enhanced the healing of chronic gastro-duodenal ulcerations. This effect was abolished by the pretreatment with difluoromethylornithine, an inhibitor of ornithine decarboxylase, the key enzyme in the biosynthesis of polyamines. The healing effects of Solcoseryl and EGF was also reduced by prednisolone which decreased the angiogenesis in the granulation tissue in the ulcer area. These results indicate that Solcoseryl 1. contains EGF-like material, 2. displays the protective and ulcer healing effects similar to those of EGF and involving both PG and polyamines and 3. acts via similar mechanism as does EGF.  相似文献   

19.
Chronic injury to the healthy gastric mucosa with noxious agents such as aspirin or alcohol induces a progressive strengthening of the stomach wall against these insults. The present study examined the histologic response of the rat gastric mucosa to chronic destruction of the superficial mucosa for one month with hypertonic saline. The number, position and morphology of proliferating, parietal, G and D cells were followed during mucosal injury and one month of recovery. The results showed that chronic injury reduced parietal cell numbers by about 30 percent, particularly in the middle of the mucosal thickness where a clear zone was formed by hypertrophy of mucous neck-like cells. G cells were also reduced by about 50 percent, but there were no changes in D cells. Chronic injury induced a marked increase in the number of antral (+112 percent) and fundic (+250 percent) proliferating cells. CONCLUSION: The rat gastric mucosa responds to chronic superficial injury by down-regulation of acid secretory cells and gastrin secreting cells and an up-regulation of proliferating cells. The appearance of a prominent layer of mucous neck-like cells may indicate a new secretory function for these cells.  相似文献   

20.
Lipid mediators, thromboxane A2 (TxA2) and platelet-activating factor (PAF), are potent vasoconstrictors, and have been implicated as mediators of liver diseases, such as ischemic-reperfusion injury. We determined the effects of a TxA2 analogue (U-46619) and PAF on the vascular resistance distribution and liver weight (wt) in isolated guinea pig livers perfused with blood via the portal vein. The sinusoidal pressure was measured by the double occlusion pressure (P(do)), and was used to determine the pre- (R(pre)) and post-sinusoidal (R(post)) resistances. U-46619 and PAF concentration-dependently increased the hepatic total vascular resistance (R(t)). The minimum concentration at which significant vasoconstriction occurs was 0.001 microM for PAF and 0.1 microM for U-46619. Moreover, the concentration of U-46619 required to increase R(t) to the same magnitude is 100 times higher than PAF. Thus, the responsiveness to PAF was greater than that to U-46619. Both agents increased predominantly R(pre) over R(post). U-46619 caused a sustained liver weight loss. In contrast, PAF also caused liver weight loss at lower concentrations, but it produced liver weight gain at higher concentrations (2.5 +/- 0.3 per 10g liver weight at 1 microM PAF), which was caused by substantial post-sinusoidal constriction and increased P(do). In conclusion, both TxA2 and PAF contract predominantly the pre-sinusoidal veins. TxA2 causes liver weight loss, while PAF at high concentrations increases liver weight due to substantial post-sinusoidal constriction in isolated guinea pig livers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号