首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Eklund M  Axelsson L  Uhlén M  Nygren PA 《Proteins》2002,48(3):454-462
Three pairs of small protein domains showing binding behavior in analogy with anti-idiotypic antibodies have been selected using phage display technology. From an affibody protein library constructed by combinatorial variegation of the Fc binding surface of the 58 residue staphylococcal protein A (SPA)-derived domain Z, affibody variants have been selected to the parental SPA scaffold and to two earlier identified SPA-derived affibodies. One selected affibody (Z(SPA-1)) was shown to recognize each of the five domains of wild-type SPA with dissociation constants (K(D)) in the micromolar range. The binding of the Z(SPA-1) affibody to its parental structure was shown to involve the Fc binding site of SPA, while the Fab-binding site was not involved. Similarly, affibodies showing anti-idiotypic binding characteristics were also obtained when affibodies previously selected for binding to Taq DNA polymerase and human IgA, respectively, were used as targets for selections. The potential applications for these types of affinity pairs were exemplified by one-step protein recovery using affinity chromatography employing the specific interactions between the respective protein pair members. These experiments included the purification of the Z(SPA-1) affibody from a total Escherichia coli cell lysate using protein A-Sepharose, suggesting that this protein A/antiprotein A affinity pair could provide a basis for novel affinity gene fusion systems. The use of this type of small, robust, and easily expressed anti-idiotypic affibody pair for affinity technology applications, including self-assembled protein networks, is discussed.  相似文献   

2.
Affinity reagents capable of selective recognition of the different human immunoglobulin isotypes are important detection and purification tools in biotechnology. Here we describe the development and characterization of affinity proteins (affibodies) showing selective binding to human IgA. From protein libraries constructed by combinatorial mutagenesis of a 58-amino-acid, three-helix bundle domain derived from the IgG-binding staphylococcal protein A, variants showing IgA binding were selected by using phage display technology and IgA monoclonal antibodies (myeloma) as target molecules. Characterization of selected clones by biosensor technology showed that five out of eight investigated affibody variants were capable of IgA binding, with dissociation constants (K(d)) in the range between 0.5 and 3 microm. One variant (Z(IgA1)) showing the strongest binding affinity was further analyzed, and showed that human IgA subclasses (IgA(1) and IgA(2)) as well as secretory IgA were recognized with similar efficiencies. No detectable cross-reactivity towards human IgG, IgM, IgD or IgE was observed. The potential use of the Z(IgA1) affibody as a ligand in affinity chromatography applications was first demonstrated by selective recovery of IgA protein from a spiked Escherichia coli total cell lysate, using an affinity column containing a divalent head-to-tail Z(IgA1) affibody dimer construct as a ligand. In addition, efficient affinity recovery of IgA from unconditioned human plasma was also demonstrated.  相似文献   

3.
The possibility of increasing the affinity of a Taq DNA polymerase specific binding protein (affibody) was investigated by an alpha-helix shuffling strategy. The primary affibody was from a naive combinatorial library of the three-helix bundle Z domain derived from staphylococcal protein A. A hierarchical library was constructed through selective re-randomization of six amino acid positions in one of the two alpha-helices of the domain, making up the Taq DNA polymerase binding surface. After selections using monovalent phage display technology, second generation variants were identified having affinities (K(D)) for Taq DNA polymerase in the range of 30-50 nM as determined by biosensor technology. Analysis of binding data indicated that the increases in affinity were predominantly due to decreased dissociation rate kinetics. Interestingly, the affinities observed for the second generation Taq DNA polymerase specific affibodies are of similar strength as the affinity between the original protein A domain and the Fc domain of human immunoglobulin G. Further, the possibilities of increasing the apparent affinity through multimerization of affibodies was demonstrated for a dimeric version of one of the second generation affibodies, constructed by head-to-tail gene fusion. As compared with its monomeric counterpart, the binding to sensor chip immobilized Taq DNA polymerase was characterized by a threefold higher apparent affinity, due to slower off-rate kinetics. The results show that the binding specificity of the protein A domain can be re-directed to an entirely different target, without loss of binding strength.  相似文献   

4.
Han J  Kim HJ  Lee SC  Hong S  Park K  Jeon YH  Kim D  Cheong HK  Kim HS 《PloS one》2012,7(2):e30929
Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4) decoy receptor composed of leucine-rich repeat (LRR) modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2). Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (K(D)) one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities.  相似文献   

5.
Affibody molecules generated by combinatorial protein engineering to bind the human epidermal growth factor receptor 2 (HER2) have in earlier studies proven to be promising tracers for HER2-mediated molecular imaging of cancer. Amino acid extensions either at the N- or C-terminus of these Z(HER2) affibody molecules, have been successfully employed for site-specific radiolabeling of the tracer candidates. Hexahistidyls or other tags, which would be convenient for recovery purposes, should be avoided since they could negatively influence the tumor targeting efficacy and biodistribution properties of the tracer. Using a new ?-lactamase-based protein fragment complementation assay (PCA), an affibody molecule was isolated which bound a Z(HER2) affibody molecule with sub-micromolar affinity, but not unrelated affibody molecules. This suggests that the interacting area include the HER2-binding surface of Z(HER2). This novel anti-idiotypic affibody molecule Z(E01) was produced in Escherichia coli, purified, and chemically coupled to a chromatography resin in order to generate an affibody-based affinity column, suitable for recovery of different variants of Z(HER2) affibody molecules, having a common binding surface for HER2. Eight such Z(HER2) affibody molecules, designed for future radioimaging investigations, having different C-terminal peptide extensions aimed for radioisotope ((??m)Tc)-chelation, were successfully produced and recovered in a single step to high purity using the anti-idiotypic affibody ligand for the affinity purification. These results clearly suggest a potential for the development of anti-idiotypic affibody-based resins for efficient recovery of related variants of a target protein that might have altered biochemical properties, thus avoiding the cumbersome design of specific recovery schemes for each variant of a target protein.  相似文献   

6.
For efficient generation of high-affinity protein-based binding molecules, fast and reliable downstream characterization platforms are needed. In this work, we have explored the use of staphylococcal cell surface display together with flow cytometry for affinity characterization of candidate affibody molecules directly on the cell surface. A model system comprising three closely related affibody molecules with different affinities for immunoglobulin G and an albumin binding domain with affinity for human serum albumin was used to investigate advantages and differences compared to biosensor technology in a side-by-side manner. Equilibrium dissociation constant (K(D)) determinations as well as dissociation rate analysis were performed using both methods, and the results show that the on-cell determinations give both K(D) and dissociation rate values in a very fast and reproducible manner and that the relative affinities are very similar to the biosensor results. Interestingly, the results also show that there are differences between the absolute affinities determined with the two different technologies, and possible explanations for this are discussed. This work demonstrates the advantages of cell surface display for directed evolution of affinity proteins in terms of fast postselectional, on-cell characterization of candidate clones without the need for subcloning and subsequent protein expression and purification but also demonstrates that it is important to be aware that absolute affinities determined using different methods often vary substantially and that such comparisons therefore could be difficult.  相似文献   

7.
For efficient generation of high-affinity protein-based binding molecules, fast and reliable downstream characterization platforms are needed. In this work, we have explored the use of staphylococcal cell surface display together with flow cytometry for affinity characterization of candidate affibody molecules directly on the cell surface. A model system comprising three closely related affibody molecules with different affinities for immunoglobulin G and an albumin binding domain with affinity for human serum albumin was used to investigate advantages and differences compared to biosensor technology in a side-by-side manner. Equilibrium dissociation constant (KD) determinations as well as dissociation rate analysis were performed using both methods, and the results show that the on-cell determinations give both KD and dissociation rate values in a very fast and reproducible manner and that the relative affinities are very similar to the biosensor results. Interestingly, the results also show that there are differences between the absolute affinities determined with the two different technologies, and possible explanations for this are discussed. This work demonstrates the advantages of cell surface display for directed evolution of affinity proteins in terms of fast postselectional, on-cell characterization of candidate clones without the need for subcloning and subsequent protein expression and purification but also demonstrates that it is important to be aware that absolute affinities determined using different methods often vary substantially and that such comparisons therefore could be difficult.  相似文献   

8.
We have determined the structures of complexes between the phage MS2 coat protein and variants of the replicase translational operator in order to explore the sequence specificity of the RNA–protein interaction. The 19-nt RNA hairpins studied have substitutions at two positions that have been shown to be important for specific binding. At one of these positions, –10, which is a bulged adenosine (A) in the stem of the wild-type operator hairpin, substitutions were made with guanosine (G), cytidine (C) and two non-native bases, 2-aminopurine (2AP) and inosine (I). At the other position, –7 in the hairpin loop, the native adenine was substituted with a cytidine. Of these, only the G-10, C-10 and C-7 variants showed interpretable density for the RNA hairpin. In spite of large differences in binding affinities, the structures of the variant complexes are very similar to the wild-type operator complex. For G-10 substitutions in hairpin variants that can form bulges at alternative places in the stem, the binding affinity is low and a partly disordered conformation is seen in the electron density maps. The affinity is similar to that of wild-type when the base pairs adjacent to the bulged nucleotide are selected to avoid alternative conformations. Both purines bind in a very similar way in a pocket in the protein. In the C-10 variant, which has very low affinity, the cytidine is partly inserted in the protein pocket rather than intercalated in the RNA stem. Substitution of the wild-type adenosine at position –7 by pyrimidines gives strongly reduced affinities, but the structure of the C-7 complex shows that the base occupies the same position as the A-7 in the wild-type RNA. It is stacked in the RNA and makes no direct contact with the protein.  相似文献   

9.
Ferritin messenger RNA has been shown to be translationally inactivated by the binding of a cytosolic protein to a 28-nucleotide iron-responsive element (IRE) located in the 5'-untranslated region of the mRNA. This interaction has been studied using quantitative receptor-ligand binding methods with gel retardation and nitrocellulose filter binding assays for the separation of bound complex from free RNA. In competition assays the entire 5'-untranslated region and the isolated IRE bound identically. The specificity of the RNA binding was studied using IRE variants. Two IREs from transferrin receptor mRNA and several variants with single base substitutions in the stem or loop had similar affinities. RNAs which could not form a stem-loop structure bound 1000-fold less well. These studies demonstrate the importance of the RNA conformation and the relative insensitivity of binding to much of the primary sequence. Saturation assays with increasing concentrations of 32P-IRE resulted in a binding hyperbola characteristic of mass action binding to a single class of sites with a KD = 0.09 nM. At 37 degrees C the dissociation rate is 0.04 min-1 (t 1/2 = 17 min). This rate is fast enough to account for the shift of ferritin RNA from the ribonucleoprotein pool to polysomes after rats are injected with iron. Determination of the concentration of the repressor requires accounting for three interconverting pools: free active repressor, mRNA-bound protein, and inactive (low affinity) repressor. Rat liver cytosol has a concentration of free active repressor of about 1 pmol/mg protein. Protein bound to endogenous mRNA can be measured by pretreatment with micrococcal nuclease or by separation with DEAE-Sepharose chromatography; it is present at a level similar to that of the free active protein. Inclusion of high levels of thiol reductants in the binding incubations reduces the inactive or low affinity repressor, forming unstably activated protein which has the same KD as the endogenous active protein; this inactive or low affinity protein is 2-4 times more abundant. A mechanism for iron regulation is proposed which accounts for the kinetics, the multiple protein pools, and the characteristics of the protein in these pools.  相似文献   

10.
Nucleic acid aptamer selection by systematic evolution of ligands by exponential enrichment (SELEX) has shown great promise for use in the development of research tools, therapeutics and diagnostics. Typically, aptamers are identified from libraries containing up to 1016 different RNA or DNA sequences by 5–10 rounds of affinity selection towards a target of interest. Such library screenings can result in complex pools of many target-binding aptamers. New high-throughput sequencing techniques may potentially revolutionise aptamer selection by allowing quantitative assessment of the dynamic changes in the pool composition during the SELEX process and by facilitating large-scale post-SELEX characterisation. In the present study, we demonstrate how high-throughput sequencing of SELEX pools, before and after a single round of branched selection for binding to different target variants, can provide detailed information about aptamer binding sites, preferences for specific target conformations, and functional effects of the aptamers. The procedure was applied on a diverse pool of 2′-fluoropyrimidine-modified RNA enriched for aptamers specific for the serpin plasminogen activator inhibitor-1 (PAI-1) through five rounds of standard selection. The results demonstrate that it is possible to perform large-scale detailed characterisation of aptamer sequences directly in the complex pools obtained from library selection methods, thus without the need to produce individual aptamers.  相似文献   

11.
CD28 is one of the key molecules for co-stimulatory signalling in T cells. Here, novel ligands (affibodies) showing selective binding to human CD28 (hCD28) have been selected by phage display technology from a protein library constructed through combinatorial mutagenesis of a 58-residue three-helix bundle domain derived from staphylococcal protein A. Analysis of selected affibodies showed a marked sequence homology and biosensor analyses showed that all investigated affibodies bound to hCD28 with micromolar affinities (KD). No cross-reactivity towards the related protein human CTLA-4 could be observed. This lack of cross-reactivity to hCTLA-4 suggests that the recognition site on hCD28 for the affibodies resides outside the conserved MYPPPYY motif. The apparent binding affinity for hCD28 could be improved through fusion to an Fc fragment fusion partner, resulting in a divalent presentation of the affibody ligand. For the majority of selected anti-CD28 affibodies, in co-culture experiments involving Jurkat T-cells and CHO cell lines transfected to express human CD80 (hCD80) or LFA-3 (hLFA-3) on the cell surface, respectively, pre-incubation of Jurkat cells with affibodies resulted in inhibition of IL-2 production when they were co-cultured with CHO (hCD80+) cells, but not with CHO (hLFA-3+) cells. For one affibody variant denoted Z(CD28:5) a clear concentration-dependent inhibition was seen, indicating that this affibody binds hCD28 and specifically interferes in the interaction between hCD28 and hCD80.  相似文献   

12.
Affibodies are a group of affinity proteins that are based on a 58-amino-acid residue protein domain derived from one of the IgG-binding domains of staphylococcal protein A. A single human IgA affibody with high IgA affinity has been generated by directed evolution. It remains interesting whether tandem IgA affibody proteins could increase binding capacity. Here, we report the generation of multiple tandem IgA affibodies by directed evolution using a combinatorial phage library displaying the IgA affibody A1 and/or A2 linked with three random amino acids. These affibodies exhibited markedly increased IgA binding capacity, as shown by enzyme linked immunosorbent assay, immunoblotting and surface plasmon resonance assays. We further showed that these tandem IgA affibodies displayed preferential binding to intact IgA molecules compared to individual IgA chain, suggesting intramolecular binding avidity. Our data demonstrates that artificial multiple tandem human IgA affibodies with relevant biological binding avidity were successfully yielded by phage-based molecular evolution. These results have broad implications for the design and development of binding proteins that target important biological molecules.  相似文献   

13.
Currently, it is thought that inhalational anesthetics cause anesthesia by binding to ligand-gated ion channels. This is being investigated using four-alpha-helix bundles, small water-soluble analogues of the transmembrane domains of the "natural" receptor proteins. The study presented here specifically investigates how multiple alanine-to-valine substitutions (which each decrease the volume of the internal binding cavity by 38 A(3)) affect structure, stability, and anesthetic binding affinity of the four-alpha-helix bundles. Structure remains essentially unchanged when up to four alanine residues are changed to valine. However, stability increases as the number of these substitutions is increased. Anesthetic binding affinities are also affected. Halothane binds to the four-alpha-helix bundle variants with 0, 1, and 2 substitutions with equivalent affinities but binds to the variants with 3 and 4 more tightly. The same order of binding affinities was observed for chloroform, although for a particular variant, chloroform was bound less tightly. The observed differences in binding affinities may be explained in terms of a modulation of van der Waals and hydrophobic interactions between ligand and receptor. These, in turn, could result from increased four-alpha-helix bundle binding cavity hydrophobicity, a decrease in cavity size, or improved ligand/receptor shape complementarity.  相似文献   

14.
We have previously generated an affibody molecule for the disease-associated amyloid beta (Aβ) peptide, which has been shown to inhibit the formation of various Aβ aggregates and revert the neurotoxicity of Aβ in a fruit fly model of Alzheimer's disease. In this study, we have investigated a new bacterial display system for combinatorial protein engineering of the Aβ-binder as a head-to-tail dimeric construct for future optimization efforts, e.g. affinity maturation. Using the bacterial display platform, we have: (i) demonstrated functional expression of the dimeric binder on the cell surface, (ii) determined the affinity and investigated the pH sensitivity of the interaction, (iii) demonstrated the importance of an intramolecular disulfide bond through selections from a cell-displayed combinatorial library, as well as (iv) investigated the effects from rational truncation of the N-terminal part of the affibody molecule on surface expression level and Aβ binding. Overall, the detailed engineering and characterization of this promising Aβ-specific affibody molecule have yielded valuable insights concerning its unusual binding mechanism. The results also demonstrated that our bacterial display system is a suitable technology for future protein engineering and characterization efforts of homo- or heterodimeric affinity proteins.  相似文献   

15.
Nygren PA 《The FEBS journal》2008,275(11):2668-2676
In recent years, classical antibody-based affinity reagents have been challenged by novel types of binding proteins developed by combinatorial protein engineering principles. One of these classes of binding proteins of non-Ig origin are the so-called affibody binding proteins, functionally selected from libraries of a small (6 kDa), non-cysteine three-helix bundle domain used as a scaffold. During the first 10 years since they were first described, high-affinity affibody binding proteins have been selected towards a large number of targets for use in a variety of applications, such as bioseparation, diagnostics, functional inhibition, viral targeting and in vivo tumor imaging/therapy. The small size offers the possibility to produce functional affibody binding proteins also by chemical synthesis production routes, which has been found to be advantageous for the site-specific introduction of various labels and radionuclide chelators.  相似文献   

16.
Factor VIII-specific affibodies were selected from phage displayed libraries constructed by combinatorial mutagenesis of an alpha helical bacterial receptor domain derived from staphylococcal protein A. Bead-immobilized recombinant human factor VIII (rVIII) (80 and 90 kDa chains) protein was used during competitive biopannings in the presence of free 80-kDa chain protein, resulting in the selection of several binders that showed dissociation constants (Kd) in the range 100-200 nM as determined by biosensor analyses. One variant (Z[rVIII:3], 90-kDa chain specific) was further characterized in small-scale affinity chromatography experiments, and showed efficient and selective recovery of biologically active rVIII from Chinese hamster ovary cell supernatant-derived feed stocks. The purity of the enriched rVIII was comparable with rVIII material purified by immunoaffinity chromatography using a 90-kDa chain-specific monoclonal antibody. Interestingly, epitope mapping showed that the monoclonal antibody and the affibody ligand competed for the same or at least overlapping epitopes on rVIII. In addition, the Z[rVIII:3] variant was produced by peptide synthesis with a C-terminal cysteine to enable directed coupling to solid supports. This 59-residue protein was analyzed by circular dichroism and showed a secondary structure content similar to that of the parental Z domain used as scaffold. In biosensor studies, the synthetic affibody was immobilized recruiting the C-terminal cysteine residue, and demonstrated to bind both recombinantly produced and plasma-derived factor VIII. From a secondary library, constructed by re-randomization of relevant positions identified after alignment of the first-generation variants, a panel of affinity-improved second-generation affibodies were selected of which one clone showed a dissociation constant (Kd) for rVIII of 5 nM. Several of these variants also showed higher apparent binding efficiencies towards rVIII when analyzed as immobilized ligands in biosensor experiments. Taken together, the results suggest that affibody ligands produced by bacterial or synthetic routes could be of interest as an alternative to monoclonal antibodies in purification processes or as diagnostic or monitoring tools.  相似文献   

17.
Affibody molecules are a new class of small phage-display selected proteins using a scaffold domain of the bacterial receptor protein A. They can be selected for specific binding to a large variety of protein targets. An affibody molecule binding with high affinity to a tumor antigen HER2 was recently developed for radionuclide diagnostics and therapy in vivo. The use of the positron-emitting nuclide (76)Br (T(1/2) = 16.2 h) could improve the sensitivity of detection of HER2-expressing tumors. A site-specific radiobromination of a cysteine-containing variant of the anti-HER2 affibody, (Z(HER2:4))(2)-Cys, using ((4-hydroxyphenyl)ethyl)maleimide (HPEM), was evaluated in this study. It was found that HPEM can be radiobrominated with an efficiency of 83 +/- 0.4% and thereafter coupled to freshly reduced affibody with a yield of 65.3 +/- 3.9%. A "one-pot" labeling enabled the radiochemical purity of the conjugate to exceed 97%. The label was stable against challenge with large excess of nonlabeled bromide and in a high molar strength solution. In vitro cell tests demonstrated that radiobrominated affibody binds specifically to the HER2-expressing cell-line, SK-OV-3. Biodistribution studies in nude mice bearing SK-OV-3 xenografts have shown tumor accumulation of 4.8 +/- 2.2% IA/g and good tumor-to-normal tissue ratios.  相似文献   

18.
White HN  Meng QH 《PloS one》2012,7(2):e31555
During maturing antibody responses the increase in affinity for target antigens is achieved by genetic diversification of antibody genes followed by selection for improved binding. The effect this process has on the specificity of antibody for variants of the antigen is not well-defined, despite the potential role of antibody diversification in generating enhanced protection against pathogen escape mutants, or novel specificities after vaccination. To investigate this, a library of single amino-acid substitution epitope variants has been screened with serum obtained at different time-points after immunization of mice with the HIV gp41 peptide epitope ELDKWA. The serum IgG response is shown to mature and increase affinity for ELDKWA, and the titre and affinity of IgG against most epitope variants tested increases. Furthermore there is a bias towards high affinity serum IgG binding to variant epitopes with conservative substitutions, although underlying this trend there is also significant binding to many epitopes with non-conservative substitutions. Thus, maturation of the antibody response to a single epitope results in a broadening of the high-affinity response toward variant epitopes. This implies that many pathogen epitope escape variants that could manifest as single amino-acid substitutions would not emerge by escaping immune surveillance.  相似文献   

19.
The elicitation of broadly and efficiently neutralizing antibodies in humans by active immunization is still a major obstacle in the development of vaccines against pathogens such as the human immunodeficiency virus (HIV), influenza virus, hepatitis C virus or cytomegalovirus. Here, we describe a mammalian cell surface display and monoclonal antibody (mAb)-mediated panning technology that allows affinity-based selection of envelope (Env) variants from libraries. To this end, we established an experimental setup featuring: 1) single and site specific integration of Env to link genotype and phenotype, 2) inducible Env expression to avoid cytotoxicity effects, 3) translational coupling of Env and enhanced green fluorescent protein expression to normalize for Env protein levels, and 4) display on HEK cells to ensure native folding and mammalian glycosylation. For proof of concept, we applied our method to a chimeric HIV-1 Env model library comprising variants with differential binding affinities to the V3-loop-directed mAbs 447–52D and HGN194. Fluorescence-activated cell sorting selectively enriched a high affinity variant up to 56- and 55-fold for 447–52D and HGN194, respectively, after only a single round of panning. Similarly, the low affinity variants for each antibody could be selectively enriched up to 237-fold. The binding profiles of membrane-bound gp145 and soluble gp140 chimeras showed identical affinity ranking, suggesting that the technology can guide the identification of Env variants with optimized antigenic properties for subsequent use as vaccine candidates. Finally, our mAb-based cellular display and selection strategy may also prove useful for the development of prophylactic vaccines against pathogens other than HIV.  相似文献   

20.
Bacterial conjugation, transfer of a single conjugative plasmid strand between bacteria, diversifies prokaryotic genomes and disseminates antibiotic resistance genes. As a prerequisite for transfer, plasmid-encoded relaxases bind to and cleave the transferred plasmid strand with sequence specificity. The crystal structure of the F TraI relaxase domain with bound single-stranded DNA suggests binding specificity is partly determined by an intrastrand three-way base-pairing interaction. We showed previously that single substitutions for the three interacting bases could significantly reduce binding. Here we examine the effect of single and double base substitutions at these positions on plasmid mobilization. Many substitutions reduce transfer, although the detrimental effects of some substitutions can be partially overcome by substitutions at a second site. We measured the affinity of the F TraI relaxase domain for several DNA sequence variants. While reduced transfer generally correlates with reduced binding affinity, some oriT variants transfer with an efficiency different than expected from their binding affinities, indicating ssDNA binding and cleavage do not correlate absolutely. Oligonucleotide cleavage assay results suggest the essential function of the three-base interaction may be to position the scissile phosphate for cleavage, rather than to directly contribute to binding affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号