共查询到20条相似文献,搜索用时 15 毫秒
1.
The exact nature of membrane protein folding and assembly is not understood in detail yet. Addition of SDS to a membrane protein dissolved in mild, non-polar detergent results in formation of mixed micelles and in subsequent denaturation of higher ordered membrane protein structures. The exact nature of this denaturation event is, however, enigmatic, and separation of an individual helix pair in mixed micelles has also not been reported yet. Here we followed unfolding of the human glycophorin A transmembrane helix dimer in mixed micelles by fluorescence spectroscopy. Energy transfer between differently labelled glycophorin A transmembrane helices decreased with increasing SDS mole fractions albeit without modifying the helicity of the peptides. The energetics and kinetics of the dimer dissociation in mixed micelles is analyzed and discussed, and the experimental data demonstrate that mixed micelles can be used as a general method to investigate unfolding of α-helical membrane proteins. 相似文献
2.
Smith SO Eilers M Song D Crocker E Ying W Groesbeek M Metz G Ziliox M Aimoto S 《Biophysical journal》2002,82(5):2476-2486
The transmembrane helix of glycophorin A contains a seven-residue motif, LIxxGVxxGVxxT, that mediates protein dimerization. Threonine is the only polar amino acid in this motif with the potential to stabilize the dimer through hydrogen-bonding interactions. Polarized Fourier transform infrared spectroscopy is used to establish a robust protocol for incorporating glycophorin A transmembrane peptides into membrane bilayers. Analysis of the dichroic ratio of the 1655-cm(-1) amide I vibration indicates that peptides reconstituted by detergent dialysis have a transmembrane orientation with a helix crossing angle of <35 degrees. Solid-state nuclear magnetic resonance spectroscopy is used to establish high resolution structural restraints on the conformation and packing of Thr-87 in the dimer interface. Rotational resonance measurement of a 2.9-A distance between the gamma-methyl and backbone carbonyl carbons of Thr-87 is consistent with a gauche- conformation for the chi1 torsion angle. Rotational-echo double-resonance measurements demonstrate close packing (4.0 +/- 0.2 A) of the Thr-87 gamma-methyl group with the backbone nitrogen of Ile-88 across the dimer interface. The short interhelical distance places the beta-hydroxyl of Thr-87 within hydrogen-bonding range of the backbone carbonyl of Val-84 on the opposing helix. These results refine the structure of the glycophorin A dimer in membrane bilayers and highlight the complementary role of small and polar residues in the tight association of transmembrane helices in membrane proteins. 相似文献
3.
The transmembrane (TM) segment of the major coat protein from Ff bacteriophage has been extensively studied as an example of dimerization in detergent and lipid bilayer systems. However, almost all the information regarding this interaction has been gained through mutagenesis studies, with little direct structural information being available. To this end solution NMR has the potential to provide new insights into structure of the dimer. In order to evaluate the utility of this approach we have studied a selectively 15N-labeled peptide containing the TM segment of MCP (MCPTM) by solution NMR. This peptide was found to give rise to detergent concentration-dependent spectra that were assigned to monomeric and dimeric forms. The standard free energy of this interaction in SDS was estimated from these spectra and found to be consistent with weak but specific dimerization. In addition, similar spectra could be obtained in beta-octyl glucoside with intermolecular paramagnetic relaxation experiments demonstrating a parallel arrangement of TM helices in the dimer. In both detergents backbone chemical shift differences between monomeric and dimeric forms of MCPTM showed that the largest changes occur around its GXXXG motif. The resulting structural model is consistent with observations made for MCP mutants previously characterized in biological membranes, opening the door to detailed structural characterization of this form of MCP. These results also have general implications for the study of weakly interacting TM segments by solution NMR since the use of similar sample conditions should allow structural data to be accessed for oligomeric states from a wide range systems that undergo biologically relevant but weak associations in the membrane. 相似文献
4.
Yanqiu Wu 《生物化学与生物物理学报:生物膜》2007,1768(12):3206-3215
The transmembrane (TM) segment of the major coat protein from Ff bacteriophage has been extensively studied as an example of dimerization in detergent and lipid bilayer systems. However, almost all the information regarding this interaction has been gained through mutagenesis studies, with little direct structural information being available. To this end solution NMR has the potential to provide new insights into structure of the dimer. In order to evaluate the utility of this approach we have studied a selectively 15N-labeled peptide containing the TM segment of MCP (MCPTM) by solution NMR. This peptide was found to give rise to detergent concentration-dependent spectra that were assigned to monomeric and dimeric forms. The standard free energy of this interaction in SDS was estimated from these spectra and found to be consistent with weak but specific dimerization. In addition, similar spectra could be obtained in β-octyl glucoside with intermolecular paramagnetic relaxation experiments demonstrating a parallel arrangement of TM helices in the dimer. In both detergents backbone chemical shift differences between monomeric and dimeric forms of MCPTM showed that the largest changes occur around its GXXXG motif. The resulting structural model is consistent with observations made for MCP mutants previously characterized in biological membranes, opening the door to detailed structural characterization of this form of MCP. These results also have general implications for the study of weakly interacting TM segments by solution NMR since the use of similar sample conditions should allow structural data to be accessed for oligomeric states from a wide range systems that undergo biologically relevant but weak associations in the membrane. 相似文献
5.
Using an implicit membrane model (IMM1), we examine whether the structure of the transmembrane domain of Glycophorin A (GpA) could be predicted based on energetic considerations alone. The energetics of native GpA shows that van der Waals interactions make the largest contribution to stability. Although specific electrostatic interactions are stabilizing, the overall electrostatic contribution is close to zero. The GXXXG motif contributes significantly to stability, but residues outside this motif contribute almost twice as much. To generate non-native states a global conformational search was done on two segments of GpA: an 18-residue peptide (GpA74-91) that is embedded in the membrane and a 29-residue peptide (GpA70-98) that has additional polar residues flanking the transmembrane region. Simulated annealing was done on a large number of conformations generated from parallel, antiparallel, left- and right-handed starting structures by rotating each helix at 20 degrees intervals around its helical axis. Several crossing points along the helix dimer were considered. For 18-residue parallel topology, an ensemble of native-like structures was found at the lowest effective energy region; the effective energy is lowest for a right-handed structure with an RMSD of 1.0 A from the solid-state NMR structure with correct orientation of the helices. For the 29-residue peptide, the effective energies of several left-handed structures were lower than that of the native, right-handed structure. This could be due to deficiencies in modeling the interactions between charged sidechains and/or omission of the sidechain entropy contribution to the free energy. For 18-residue antiparallel topology, both IMM1 and a Generalized Born model give effective energies that are lower than that of the native structure. In contrast, the Poisson-Boltzmann solvation model gives lower effective energy for the parallel topology, largely because the electrostatic solvation energy is more favorable for the parallel structure. IMM1 seems to underestimate the solvation free energy advantage when the CO and NH dipoles just outside the membrane are parallel. This highlights the importance of electrostatic interactions even when these are not obvious by looking at the structures. 相似文献
6.
A continuous membrane model (IMPALA) was previously developed to predict how hydrophobic spans of proteins insert in membranes (Mol. Mod. 2 (1996) 27). Using that membrane model, we looked for the interactions between several hydrophobic spans. We used the glycophorin A dimer as an archetype of polytopic protein to validate the approach. We find that the native complex do not dislocate when it is submitted to a 10(5) steps optimisation whereas separated spans converge back to a native-like complex in the same conditions. We also observe that IMPALA restraints are not strictly mandatory but do increase the efficiency of the procedure. 相似文献
7.
Zhang X Shirahatti NV Mahadevan D Wright SH 《The Journal of biological chemistry》2005,280(41):34813-34822
OCT1 and OCT2 are involved in renal secretion of cationic drugs. Although they have similar selectivity for some substrates (e.g. tetraethylammonium (TEA)), they have distinct selectivities for others (e.g. cimetidine). We postulated that "homolog-specific residues," i.e. the 24 residues that are conserved in OCT1 orthologs as one amino acid and in OCT2 as a different one, influence homolog-specific selectivity and examined the influence on substrate binding of three of these conserved residues that are found in the C-terminal half of the rabbit orthologs of OCT1/2. The N353L and R403I substitutions (OCT2 to OCT1) did not significantly change the properties of OCT2. However, the E447Q replacement shifted substrate selectivity toward an OCT1-like phenotype. Substitution of glutamate with cationic amino acids (E447K and E447R) abolished transport activity, and the E447L mutant displayed markedly reduced transport of TEA and cimetidine while retaining transport of 1-methyl-4-phenylpyridinium. In a novel homology model of the three-dimensional structure of OCT2, Glu(447) was found in a putative docking region within a hydrophilic cleft of the protein. In addition, six residues identified in separate studies as exerting significant effects on OCT binding were also found within the putative cleft region. There was a significant correlation (r(2) = 0.82) between the IC(50) values for inhibition of TEA transport by 14 different compounds and their calculated K(D) values for binding to the model of rabbit OCT2. The results suggest that homology modeling offers an opportunity to direct future site-directed studies of OCT/substrate interaction. 相似文献
8.
Doura AK Kobus FJ Dubrovsky L Hibbard E Fleming KG 《Journal of molecular biology》2004,341(4):991-998
To quantify the relationship between sequence and transmembrane dimer stability, a systematic mutagenesis and thermodynamic study of the protein-protein interaction residues in the glycophorin A transmembrane helix-helix dimer was carried out. The results demonstrate that the glycophorin A transmembrane sequence dimerizes when its GxxxG motif is abolished by mutation to large aliphatic residues, suggesting that the sequence encodes an intrinsic propensity to self-associate independent of a GxxxG motif. In the presence of an intact GxxxG motif, the glycophorin A dimer stability can be modulated over a span of -0.5 kcal mol(-1) to +3.2 kcal mol(-1) by mutating the surrounding sequence context. Thus, these flanking residues play an active role in determining the transmembrane dimer stability. To assess the structural consequences of the thermodynamic effects of mutations, molecular models of mutant transmembrane domains were constructed, and a structure-based parameterization of the free energy change due to mutation was carried out. The changes in association free energy for glycophorin A mutants can be explained primarily by changes in packing interactions at the protein-protein interface. The energy cost of removing favorable van der Waals interactions was found to be 0.039 kcal mol(-1) per A2 of favorable occluded surface area. The value corresponds well with estimates for mutations in bacteriorhodopsin as well as for those mutations in the interiors of soluble proteins that create packing defects. 相似文献
9.
Recently 3D structural models of the photosystem II (PSII) core dimer complexes of higher plants (spinach) and cyanobacteria (Synechococcus elongatus) have been derived by electron [Rhee et al. (1998) Nature 396, 283-286; Hankamer et al. (2001) J. Struct. Biol., in press] and X-ray [Zouni et al. (2001) Nature 409, 739-743] crystallography respectively. The intermediate resolutions of these structures do not allow direct identification of side chains and therefore many of the individual subunits within the structure are unassigned. Here we review the structure of the higher plant PSII core dimer and provide evidence for the tentative assignment of the low molecular weight subunits. In so doing we highlight the similarities and differences between the higher plant and cyanobacterial structures. 相似文献
10.
Finger C Volkmer T Prodöhl A Otzen DE Engelman DM Schneider D 《Journal of molecular biology》2006,358(5):1221-1228
Despite some promising progress in the understanding of membrane protein folding and assembly, there is little experimental information regarding the thermodynamic stability of transmembrane helix interactions and even less on the stability of transmembrane helix-helix interactions in a biological membrane. Here we describe an approach that allows quantitative measurement of transmembrane helix interactions in a biological membrane, and calculation of changes in the interaction free energy resulting from substitution of single amino acids. Dimerization of several variants of the glycophorin A transmembrane domain are characterized and compared to the wild-type (wt) glycophorin A transmembrane helix dimerization. The calculated DeltaDeltaG(app) values are further compared with values found in the literature. In addition, we compare interactions between the wt glycophorin A transmembrane domain and helices in which critical glycine residues are replaced by alanine or serine, respectively. The data demonstrate that replacement of the glycine residues by serine is less destabilizing than replacement by alanine with a DeltaDeltaG(app) value of about 0.4 kcal/mol. Our study comprises the first measurement of a transmembrane helix interaction in a biological membrane, and we are optimistic that it can be further developed and applied. 相似文献
11.
Biological membrane fusion involves a highly precise and ordered set of protein-protein interactions. Synaptobrevin is a key player in this process. Mutagenesis studies of its single transmembrane segment suggest that it dimerizes in a sequence specific manner. Using the computational methods developed for the successful structure prediction of the glycophorin A transmembrane dimer, we have calculated a structural model for the synaptobrevin dimer. Our computational search yields a well-populated cluster of right-handed structures consistent with the experimentally determined dimerization motif. The three-dimensional structure contains an interface formed primarily by leucine and isoleucine side-chain atoms and has no interhelical hydrogen bonds. The model is the first three-dimensional picture of the synaptobrevin transmembrane dimer and provides a basis for further focused experimentation on its structure and association thermodynamics. 相似文献
12.
Role of cysteine residues in structural stability and function of a transmembrane helix bundle 总被引:1,自引:0,他引:1
Karim CB Paterlini MG Reddy LG Hunter GW Barany G Thomas DD 《The Journal of biological chemistry》2001,276(42):38814-38819
To study the structural and functional roles of the cysteine residues at positions 36, 41, and 46 in the transmembrane domain of phospholamban (PLB), we have used Fmoc (N-(9-fluorenyl)methoxycarbonyl) solid-phase peptide synthesis to prepare alpha-amino-n-butyric acid (Abu)-PLB, the analogue in which all three cysteine residues are replaced by Abu. Whereas previous studies have shown that replacement of the three Cys residues by Ala (producing Ala-PLB) greatly destabilizes the pentameric structure, we hypothesized that replacement of Cys with Abu, which is isosteric to Cys, might preserve the pentameric stability. Therefore, we compared the oligomeric structure (from SDS-polyacrylamide gel electrophoresis) and function (inhibition of the Ca-ATPase in reconstituted membranes) of Abu-PLB with those of synthetic wild-type PLB and Ala-PLB. Molecular modeling provides structural and energetic insight into the different oligomeric stabilities of these molecules. We conclude that 1) the Cys residues of PLB are not necessary for pentamer formation or inhibitory function; 2) the steric properties of cysteine residues in the PLB transmembrane domain contribute substantially to pentameric stability, whereas the polar or chemical properties of the sulfhydryl group play only a minor role; 3) the functional potency of these PLB variants does not correlate with oligomeric stability; and 4) acetylation of the N-terminal methionine has neither a functional nor a structural effect in full-length PLB. 相似文献
13.
cAR1, a G protein-coupled cAMP receptor, is essential for multicellular development of Dictyostelium. We previously identified a cAR1-Ile(104) mutant that appeared to be constitutively activated based on its constitutive phosphorylation, elevated affinity for cAMP, and dominant-negative effects on development as well as specific cAR1 pathways that are subject to adaptation. To investigate how Ile(104) might regulate cAR1 activation, we assessed the consequences of substituting it with all other amino acids. Constitutive phosphorylation of these Ile(104) mutants varied broadly, suggesting that they are activated to varying extents, and was correlated with polarity of the substituting amino acid residue. Remarkably, all Ile(104) substitutions, except for the most conservative, dramatically elevated the receptor's cAMP affinity. However, only a third of the mutants (those with the most polar substitutions) blocked development. These findings are consistent with a model in which polar Ile(104) substitutions perturb the equilibrium between inactive and active cAR1 conformations in favour of the latter. Based on homology with rhodopsin, Ile(104) is likely buried within inactive cAR1 and exposed to the cytoplasm upon activation. We propose that the hydrophobic effect normally promotes burial of Ile(104) and hence cAR1 inactivation, while polar substitution of Ile(104) mitigates this effect, resulting in activation. 相似文献
14.
Yano Y Takemoto T Kobayashi S Yasui H Sakurai H Ohashi W Niwa M Futaki S Sugiura Y Matsuzaki K 《Biochemistry》2002,41(9):3073-3080
Investigation of interactions between hydrophobic model peptides and lipid bilayers is perhaps the only way to elucidate the principles of the folding and stability of membrane proteins (White, S. H., and Wimley, W. C. (1998) Biochim. Biophys. Acta 1367, 339-352). We designed the completely hydrophobic "inert" peptide modeling a transmembrane (TM) helix without any of the specific side-chain interactions expected, X-(LALAAAA)(3)-NH(2) [X = Ac (I), 7-nitro-2-1,3-benzoxadiazol-4-yl (II), or 5(6)-carboxytetramethylrhodamine (III)]. Fourier transform infrared-polarized attenuated total reflection measurements revealed that I as well as II assume a TM helix in hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers. Dithionite quenching experiments detected no topological change (flip-flop) in the helix II for at least 24 h. Thus, the TM helix itself is a highly stable structure, even in the absence of flanking hydrophilic or aromatic amino acids which are suggested to play important roles in stable TM positioning. Helix self-association in lipid bilayers was detected by fluorescence resonance energy transfer between II and III. The peptide was in a monomer-antiparallel dimer equilibrium with an association free energy of approximately -13 kJ/mol. Electron spin resonance spectra of 1-palmitoyl-2-stearoyl-(14-doxyl)-sn-glycero-3-phosphocholine demonstrated the presence of a motionally restricted component at lower temperatures. 相似文献
15.
Propylbenzilylcholine mustard labels an acidic residue in transmembrane helix 3 of the muscarinic receptor 总被引:7,自引:0,他引:7
C A Curtis M Wheatley S Bansal N J Birdsall P Eveleigh E K Pedder D Poyner E C Hulme 《The Journal of biological chemistry》1989,264(1):489-495
Muscarinic acetylcholine receptors were purified from rat forebrain and labeled with [3H]N-(2-chloroethyl)N-(2',3'-[3H2]propyl)-2-aminoethylbenzilate. Cleavage of the labeled muscarinic acetylcholine receptors with a lysine-specific protease yielded labeled, glycosylated peptides about 130 and 200 residues in length, which came from different receptor sequences. The probable cleavage sites are in the second intracellular loop and in the second extracellular or third intracellular loop. The N-terminal 130 residues are disulfide-bonded to another part of the receptor structure, supporting the presence of a link between the second and third extracellular loops. The [3H]propylbenzilylcholine mustard-receptor link is cleaved by nucleophiles, acids, and bases under denaturing conditions, suggesting modification of an acidic residue. Cyanogen bromide cleavage points to transmembrane helix 3 as the site of label attachment. 相似文献
16.
Vereshaga YA Volynsky PE Pustovalova JE Nolde DE Arseniev AS Efremov RG 《Proteins》2007,69(2):309-325
BNIP3 is a mitochondrial 19-kDa proapoptotic protein, a member of the Bcl-2 family. It has a single COOH-terminal transmembrane (TM) alpha-helical domain, which is required for membrane targeting, proapoptotic activity, hetero- and homo-dimerization in membrane. The role and the molecular details of association of TM helices of BNIP3 are yet to be established. Here, we present a molecular modeling study of helix interactions in its membrane domain. The approach combines Monte Carlo conformational search in an implicit hydrophobic slab followed by molecular dynamics simulations in a hydrated full-atom lipid bilayer. The former technique was used for exhaustive sampling of the peptides' conformational space and for generation of putative native-like structures of the dimer. The latter ones were taken as realistic starting points to assess stability and dynamic behavior of the complex in explicit lipid-water surrounding. As a result, several groups of tightly packed right-handed structures of the dimer were proposed. They have almost similar helix-helix interface, which includes the motif A(176)xxxG(180)xxxG(184) and agrees well with previous mutagenesis data and preliminary NMR analysis. Molecular dynamics simulations of these structures reveal perfect adaptation of most of them to heterogeneous membrane environment. A remarkable feature of the predicted dimeric structures is the occurrence of a cluster of H-bonded histidine 173 and serines 168 and 172 on the helix interface, near the N-terminus. Because of specific polar interactions between the monomers, this part of the dimer has no such dense packing as the C-terminal one, thus allowing penetration of water from the extramembrane side into the membrane interior. We propose that the ionization state of His(173) can mediate structural and dynamic properties of the dimer. This, in turn, may be related to pH-dependent proapoptotic activity of BNIP3, which is triggering on by acidosis appearing under hypoxic conditions. 相似文献
17.
The energetics and stability of the packing of transmembrane helices were investigated by Monte Carlo simulations with the replica-exchange method. The helices were modeled with a united atom representation, and the CHARMM19 force field was employed. Based on known experimental structures of membrane proteins, an implicit knowledge-based potential was developed to describe the helix-membrane interactions at the residue level, whose validity was tested through prediction of the orientations when single helices were inserted into a membrane. Two systems were studied in this article, namely the glycophorin A dimer, and helices A and B of Bacteriorhodopsin. For the glycophorin A dimer, the most stable structure (0.5 A away from the experimental structure) is mainly stabilized by the favorable helix-helix interactions, and has the most population regardless of the helix-membrane interaction. However, for helices A and B of Bacteriorhodopsin, it was found that the packing determined by helix-helix interactions is nonspecific, and a native-like structure (0.2 A from the experimental one) can be identified from several structural analogs as the most stable one only after applying the membrane potential. Our results suggest that the contribution from the helix-membrane interaction could be critical in the correct packing of transmembrane helices in the membrane. 相似文献
18.
Use of a single glycine residue to determine the tilt and orientation of a transmembrane helix. A new structural label for infrared spectroscopy 下载免费PDF全文
Site-directed dichroism is an emerging technique for the determination of membrane protein structure. However, due to a number of factors, among which is the high natural abundance of (13)C, the use of this technique has been restricted to the study of small peptides. We have overcome these problems through the use of a double C-deuterated glycine as a label. The modification of a single residue (Gly) in the transmembrane segment of M2, a protein from the Influenza A virus that forms H(+)-selective ion channels, has allowed us to determine its helix tilt and rotational orientation. Double C-deuteration shifts the antisymmetric and symmetric stretching vibrations of the CD(2) group in glycine to a transparent region of the infrared spectrum where the dichroic ratio of these bands can be measured. The two dichroisms, along with the helix amide I dichroic ratio, have been used to determine the helix tilt and rotational orientation of M2. The results are entirely consistent with previous site-directed dichroism and solid-state NMR experiments, validating C-deuterated glycine (GlyCD(2)) as a structural probe that can now be used in the study of polytopic membrane proteins. 相似文献
19.
20.
In membrane proteins, the extent to which polarity, hydrogen bonding, and van der Waals packing interactions of the buried, internal residues direct protein folding and association of transmembrane segments is poorly understood. The energetics associated with these various interactions should differ substantially between membrane versus water-soluble proteins. To help evaluate these energetics, we have altered a water-soluble, two-stranded coiled-coil peptide to render its sequence soluble in membranes. The membrane-soluble peptide associates in a monomer-dimer-trimer equilibrium, in which the trimer predominates at the highest peptide/detergent ratios. The oligomers are stabilized by a buried Asn side chain. Mutation of this Asn to Val essentially eliminates oligomerization of the membrane-soluble peptide. Thus, within a membrane-like environment, interactions involving a polar Asn side chain provide a strong thermodynamic driving force for membrane helix association. 相似文献