首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yoo D  Wootton SK  Li G  Song C  Rowland RR 《Journal of virology》2003,77(22):12173-12183
Porcine reproductive and respiratory syndrome virus (PRRSV) replicates in the cytoplasm of infected cells, but its nucleocapsid (N) protein localizes specifically to the nucleus and nucleolus. The mechanism of nuclear translocation and whether N associates with particular nucleolar components are unknown. In the present study, we show by confocal microscopy that the PRRSV N protein colocalizes with the small nucleolar RNA (snoRNA)-associated protein fibrillarin. Direct and specific interaction of N with fibrillarin was demonstrated in vivo by the mammalian two-hybrid assay in cells cotransfected with the N and fibrillarin genes and in vitro by the glutathione S-transferase pull-down assay using the expressed fibrillarin protein. Using a series of deletion mutants, the interactive domain of N with fibrillarin was mapped to a region of amino acids 30 to 37. For fibrillarin, the first 80 amino acids, which contain the glycine-arginine-rich region (the GAR domain), was determined to be the domain interactive with N. The N protein was able to bind to the full-length genomic RNA of PRRSV, and the RNA binding domain was identified as the region overlapping with the nuclear localization signal situated at positions 41 to 47. These results suggest that the N protein nuclear transport may be controlled by the binding of RNA to N. The PRRSV N protein was also able to bind to both 28S and 18S ribosomal RNAs. The protein-protein interaction between N and fibrillarin was RNA dependent but independent of N protein phosphorylation. Taken together, our studies demonstrate a specific interaction of the PRRSV nucleocapsid protein with the host cell protein fibrillarin in the nucleolus, and they imply a potential linkage of viral strategies for the modulation of host cell functions, possibly through rRNA precursor processing and ribosome biogenesis.  相似文献   

2.
The arterivirus nucleocapsid (N) protein is a multifunctional protein that binds viral RNA for encapsidation and has potential roles in host cell processes. This study characterised the N protein from a highly virulent North American strain of porcine reproductive and respiratory syndrome virus (PRRSV). The association with viral RNA was mapped to defined motifs on the N protein. The results indicated that disulphide bridge formation played a key role in RNA binding, offering an explanation why infectious virus cannot be rescued if cysteine residues are mutated, and that multiple sites may promote RNA binding.  相似文献   

3.
4.
Viral ribonucleocapsids harboring the viral genomic RNA are used as the template for viral mRNA synthesis and replication of the viral genome by viral RNA-dependent RNA polymerase (RdRp). Here we show that hantavirus nucleocapsid protein (N protein) interacts with RdRp in virus-infected cells. We mapped the RdRp binding domain at the N terminus of N protein. Similarly, the N protein binding pocket is located at the C terminus of RdRp. We demonstrate that an N protein-RdRp interaction is required for RdRp function during the course of virus infection in the host cell.  相似文献   

5.
6.
The coronavirus mouse hepatitis virus (MHV) translates its replicase gene (gene 1) into two co-amino-terminal polyproteins, polyprotein 1a and polyprotein 1ab. The gene 1 polyproteins are processed by viral proteinases to yield at least 15 mature products, including a putative RNA helicase from polyprotein 1ab that is presumed to be involved in viral RNA synthesis. Antibodies directed against polypeptides encoded by open reading frame 1b were used to characterize the expression and processing of the MHV helicase and to define the relationship of helicase to the viral nucleocapsid protein (N) and to sites of viral RNA synthesis in MHV-infected cells. The antihelicase antibodies detected a 67-kDa protein in MHV-infected cells that was translated and processed throughout the virus life cycle. Processing of the 67-kDa helicase from polyprotein 1ab was abolished by E64d, a known inhibitor of the MHV 3C-like proteinase. When infected cells were probed for helicase by immunofluorescence laser confocal microscopy, the protein was detected in patterns that varied from punctate perinuclear complexes to large structures that occupied much of the cell cytoplasm. Dual-labeling studies of infected cells for helicase and bromo-UTP-labeled RNA demonstrated that the vast majority of helicase-containing complexes were active in viral RNA synthesis. Dual-labeling studies for helicase and the MHV N protein showed that the two proteins almost completely colocalized, indicating that N was associated with the helicase-containing complexes. This study demonstrates that the putative RNA helicase is closely associated with MHV RNA synthesis and suggests that complexes containing helicase, N, and new viral RNA are the viral replication complexes.  相似文献   

7.
8.
9.
【目的】猪繁殖与呼吸综合征病毒(PRRSV)是一种危害全球养猪业的重要病原。SUMO(Small ubiquitin-like modifier)化修饰作为一种可逆的翻译后修饰在调节病毒复制方面发挥着重要功能。PIAS1(Protein inhibitor of activated STAT1)是SUMO E3连接酶PIAS家族的一员,可以促进靶蛋白的SUMO化修饰,进而影响靶蛋白的功能,参与基因转录调控过程。探究PIAS1与PRRSV N蛋白相互作用的机制及其对N蛋白SUMO化修饰和病毒复制的影响,为进一步阐明PRRSV复制调控和致病的分子机制提供科学依据。【方法】利用酵母回复杂交、免疫共沉淀和激光共聚焦技术验证N蛋白与PIAS1的相互作用;以递增剂量外源性转染PIAS1观察其是否介导N蛋白SUMO化修饰;采用RNA干扰和慢病毒转导技术测定PIAS1对PRRSV复制的影响。【结果】PIAS1能与N蛋白相互作用,而且两者主要共定位于胞浆中;外源转染PIAS1并未增加N蛋白SUMO化修饰水平;在MARC-145细胞中,PIAS1的表达有利于PRRSV的复制。【结论】PIAS1可促进PRRSV的复制。  相似文献   

10.
11.
12.
Genomic replication of the negative-strand RNA viruses is dependent upon protein synthesis. To examine the requirement for protein synthesis in replication, we developed an in vitro system that supports the genome replication of defective interfering particles of the negative-strand rhabdovirus vesicular stomatitis virus (VSV), as a function of protein synthesis (Wertz, J. Virol. 46:513-522, 1983). The system consists of defective interfering nucleocapsid templates and an mRNA-dependent reticulocyte lysate to support protein synthesis. We report here an analysis of the requirement for individual viral proteins in VSV replication. Viral mRNAs purified by hybridization to cDNA clones were used to direct the synthesis of individual proteins in the in vitro system. By this method, it was demonstrated that the synthesis of the VSV nucleocapsid protein, N, alone, resulted in the replication of genome-length RNA by both defective interfering intracellular nucleocapsids and virion-derived nucleocapsids. Neither the viral phosphoprotein, NS, nor the matrix protein, M, supported RNA replication. The amount of RNA replication for a given amount of N protein was the same in reactions in which either all of the VSV proteins or only N protein were synthesized. In addition, RNA replication products synthesized in reactions containing only newly made N protein assembled with the N protein to form nucleocapsids. These results demonstrate that the major nucleocapsid protein (N) can by itself fulfill the requirement for protein synthesis in RNA replication and allow complete replication, i.e., initiation and elongation, as well as encapsidation of genome-length progeny RNA.  相似文献   

13.
与PRRSV nsp11互作的宿主细胞蛋白鉴定及生物信息学分析   总被引:1,自引:0,他引:1  
靳换  李逸  姜楠  周磊  盖新娜  杨汉春  郭鑫 《微生物学通报》2017,44(12):2856-2870
【目的】研究猪繁殖与呼吸综合征病毒(Porcine reproductive and respiratory syndrome virus,PRRSV)nsp11与宿主细胞蛋白之间的相互作用,对于揭示nsp11在病毒复制过程中发挥的功能至关重要。【方法】在病毒感染细胞的基础上,利用nsp11的单克隆抗体,采用免疫沉淀结合串联质谱的方法,筛选与PRRSV nsp11相互作用的宿主细胞蛋白,并对所筛选出的宿主细胞蛋白进行了GO注释、COG注释和KEGG代谢通路注释;选取筛选出的宿主细胞蛋白IRAK1,利用免疫共沉淀技术和激光共聚焦技术鉴定其与nsp11之间的相互作用。【结果】与空白对照组相比,病毒感染组中出现3条差异带;经质谱分析共筛选得到了201个与nsp11相互作用的宿主细胞蛋白,分别与蛋白质代谢、细胞信号通路转导以及病原致病性等密切相关;在生物信息学分析的基础上,实验验证了nsp11确与宿主细胞蛋白IRAK1进行相互作用。【结论】鉴定出与PRRSV nsp11相互作用的宿主细胞蛋白,生物信息学分析显示它们在病毒的复制和致病过程中发挥重要作用。研究结果为探究nsp11的生物学功能指明了方向,也为研究宿主细胞蛋白与病毒蛋白间的相互作用及其调控病毒复制和致病性的分子机制奠定了基础。  相似文献   

14.
15.
Immunogold electron microscopy and analysis were used to determine the organization of the major structural proteins of vesicular stomatitis virus (VSV) during virus assembly. We determined that matrix protein (M protein) partitions into plasma membrane microdomains in VSV-infected cells as well as in transfected cells expressing M protein. The sizes of the M-protein-containing microdomains outside the virus budding sites (50 to 100 nm) were smaller than those at sites of virus budding (approximately 560 nm). Glycoprotein (G protein) and M protein microdomains were not colocalized in the plasma membrane outside the virus budding sites, nor was M protein colocalized with microdomains containing the host protein CD4, which efficiently forms pseudotypes with VSV envelopes. These results suggest that separate membrane microdomains containing either viral or host proteins cluster or merge to form virus budding sites. We also determined whether G protein or M protein was colocalized with VSV nucleocapsid protein (N protein) outside the budding sites. Viral nucleocapsids were observed to cluster in regions of the cytoplasm close to the plasma membrane. Membrane-associated N protein was colocalized with G protein in regions of plasma membrane of approximately 600 nm. In contrast to the case for G protein, M protein was not colocalized with these areas of nucleocapsid accumulation. These results suggest a new model of virus assembly in which an interaction of VSV nucleocapsids with G-protein-containing microdomains is a precursor to the formation of viral budding sites.  相似文献   

16.
During virus assembly, the capsid proteins of RNA viruses bind to genomic RNA to form nucleocapsids. However, it is now evident that capsid proteins have additional functions that are unrelated to nucleocapsid formation. Specifically, their interactions with cellular proteins may influence signaling pathways or other events that affect virus replication. Here we report that the rubella virus (RV) capsid protein binds to poly(A)-binding protein (PABP), a host cell protein that enhances translational efficiency by circularizing mRNAs. Infection of cells with RV resulted in marked increases in the levels of PABP, much of which colocalized with capsid in the cytoplasm. Mapping studies revealed that capsid binds to the C-terminal half of PABP, which interestingly is the region that interacts with other translation regulators, including PABP-interacting protein 1 (Paip1) and Paip2. The addition of capsid to in vitro translation reaction mixtures inhibited protein synthesis in a dose-dependent manner; however, the capsid block was alleviated by excess PABP, indicating that inhibition of translation occurs through a stoichiometric mechanism. To our knowledge, this is the first report of a viral protein that inhibits protein translation by sequestration of PABP. We hypothesize that capsid-dependent inhibition of translation may facilitate the switch from viral translation to packaging RNA into nucleocapsids.  相似文献   

17.
After the onset of Epstein-Barr virus DNA and protein synthesis 10 h after superinfection of Raji cells (a cell line containing Epstein-Barr virus DNA but not producing virus), filamentous structures 25 nm in diameter and 0.2 to 1.4 micrometers in length could be detected in the cell cytoplasm by electron microscopy. These structures banded in metrizamide gradients with viral DNA and proteins, but at a density different from that of virions or nucleocapsids. These filaments, enriched in a 155,000-dalton protein similar in size to a major nucleocapsid protein of Epstein-Barr virus, may represent intermediates in viral nucleocapsid assembly.  相似文献   

18.
During infection, positive-strand RNA viruses subvert cellular machinery involved in RNA metabolism to translate viral proteins and replicate viral genomes to avoid or disable the host defense mechanisms. Cytoplasmic RNA granules modulate the stabilities of cellular and viral RNAs. Understanding how hepatitis C virus and other flaviviruses interact with the host machinery required for protein synthesis, localization, and degradation of mRNAs is important for elucidating how these processes occur in both virus-infected and uninfected cells.  相似文献   

19.
20.
Sindbis virus is an enveloped positive-sense RNA virus in the alphavirus genus. The nucleocapsid core contains the genomic RNA surrounded by 240 copies of a single capsid protein. The capsid protein is multifunctional, and its roles include acting as a protease, controlling the specificity of RNA that is encapsidated into nucleocapsid cores, and interacting with viral glycoproteins to promote the budding of mature virus and the release of the genomic RNA into the newly infected cell. The region comprising amino acids 81 to 113 was previously implicated in two processes, the encapsidation of the viral genomic RNA and the stable accumulation of nucleocapsid cores in the cytoplasm of infected cells. In the present study, specific amino acids within this region responsible for the encapsidation of the genomic RNA have been identified. The region that is responsible for nucleocapsid core accumulation has considerable overlap with the region that controls encapsidation specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号