共查询到20条相似文献,搜索用时 15 毫秒
1.
Timothy A. Barrett Andrew Wu Hu Zhang M. Susana Levy Gary J. Lye 《Biotechnology and bioengineering》2010,105(2):260-275
Experimentation in shaken microplate formats offers a potential platform technology for the rapid evaluation and optimization of cell culture conditions. Provided that cell growth and antibody production kinetics are comparable to those found in currently used shake flask systems then the microwell approach offers the possibility to obtain early process design data more cost effectively and with reduced material requirements. This work describes a detailed engineering characterization of liquid mixing and gas–liquid mass transfer in microwell systems and their impact on suspension cell cultures. For growth of murine hybridoma cells producing IgG1, 24‐well plates have been characterized in terms of energy dissipation (P/V) (via Computational Fluid Dynamics, CFD), fluid flow, mixing and oxygen transfer rate as a function of shaking frequency and liquid fill volume. Predicted kLa values varied between 1.3 and 29 h?1; liquid‐phase mixing time, quantified using iodine decolorization experiments, varied from 1.7 s to 3.5 h; while the predicted P/V ranged from 5 to 35 W m?3. CFD simulations of the shear rate predicted hydrodynamic forces will not be detrimental to cells. For hybridoma cultures however, high shaking speeds (>250 rpm) were shown to have a negative impact on cell growth, while a combination of low shaking speed and high well fill volume (120 rpm, 2,000 µL) resulted in oxygen limited conditions. Based on these findings a first engineering comparison of cell culture kinetics in microwell and shake flask formats was made at matched average energy dissipation rates. Cell growth kinetics and antibody titer were found to be similar in 24‐well microtiter plates and 250 mL shake flasks. Overall this work has demonstrated that cell culture performed in shaken microwell plates can provide data that is both reproducible and comparable to currently used shake flask systems while offering at least a 30‐fold decrease in scale of operation and material requirements. Linked with automation this provides a route towards the high throughput evaluation of robust cell lines under realistic suspension culture conditions. Biotechnol. Bioeng. 2010; 105: 260–275. © 2009 Wiley Periodicals, Inc. 相似文献
2.
Summary A selection of dyes for tracer studies in bioreactors, specially for wastewater treatment, is presented. Substances that showed no adsorption on air or biomass, stability in time, good solubility and no color change between pH 6.5 to 8.5, were: bromocresol green, bromophenol blue, dextran blue, eosin Y and mordant violet. Consequently they seem to be adequate for common biochemical engineering processes. In addition, dyes that showed some limitations, but may be employed in special cases, were: bromophenol red and phenol red (color change between pH 5.0 to 6.8 and 6.8 to 8.4 respectively) and methylene violet Bernsthen (low spectrophotometric response). 相似文献
3.
Gina L. Carter Edith M. Peck Lawrence B. Elfbaum Bea Bacher-Wetmore 《Journal of industrial microbiology & biotechnology》1994,13(3):197-198
Conclusion Culture collections are key to the success of biotechnology companies. Protection of patent strains and manufacturing inoculum; standardization of biological materials for research, development and manufacturing; and documentation of organism transfers are essential functions provided by a culture collection in a biotechnology company. Certified, stable mammalian cell cultures will continue to be key in research advances and in manufacturing of biotechnology products in the future. 相似文献
4.
Stochastic compartmental models are widely used in modeling processes such as drug kinetics in biological systems. This paper considers the distribution of the residence times for stochastic multi-compartment models, especially systems with non-exponential lifetime distributions. The paper first derives the moment generating function of the bivariate residence time distribution for the two-compartment model with general lifetimes and approximates the density of the residence time using the saddlepoint approximation. Then, it extends the distributional approach to the residence time for multi-compartment semi-Markov models combining the cofactor rule for a single destination and the analytic approach to the two-compartment model. This approach provides a complete specification of the residence time distribution based on the moment generating function and thus facilitates an easier calculation of high-order moments than the approach using the coefficient matrix. Applications to drug kinetics demonstrate the simplicity and usefulness of this approach. 相似文献
5.
George E. Moore Peter Hasenpusch Robert E. Gerner Alex A. Burns 《Biotechnology and bioengineering》1968,10(5):625-640
Studies of the possible viral etiology of human leukemia have required large quantities of cultured cells derived from human hematopoietic tissues. Since cultures sufficiently large and free from contamination could not readily be produced according to existing methods, a pilot, cell culture plant has been constructed for the production of mammalian cells in mass quantity. 500-ml to 20-liter trophocell units have already proved to be scientifically and economically practical, as they provide good reliability, excellent growth rates, and sustained yield of human cells. 200-liter stainless steel culture units have now been added to the trophocell system. Five complete 200 liter units are now in operation. The design of the original stainless steel unit was based on that of a stainless steel, jacketed soup kettle. There are no openings in the vessel other than those in the lid, which provide convenient access points for sampling, sensor probes, etc. Environmental parameters, e.g., liquid level, temperature, and pH, are monitored and controlled with commercially available apparatus. Many initial problems connected with the new 200 liter units have been resolved, but operational and design problems remain in the areas of stable instrumentation, cell harvesting, salvaging and reuse of unspent media components, establishment of physiologic steady stale, recovery of virus-containing cells with reculture of the remaining unaffected cells, and the recovery and separation of cell components and special products such as immunoglobulins, interferons, and hormones. A definitive cell plant with culture units of 20, 50, 250, and 1250 liters is now being constructed. 相似文献
6.
Geoffrey L. Francis 《Cytotechnology》2010,62(1):1-16
Albumin has a long historical involvement in design of media for the successful culture of mammalian cells, in both the research and commercial fields. The potential application of albumins, bovine or human serum albumin, for cell culture is a by-product of the physico-chemical, biochemical and cell-specific properties of the molecule. In this review an analysis of these features of albumin leads to a consideration of the extracellular and intracellular actions of the molecule, and importantly the role of its interactions with numerous ligands or bioactive factors that influence the growth of cells in culture: these include hormones, growth factors, lipids, amino acids, metal ions, reactive oxygen and nitrogen species to name a few. The interaction of albumin with the cell in relation to these co-factors has a potential impact on metabolic and biosynthetic activity, cell proliferation and survival. Application of this knowledge to improve the performance in manufacturing biotechnology and in the emerging uses of cell culture for tissue engineering and stem cell derived therapies is an important prospect. 相似文献
7.
Previous work has demonstrated that high ethanol productivities can be achieved using yeast or bacterial cells adsorbed onto the surface of ion exchange resin in vertical packed bed bioreactors. The present work quantitatively characterizes the overall degree of backmixing in such reactors at two scales of operation: 2.0 and 8.0 L. Stimulus-response experiments, using two solvents (2,3-butanediol and 2-ethoxyethanol) as tracers, were performed to measure the liquid phase residence time distribution (RTD) during continuous ethanol fermentations using the yeast Saccharomyces cerevisiae and the bacterium Zymomonas mobilis at the 2-L scale, and with S. cerevisiae at the 8-L scale. In order to separately determine the effects of liquid flow rate and gas evolution on the degree of mixing, stimulus-response experiments were also performed in the systems without microbial cells present. The evolution of CO(2) was found to dramatically increase the extent of mixing; however, the tanks-in-series model for non-ideal flow represented the systems adequately. The packed beds were equivalent to over 70 tanks-in-series during abiotic operation while during fermentations, with similar liquid flow rates, they ranged in equivalence from 35 to 15 tanks-in-series. This increased knowledge of the overall degree of mixing in packed bed, immobilized cell bioreactors will allow for more accurate kinetic modelling and efficient scale up of the process. 相似文献
8.
Packed-bed bioreactors for mammalian cell culture: bioprocess and biomedical applications 总被引:2,自引:0,他引:2
This article describes the development history of packed-bed bioreactors (PBRs) used for the culture of mammalian cells. It further reviews the current applications of PBRs and discusses the steps forward in the development of these systems for bioprocess and biomedical applications. The latest generation of PBRs used in bioprocess applications achieve very high cell densities (>10(8) cells ml(-1)) leading to outstandingly high volumetric productivity. However, a major bottleneck of such PBRs is their relatively small volume. The current maximal volume appears to be in the range of 10 to 30 l. A scale-up of more than 10-fold would be necessary for these PBRs to be used in production processes. In biomedical applications, PBRs have proved themselves as compact bioartificial organs, but their metabolic activity declines frequently within 1 to 2 weeks of operation. A main challenge in this field is to develop cell lines that grow consistently to high cell density in vitro and maintain a stable phenotype for a minimum of 1 to 2 months. Achieving this will greatly enhance the usefulness of PBR technology in clinical practice. 相似文献
9.
10.
A formulation to calculate the mean cell residence time (MCRT or sludge age) of unsteady-state activated sludge systems is presented. The formulation was studied by applying it to data generated by computer simulation and to data obtained from an actual wastewater treatment plant. The computer simulation study allowed the effects of step and pulse changes in biochemical oxygen demand (BOD) loading, and step changes in a control variable, waste sludge flow rate, to be studied independently of each other and of other disturbances. The unsteady-state MCRT formulation (herein called the dynamic sludge age, or DSA) was found to be an improvement over the traditional steady-state calculation, both for process control, and for research into activated sludge dynamics. 相似文献
11.
12.
13.
A new bacterial cellulose substrate for mammalian cell culture 总被引:2,自引:0,他引:2
A new substrate for mammalian cell culture was developed using a cellulose membrane produced byAcetobacter aceti. Modification of the ionic charge of the membrane and adsorption of collagen to it promoted cellular adhesion to the membrane surface. The growth of eight kinds of cells on the membrane, was comparable to that achieved in plastic Petri dishes. The membrane was tested for use in the production of recombinant Erythroid Differentiation Factor (EDF)/activin A using genetically engineered Chinese hamster ovary cells. Both the viability of the cells and production of EDF/activin A were maintained for about 1 month, while cultures on plastic dishes lasted only 12 days. It was considered that the mechanism of improved cell viability was related to the ultrastructure of the cellulose membrane. 相似文献
14.
Mammalian cell culture is widely used to produce valuable biotherapeutics including monoclonal antibodies, vaccines and growth factors. Industrial cell lines such as Chinese hamster ovary (CHO), mouse myeloma (NS0), baby hamster kidney (BHK) and human embryonic kidney (HEK)-293 retain many molecular components of the apoptosis cascade. Consequently, these cells often undergo programmed cell death upon exposure to stresses encountered in bioreactors. The implementation of strategies to control apoptosis and enhance culture productivities represents a major goal of biotechnologists. Fortunately, previous research has uncovered many intracellular proteins involved in activating and inhibiting apoptosis. Here, we summarize three apoptotic pathways and discuss different environmental and genetic methodologies implemented to limit cell death for biotechnology applications. 相似文献
15.
Quadrat analysis was used to investigate the spatial distribution of seven mammalian cell lines in culture. The number of
cells in replicate unit areas of the culture was determined, and the variance to mean ratio used as an index of random and
nonrandom spatial distribution. Only mouse SV3T3 cells distributed themselves randomly throughout the entire culture growth
cycle. The remaining six lines all assumed a nonrandom distribution at some point in their growth cycles. Mouse L929 cells
displayed avoidance behavior, and spaced themselves at regular intervals in a uniform spatial distribution. The five remaining
lines (mouse S180, rat C6, hamster CHO, canine MDCK, and human BeWo) formed multicellular clusters, and were distributed aggregatively
rather than randomly. Random walk migration can account for the random distribution of SV3T3 cells. Random walk combined with
contact inhibition of movement provides a satisfactory explanation for the uniform distribution of L929 cells. Random walk
and contact inhibition are incompatible with cell clustering, however. Thus other mechanisms of motility or adhesiveness must
contribute to cell clustering. It is possible that random walk and contact inhibition may be less common components of cell
movement than generally assumed. 相似文献
16.
David Bulnes‐Abundis Leydi M. Carrillo‐Cocom Diana Aráiz‐Hernández Alfonso García‐Ulloa Marisa Granados‐Pastor Pamela B. Sánchez‐Arreola Gayathree Murugappan Mario M. Alvarez 《Biotechnology and bioengineering》2013,110(4):1106-1118
In industrial practice, stirred tank bioreactors are the most common mammalian cell culture platform. However, research and screening protocols at the laboratory scale (i.e., 5–100 mL) rely primarily on Petri dishes, culture bottles, or Erlenmeyer flasks. There is a clear need for simple—easy to assemble, easy to use, easy to clean—cell culture mini‐bioreactors for lab‐scale and/or screening applications. Here, we study the mixing performance and culture adequacy of a 30 mL eccentric stirred tank mini‐bioreactor. A detailed mixing characterization of the proposed bioreactor is presented. Laser induced fluorescence (LIF) experiments and computational fluid dynamics (CFD) computations are used to identify the operational conditions required for adequate mixing. Mammalian cell culture experiments were conducted with two different cell models. The specific growth rate and the maximum cell density of Chinese hamster ovary (CHO) cell cultures grown in the mini‐bioreactor were comparable to those observed for 6‐well culture plates, Erlenmeyer flasks, and 1 L fully instrumented bioreactors. Human hematopoietic stem cells were successfully expanded tenfold in suspension conditions using the eccentric mini‐bioreactor system. Our results demonstrate good mixing performance and suggest the practicality and adequacy of the proposed mini‐bioreactor. Biotechnol. Bioeng. 2013; 110: 1106–1118. © 2012 Wiley Periodicals, Inc. 相似文献
17.
Spectroscopic methods and their applicability for high‐throughput characterization of mammalian cell cultures in automated cell culture systems 下载免费PDF全文
Carsten Musmann Klaus Joeris Sven Markert Dörte Solle Thomas Scheper 《Engineering in Life Science》2016,16(5):405-416
The number and use of automated cell culture systems for mammalian cell culture are steadily increasing. Automated cell culture systems require miniaturized analytics with a high throughput to obtain as much information as possible from single experiments. Standard analytics commonly used for conventional bioreactor samples cannot handle the high throughput and the low sample volumes. Spectroscopic methods provide a means of meeting this analytical requirement and afford fast and direct access to process information. In the first part of this review, UV/VIS, fluorescence, Raman, near‐infrared, and mid‐infrared spectroscopy are presented. In the second part of the review, these spectroscopic methods are evaluated in terms of their applicability in the new field of mammalian cell culture processes in automated cell culture systems. Unlike standard bioreactors, these automated systems have special requirements that apply to the use of spectroscopic methods. Therefore, they are compared with regard to cell culture automation, throughput, and required sample volume. 相似文献
18.
Lake-Ee Quek Stefanie Dietmair Jens O. Krömer Lars K. Nielsen 《Metabolic engineering》2010,12(2):161-171
Mammalian cell culture metabolism is characterized by glucoglutaminolysis, that is, high glucose and glutamine uptake combined with a high rate of lactate and non-essential amino acid secretion. Stress associated with acid neutralization and ammonia accumulation necessitates complex feeding schemes and limits cell densities achieved in fed-batch culture. Conventional and constraint-based metabolic flux analysis has been successfully used to study the metabolic phenotype of mammalian cells in culture, while 13C tracer analysis has been used to study small network models and validate assumptions of metabolism. Large-scale 13C metabolic flux analysis, which is required to improve confidence in the network models and their predictions, remains a major challenge. Advances in both modeling and analytical techniques are bringing this challenge within sight. 相似文献
19.
Several methods exist for assessing population growth and protein productivity in mammalian cell culture. These methods were
critically examined here, based on experiments with two hybridoma cell lines. It is shown that mammalian cell culture parameters
must be evaluated on the same basis. In batch culture mode most data is obtained on a cumulative basis (protein product titre,
substrate concentration, metabolic byproduct concentration). A simple numerical integration technique can be employed to convert
cell concentration data to a cumulative basis (cell-hours). The hybridoma lines used in this study included a nutritionally
non-fastidious line producing low levels of MAb and a nutritionally fastidious hybridoma with high productivity. In both cases
the cell-hour approach was the most appropriate means of expressing the relationship between protein productivity and cell
population dynamics. The cell-hour approach could be used as the basis for all metabolic population parameter evaluations.
This method has the potential to be used successfully for both prediction and optimization purposes.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献