首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biogenesis of cytochrome c oxidase (COX) is a highly complex process involving >30 chaperones in eukaryotes; those required for the incorporation of the copper and heme cofactors are also conserved in bacteria. Surf1, associated with heme a insertion and with Leigh syndrome if defective in humans, is present as two homologs in the soil bacterium Paracoccus denitrificans, Surf1c and Surf1q. In an in vitro interaction assay, the heme a transfer from purified heme a synthase, CtaA, to Surf1c was followed, and both Surf proteins were tested for their heme a binding properties. Mutation of four strictly conserved amino acid residues within the transmembrane part of each Surf1 protein confirmed their requirement for heme binding. Interestingly the mutation of a tryptophan residue in transmembrane helix II (W200 in Surf1c and W209 in Surf1q) led to a drastic switch in the heme composition, with Surf1 now being populated mostly by heme o, the intermediate in the heme a biosynthetic pathway. This tryptophan residue discriminates between the two heme moieties, apparently coordinates the formyl group of heme a, and most likely presents the cofactor in a spatial orientation suitable for optimal transfer to its target site within subunit I of cytochrome c oxidase.  相似文献   

2.
A detailed resonance Raman and electronic absorption investigation has been carried out on a series of novel distal and proximal variants of recombinant catalase-peroxidase from the cyanobacterium Synechocystis PCC 6803. In particular, variants of the distal triad Pro-Asp-Asn and the proximal triad His-Asp-Trp have been studied in their ferric and ferrous states at various pH. The data suggest marked differences in the structural role of the conserved residues and hydrogen-bond networks in KatG and CCP, which might be connected to the different catalytic activity. In particular, in KatG the proximal residues have a major role in the stability of the protein architecture because the disruption of the proximal Trp-Asp hydrogen bond by mutation weakens heme binding to the protein. On the distal side, replacing the hydrogen-acceptor carboxamide group of Asn153 by an aspartate carboxylate group or an aliphatic residue alters or disrupts the hydrogen bond with the distal His. As a consequence, the basicity of His123 is altered. The effect of mutation on Asp152 is noteworthy. Replacement of the Asp152 with Ser makes the architecture of the protein very similar to that of CCP. The Asp152 residue, which has been shown to be important in the hydrogen peroxide oxidation reaction, is expected to be hydrogen bonded to the nitrogen atom of Ile248 which is part of the KatG-specific insertion LL1, as in other KatGs. This insertion is at one edge of the heme, and connects the distal side with the proximal helices E and F, the latter carrying the proximal His ligand. We found that the distal Asp-Ile hydrogen bond is important for the stability of the heme architecture and its alteration changes markedly the proximal His-Asp hydrogen-bond interaction.  相似文献   

3.
The Trp-Ser-X-Trp-Ser motif commonly exists just outside the transmembrane domains of all cytokine receptors so far isolated. The role of this conserved motif in erythropoietin receptor was examined by assessing a series of mutant receptors on erythropoietin-induced signal transduction. Replacement of one of the two conserved Trp residues in the motif to Gly was found to completely abolish the binding of erythropoietin to the receptor and also to lose the ability to transduce the factor-dependent growth signal. While the mutants with one Ser residue converted to Gly or Ala retained full biological activities, the replacement of both conserved Ser residues diminished the functions of the receptor. Furthermore, the receptors lacking a part or all of the Trp-Ser-X-Trp-Ser motif did not respond to erythropoietin. The Trp-Ser-X-Trp-Ser motif, especially Trp residue, located in extracellular domains of the erythropoietin receptor thus appears to play a critical role in receptor-mediated signal transduction.  相似文献   

4.
The cytochrome b subunit of the bc1 complexes contains two cytochrome components (bL and bH) and is the locus of both a quinol-oxidizing site (Qo or Qz) and a quinone-reducing site (Qi or Qc). Sequence alignments of this subunit from over 20 eukaryotic and prokaryotic species have revealed a remarkable degree of conservation, including approximately 20 totally conserved residues. In this paper, site-directed mutagenesis has been used to examine the structural or functional roles of 5 of these highly conserved residues, Gly48, Gln58, Ser102, Phe104, and Pro202, all predicted to be within transmembrane alpha-helical segments. The mutants were made in the bc1 complex of Rhodobacter sphaeroides, a photosynthetic bacterium. The ability to use spectroscopic, electrochemical, and flash-induced kinetic methods allows the mutants to be analyzed for influences both on cytochrome spectra and thermodynamic properties and on the kinetics of specific electron transfer reactions. The results show that none of the 5 residues is absolutely essential. Substitution of aspartate or valine for Gly48 results in the loss of photosynthetic growth. The G48V mutant assembles a bc1 complex, but with modified cytochromes bH and bL, and a dysfunctional quinone reductase (Qc) site; an alanine is tolerated at this position. Possibly, a small residue is important here for heme packing. Gln58 and Ser102 are the only highly conserved polar residues predicted to be within the transmembrane spans, apart from the histidines which are heme axial ligands. Neither Gln58 nor Ser102 is essential for assembly or function of the bc1 complex, although substitution of other amino acids in these positions does cause subtle, but measurable changes. Phe104 lies midway between the axial ligands to cytochromes bL and bH and can be modeled to project in the space separating the two hemes. Replacement of this highly conserved aromatic residue by isoleucine has no measurable influence on the rate of electron transfer through the cytochrome b chain containing the two hemes. Finally, Pro202 is a totally conserved proline which is in the middle of transmembrane helix D, in between the 2 histidines which provide ligands to the hemes. No major inhibition of electron transfer resulted from replacing this proline by a leucine, although subtle changes in spectra of the b cytochromes and their electrochemical properties were noted.  相似文献   

5.
To define the structural basis for cofactor binding to membrane proteins, we introduce a manageable model system, which allows us, for the first time, to study the influence of individual transmembrane helices and of single amino acid residues on the assembly of a transmembrane cytochrome. In vivo as well as in vitro analyses indicate central roles of single amino acid residues for either interaction of the transmembrane helices or for binding of the cofactor. The results clearly show that interaction of the PsbF transmembrane helix is independent from binding of the heme cofactor. On the other hand, binding of the cofactor highly depends on helix-helix interactions. By site-directed mutagenesis critical amino acid residues were identified, which are involved in the assembly of a functional transmembrane cytochrome. Especially, a highly conserved glycine residue is critical for interaction of the transmembrane helices and assembly of the cytochrome. Based on the two-stage-model of alpha-helical membrane protein folding, the presented results clearly indicate a third stage of membrane protein folding, in which a cofactor binds to a pre-assembled transmembrane protein.  相似文献   

6.
Nitric oxide (NO) is synthesized from l-Arg via N(G)-hydroxyl-l-Arg (NHA) in the heme active site of nitric oxide synthase (NOS). According to the crystal structure of other NOS isoforms, the carboxylate group of l-Arg hydrogen bonds to the hydroxyl group of the conserved Tyr588 residue in the heme distal site of neuronal NOS (nNOS). Indeed, the nNOS mutations Tyr588His, Tyr588Ser, and Tyr588Phe markedly increased the dissociation constants for l-Arg and NHA by 2.2-8.2-fold and 1.5-3.9-fold, respectively. Similarly, Tyr588His and Tyr588Ser mutations markedly decreased the l-Arg-driven NO formation rates by 50 and 30% than that of the wild type, respectively. However, the catalytic activities of the same mutants using NHA were higher than that of the wild type by up to 136%. As a result, the turnover ratio of NHA to l-Arg was 4.12 for the Tyr588Ser mutant, compared with 1.07 for the wild-type enzyme. Intriguingly, heme reduction rates for the Tyr588 mutants were much lower than for wild type by two orders of magnitude.  相似文献   

7.
Mutational analysis of the mouse mitochondrial cytochrome b gene   总被引:13,自引:0,他引:13  
The protonmotive cytochrome b protein of the mitochondrial bc1 respiratory chain complex contains two reactions centers, designated Qo and Qi, which can be distinguished by the effects of different inhibitors. The nucleotide sequences have been determined of the mitochondrial cytochrome b genes from a series of mouse cell mutants selected for increased inhibitor resistance. Each mutant contains a single nucleotide change which results in an amino acid substitution. When the proximity of the altered amino acid residues to the histidines involved in heme ligation is considered, the results support a model for cytochrome b folding in which there are eight transmembrane domains rather than the nine of the Widger-Saraste model. Replacement of the Gly38 residue by valine results in resistance to the Qi inhibitors antimycin A and funiculosin but not 2-n-heptyl-hydroxyquinoline-N-oxide. Based upon sequence comparisons of mitochondrial and bacterial cytochrome b and chloroplast b6 proteins, the region of the molecule involved in antimycin binding is as highly conserved as those domains involved in heme ligation. It is suggested that the antimycin binding domain of cytochrome b is involved in forming the Qi reaction center. Alterations of the Gly142 and Thr147 residues result in resistance to myxothiazol and stimatellin, respectively. While both inhibitors block the Qo reaction center, the two mutations do not confer cross-resistance to each other. This region of cytochrome b is the most highly conserved during evolution and these inhibitor binding sites probably occur within the protein domain constituting the Qo reaction center. In addition, there is a less conserved region of the protein, defined by the Leu294 residue, which may function in binding the hydrophobic portions of Qo inhibitors.  相似文献   

8.
The initial step in the l-kynurenine pathway is oxidation of l-tryptophan to N-formylkynurenine and is catalyzed by one of two heme enzymes, tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO). Here, we address the role of the conserved active site Ser167 residue in human IDO (S167A and S167H variants), which is replaced with a histidine in other mammalian and bacterial TDO enzymes. Our kinetic and spectroscopic data for S167A indicate that this residue is not essential for O 2 or substrate binding, and we propose that hydrogen bond stabilization of the catalytic ferrous-oxy complex involves active site water molecules in IDO. The data for S167H show that the ferrous-oxy complex is dramatically destabilized in this variant, which is similar to the behavior observed in human TDO [Basran et al. (2008) Biochemistry 47, 4752-4760], and that this destabilization essentially destroys catalytic activity. New kinetic data for the wild-type enzyme also identify the ternary [enzyme-O 2-substrate] complex. The data reveal significant differences between the IDO and TDO enzymes, and the implications of these results are discussed in terms of our current understanding of IDO and TDO catalysis.  相似文献   

9.
Three conserved serine residues (Ser193, Ser194, and Ser197) in transmembrane spanning region (TM) V of the D2 dopamine receptor have been mutated to alanine, individually and in combination, to explore their role in ligand binding and G protein coupling. The multiple Ser -->Ala mutations had no effect on the binding of most antagonists tested, including [3H]spiperone, suggesting that the multiple mutations did not affect the overall conformation of the receptor protein. Double or triple mutants containing an Ala197 mutation showed a decrease in affinity for domperidone, whereas Ala193 mutants showed an increased affinity for a substituted benzamide, remoxipride. However, dopamine showed large decreases in affinity (>20-fold) for each multiple mutant receptor containing the Ser193Ala mutation, and the high-affinity (coupled) state of the receptor (in the absence of GTP) could not be detected for any of the multiple mutants. A series of monohydroxylated phenylethylamines and aminotetralins was tested for their binding to the native and multiple mutant D2 dopamine receptors. The results obtained suggest that Ser193 interacts with the hydroxyl of S-5-hydroxy-2-dipropylaminotetralin (OH-DPAT) and Ser197 with the hydroxyl of R-5-OH-DPAT. We predict that Ser193 interacts with the hydroxyl of R-7-OH-DPAT and the 3-hydroxyl (m-hydroxyl) of dopamine. Therefore, the conserved serine residues in TMV of the D2 dopamine receptor are involved in hydrogen bonding interactions with selected antagonists and most agonists tested and also enable agonists to stabilise receptor-G protein coupling.  相似文献   

10.
Cytochrome bd is a quinol oxidase of Escherichia coli under microaerophilic growth conditions. Coupling of the release of protons to the periplasm by quinol oxidation to the uptake of protons from the cytoplasm for dioxygen reduction generates a proton motive force. On the basis of sequence analysis, glutamates 99 and 107 conserved in transmembrane helix III of subunit I have been proposed to convey protons from the cytoplasm to heme d at the periplasmic side. To probe a putative proton channel present in subunit I of E. coli cytochrome bd, we substituted a total of 10 hydrophilic residues and two glycines conserved in helices I and III-V and examined effects of amino acid substitutions on the oxidase activity and bound hemes. We found that Ala or Leu mutants of Arg9 and Thr15 in helix I, Gly93 and Gly100 in helix III, and Ser190 and Thr194 in helix V exhibited the wild-type phenotypes, while Ala and Gln mutants of His126 in helix IV retained all hemes but partially lost the activity. In contrast, substitutions of Thr26 in helix I, Glu99 and Glu107 in helix III, Ser140 in helix IV, and Thr187 in helix V resulted in the concomitant loss of bound heme b558 (T187L) or b595-d (T26L, E99L/A/D, E107L/A/D, and S140A) and the activity. Glu99 and Glu107 mutants except E107L completely lost the heme b595-d center, as reported for heme b595 ligand (His19) mutants. On the basis of this study and previous studies, we propose arrangement of transmembrane helices in subunit I, which may explain possible roles of conserved hydrophilic residues within the membrane.  相似文献   

11.
Garscha U  Oliw EH 《FEBS letters》2008,582(23-24):3547-3551
7,8-Linoleate diol synthase (7,8-LDS) of the take-all fungus and cyclooxygenases can be aligned with approximately 24% amino acid identity and both form a tyrosyl radical during catalysis. 7,8-LDS was expressed in insect cells with native 8R-dioxygenase and hydroperoxide isomerase activities. We studied conserved residues of 7,8-LDS, which participate in cyclooxygenases for heme binding (His residues), hydrogen abstraction (Tyr), positioning (Tyr, Trp), and ionic binding of substrates (Arg). Site-directed mutagenesis abolished 8R-dioxygenase activities with exception of the putative distal histidine (His203Gln) and a tyrosine residue important for hydrogen bonding and substrate positioning (Tyr329Phe). The results demonstrate structural similarities between 7,8-LDS and cyclooxygenases.  相似文献   

12.
M M Frauenhoff  R A Scott 《Proteins》1992,14(2):202-212
Tyr-67 of mitochondrial cytochrome c is thought to be involved in important hydrogen bonding interactions in the hydrophobic heme pocket of the protein (Takano, T., Dickerson, R. E. (1981) J. Mol. Biol. 153:95-115). The role of this highly conserved residue in heme pocket stability was studied by comparing properties of semisynthetic (Phe-67) and (p-F-Phe-67) analogs with those of native cytochrome c and a "control" analog, (Hse-65)cytochrome c. The (Phe-67) and (p-F-Phe-67) analogs have well-developed 695-nm visible absorption bands and are active in a cytochrome c oxidase assay. The reduction potentials of both analogs are lower than the native protein by approximately 50 mV. Although both analogs bind imidazole with higher affinity than the native protein, only the (p-F-Phe-67) analog has a 3- to 5-fold lower binding constant for cyanide. Only the (Phe-67) analog was significantly more stable toward alkaline isomerization. These results are not consistent with stabilization of the native protein heme pocket via hydrogen bonding of Tyr-67 to Met-80. An alternative steric role for Tyr-67 is proposed in which the residue controls the heme reduction potential by limiting the number of internal H2O molecules in the heme pocket.  相似文献   

13.
Chen Z  Ost TW  Schelvis JP 《Biochemistry》2004,43(7):1798-1808
It has been well established that the heme redox potential is affected by many different factors. Among others, it is sensitive to the proximal heme ligand and the conformation of the propionate and vinyl groups. In the cytochrome P450 BM3 heme domain, substitution of the highly conserved phenylalanine 393 results in a dramatic change in the heme redox potential [Ost, T. W. B., Miles, C. S., Munro, A. W., Murdoch, J., Reid, G. A., and Chapman, S. K. (2001) Biochemistry 40, 13421-13429]. We have used resonance Raman spectroscopy to characterize heme structural changes and modification of heme interactions with the protein matrix that are induced by the F393 substitutions and to determine their correlation with the heme redox potential. Our results show that the Fe-S stretching frequency of the 5-coordinated, high-spin ferric heme is not affected by the mutations, suggesting that the electron density in the Fe-S bond in this state is not affected by the F393 mutation and is not a good indicator of the heme redox potential. Substrate binding perturbs the hydrogen bonding between one propionate group and the protein matrix and correlates to both the size of residue 393 and the heme redox potential. However, heme reduction does not affect the conformation of the propionate groups. Although the conformation of the vinyl groups is not affected much by substrate binding, their conformation changes from mainly out-of-plane to predominantly in-plane upon heme reduction. The extent of these conformational changes correlates strongly with the size of the 393 residue and the heme redox potential, suggesting that steric interaction between this residue and the vinyl groups may be of importance in regulating the heme redox potential in the P450 BM3 heme domain. Further implications of our findings for the change in redox potential upon mutation of F393 will be discussed.  相似文献   

14.
Site-saturation mutagenesis was performed on the class A ROB-1 beta-lactamase at conserved Ser130, which is centrally located in the antibiotic binding site where it can participate in both protein-protein and protein-substrate hydrogen bonding. Mutation Thr130 gave a beta-lactamase hydrolysing penicillins and cephalosporins but which showed a 3-fold lower affinity (Km) for ampicillin and cephalexin, and a 30-fold lower hydrolytic (Vmax) activity for ampicillin. In contrast, the hydrolytic activity for cephalexin was similar to the wild-type for the Thr130 mutation. Mutation Gly130 gave a beta-lactamase hydrolysing only penicillins with an affinity and hydrolysis activity for these compounds approximately 15-fold lower than the wild-type, but no detectable activity against cephalosporins. Mutation Ala130 produced an enzyme capable of hydrolysing penicillins only at a low rate. Modelling the ROB-1 active site was done from the refined 2 A X-ray structure of the homologous Bacillus licheniformis beta-lactamase. Ampicillin and cephalexin were docked into the active site and were energy minimized with the CVFF empirical force field. Dockings were stable only when Ser70 was made anionic and Glu166 was made neutral. Interaction energies and distances were calculated for fully hydrated pre-acylation complexes with the Ser, Thr, Gly and Ala130 enzymes. The catalytic data from all mutations and the computed interactions from modelling confirmed that the Ser130 has a structural as well as a functional role in binding and hydrolysis of penicillins. This highly conserved residue also plays a substrate specificity role by hydrogen binding the carboxylic acid group of cephalosporins more tightly than penicillins.  相似文献   

15.
X-ray structures of bovine heart cytochrome c oxidase at 1.8/1.9 A resolution in the oxidized/reduced states exhibit a redox coupled conformational change of an aspartate located near the intermembrane surface of the enzyme. The alteration of the microenvironment of the carboxyl group of this aspartate residue indicates the occurrence of deprotonation upon reduction of the enzyme. The residue is connected with the matrix surface of the enzyme by a hydrogen-bond network that includes heme a via its propionate and formyl groups. These X-ray structures provide evidence that proton pumping occurs through the hydrogen bond network and is driven by the low spin heme. The function of the aspartate is confirmed by mutation of the aspartate to asparagine. Although the amino acid residues of the hydrogen bond network and the structures of the low spin heme peripheral groups are not completely conserved amongst members of the heme-copper terminal oxidase superfamily, the existence of low spin heme and the hydrogen bond network suggests that the low spin heme provides the driving element of the proton-pumping process.  相似文献   

16.
The M2 proton channel of influenza A is the target of the antiviral drugs amantadine and rimantadine, whose effectiveness has been abolished by a single-site mutation of Ser31 to Asn in the transmembrane domain of the protein. Recent high-resolution structures of the M2 transmembrane domain obtained from detergent-solubilized protein in solution and crystal environments gave conflicting drug binding sites. We present magic-angle-spinning solid-state NMR results of Ser31 and a number of other residues in the M2 transmembrane peptide (M2TMP) bound to lipid bilayers. Comparison of the spectra of the membrane-bound apo and complexed M2TMP indicates that Ser31 is the site of the largest chemical shift perturbation by amantadine. The chemical shift constraints lead to a monomer structure with a small kink of the helical axis at Gly34. A tetramer model is then constructed using the helix tilt angle and several interhelical distances previously measured on unoriented bilayer samples. This tetramer model differs from the solution and crystal structures in terms of the openness of the N-terminus of the channel, the constriction at Ser31, and the side-chain conformations of Trp41, a residue important for channel gating. Moreover, the tetramer model suggests that Ser31 may interact with amantadine amine via hydrogen bonding. While the apo and drug-bound M2TMP have similar average structures, the complexed peptide has much narrower linewidths at physiological temperature, indicating drug-induced changes of the protein dynamics in the membrane. Further, at low temperature, several residues show narrower lines in the complexed peptide than the apo peptide, indicating that amantadine binding reduces the conformational heterogeneity of specific residues. The differences of the current solid-state NMR structure of the bilayer-bound M2TMP from the detergent-based M2 structures suggest that the M2 conformation is sensitive to the environment, and care must be taken when interpreting structural findings from non-bilayer samples.  相似文献   

17.
Nitric-oxide synthases (NOS) are heme-thiolate enzymes that N-hydroxylate L-arginine (L-Arg) to make NO. NOS contain a unique Trp residue whose side chain stacks with the heme and hydrogen bonds with the heme thiolate. To understand its importance we substituted His for Trp188 in the inducible NOS oxygenase domain (iNOSoxy) and characterized enzyme spectral, thermodynamic, structural, kinetic, and catalytic properties. The W188H mutation had relatively small effects on l-Arg binding and on enzyme heme-CO and heme-NO absorbance spectra, but increased the heme midpoint potential by 88 mV relative to wild-type iNOSoxy, indicating it decreased heme-thiolate electronegativity. The protein crystal structure showed that the His188 imidazole still stacked with the heme and was positioned to hydrogen bond with the heme thiolate. Analysis of a single turnover L-Arg hydroxylation reaction revealed that a new heme species formed during the reaction. Its build up coincided kinetically with the disappearance of the enzyme heme-dioxy species and with the formation of a tetrahydrobiopterin (H4B) radical in the enzyme, whereas its subsequent disappearance coincided with the rate of l-Arg hydroxylation and formation of ferric enzyme. We conclude: (i) W188H iNOSoxy stabilizes a heme-oxy species that forms upon reduction of the heme-dioxy species by H4B. (ii) The W188H mutation hinders either the processing or reactivity of the heme-oxy species and makes these steps become rate-limiting for l-Arg hydroxylation. Thus, the conserved Trp residue in NOS may facilitate formation and/or reactivity of the ultimate hydroxylating species by tuning heme-thiolate electronegativity.  相似文献   

18.
The burial of nonpolar surface area is known to enhance markedly the conformational stability of proteins. The contribution from the burial of polar surface area is less clear. Here, we report on the tolerance to substitution of Ser75 of bovine pancreatic ribonuclease (RNase A), a residue that has the unusual attributes of being buried, conserved, and polar. To identify variants that retain biological function, we used a genetic selection based on the intrinsic cytotoxicity of ribonucleolytic activity. Cell growth at 30 degrees C, 37 degrees C, and 44 degrees C correlated with residue size, indicating that the primary attribute of Ser75 is its small size. The side-chain hydroxyl group of Ser75 forms a hydrogen bond with a main-chain nitrogen. The conformational stability of the S75A variant, which lacks this hydrogen bond, was diminished by DeltaDeltaG = 2.5 kcal/mol. Threonine, which can reinstate this hydrogen bond, provided a catalytically active RNase A variant at higher temperatures than did some smaller residues (including aspartate), indicating that a secondary attribute of Ser75 is the ability of its uncharged side chain to accept a hydrogen bond. These results provide insight on the imperatives for the conservation of a buried polar residue.  相似文献   

19.
Human catalase is an heme-containing peroxisomal enzyme that breaks down hydrogen peroxide to water and oxygen; it is implicated in ethanol metabolism, inflammation, apoptosis, aging and cancer. The 1. 5 A resolution human enzyme structure, both with and without bound NADPH, establishes the conserved features of mammalian catalase fold and assembly, implicates Tyr370 as the tyrosine radical, suggests the structural basis for redox-sensitive binding of cognate mRNA via the catalase NADPH binding site, and identifies an unexpectedly substantial number of water-mediated domain contacts. A molecular ruler mechanism based on observed water positions in the 25 A-long channel resolves problems for selecting hydrogen peroxide. Control of water-mediated hydrogen bonds by this ruler selects for the longer hydrogen peroxide and explains the paradoxical effects of mutations that increase active site access but lower catalytic rate. The heme active site is tuned without compromising peroxide binding through a Tyr-Arg-His-Asp charge relay, arginine residue to heme carboxylate group hydrogen bonding, and aromatic stacking. Structures of the non-specific cyanide and specific 3-amino-1,2, 4-triazole inhibitor complexes of human catalase identify their modes of inhibition and help reveal the catalytic mechanism of catalase. Taken together, these resting state and inhibited human catalase structures support specific, structure-based mechanisms for the catalase substrate recognition, reaction and inhibition and provide a molecular basis for understanding ethanol intoxication and the likely effects of human polymorphisms.  相似文献   

20.
The MAPKKs MEK1 and MEK2 are activated by phosphorylation, but little is known about how these enzymes are inactivated. Here, we show that MEK1 is phosphorylated in vivo at Ser(212), a residue conserved among all MAPKK family members. Mutation of Ser(212) to alanine enhanced the basal activity of MEK1, whereas the phosphomimetic aspartate mutation completely suppressed the activation of both wild-type MEK1 and the constitutively activated MEK1(S218D/S222D) mutant. Phosphorylation of Ser(212) did not interfere with activating phosphorylation of MEK1 at Ser(218)/Ser(222) or with binding to ERK2 substrate. Importantly, mimicking phosphorylation of the equivalent Ser(212) residue of the yeast MAPKKs Pbs2p and Ste7p similarly abrogated their biological function. Our findings suggest that Ser(212) phosphorylation represents an evolutionarily conserved mechanism involved in the negative regulation of MAPKKs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号