首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrogen inhibition of oocyte maturation (OM) and the role of GPER (formerly known as GPR30) were investigated in zebrafish. Estradiol-17β (E2) and G-1, a GPER-selective agonist, bound to zebrafish oocyte membranes suggesting the presence of GPER which was confirmed by immunocytochemistry using a specific GPER antibody. Incubation of follicle-enclosed oocytes with an aromatase inhibitor, ATD, and enzymatic and manual removal of the ovarian follicle cell layers significantly increased spontaneous OM which was partially reversed by co-treatment with either 100 nM E2 or G-1. Incubation of denuded oocytes with the GPER antibody blocked the inhibitory effects of estrogens on OM, whereas microinjection of estrogen receptor alpha (ERα) antisense oligonucleotides into the oocytes was ineffective. The results suggest that endogenous estrogens produced by the follicle cells inhibit or delay spontaneous maturation of zebrafish oocytes and that this estrogen action is mediated through GPER. Treatment with E2 and G-1 also attenuated the stimulatory effect of the teleost maturation-inducing steroid, 17,20β-dihyroxy-4-pregnen-3-one (DHP), on OM. Moreover, E2 and G-1 down-regulated the expression of membrane progestin receptor alpha (mPRα), the intermediary in DHP induction of OM. Conversely DHP treatment caused a > 50% decline in GPER mRNA levels. The results suggest that estrogens and GPER are critical components of the endocrine system controlling the onset of OM in zebrafish. A model is proposed for the dual control of the onset of oocyte maturation in teleosts by estrogens and progestins acting through GPER and mPRα, respectively, at different stages of oocyte development.  相似文献   

2.
Thomas P  Pang Y  Zhu Y  Detweiler C  Doughty K 《Steroids》2004,69(8-9):567-573
Progestin hormones exert rapid, nongenomic actions on a variety of target tissues in fish. The induction of oocyte maturation and the progestin membrane receptor (mPR) that mediates this action of progestins have been well characterized in fishes. Progestins also act on Atlantic croaker spermatozoa via an mPR to rapidly increase sperm motility. Preliminary results indicate that progestins can also exert rapid actions in the preoptic anterior hypothalamus (POAH) in this species to down-regulate gonadotropin-releasing hormone (GnRH) secretion. Recently, we reported the cloning, sequencing and characterization of a novel cDNA in a closely related species, spotted seatrout, that has the characteristics of the mPR involved in the progestin induction of oocyte maturation. Three distinct mPR subtypes, named alpha, beta, and gamma, have been identified in both fishes and mammals. The tissue distribution of the mPRalpha protein in seatrout suggests the alpha-subtype mediates progestin actions on GnRH secretion, sperm motility and oocyte maturation. However, mPRbeta antisense experiments in zebrafish oocytes suggest the beta-subtype also participates in the control of oocyte maturation in zebrafish.  相似文献   

3.
P. Thomas  C. Tubbs  V.F. Garry 《Steroids》2009,74(7):614-383
Most of the studies on the putative membrane progestin receptor (mPR) α and β subtypes that have been published in the 5 years since their discovery have supported the original hypothesis that they function as specific membrane receptors through which progestins induce rapid, nongenomic responses in target cells. Recent evidence that mPRα and mPRβ have important roles in the regulation of oocyte meiotic maturation and sperm motility in both fish and mammals is reviewed. Although rapid, cell surface-initiated progestin actions on sperm to induce hyperactive motility have been demonstrated in several mammalian models, the identity of the membrane progestin receptor mediating this effect remains unclear. We demonstrate here that mPRα mRNA is expressed in human sperm by RT-PCR and that the mPRα protein is localized to the sperm membranes by Western blot analysis. Immunocytochemical staining of whole non-permeabilized human sperm confirmed the mPRα protein is expressed in the plasma membrane, and showed it is localized to the sperm midpiece, indicating a likely role of mPRα in progestin regulation of sperm motility. Moreover, the abundance of the mPRα protein on sperm plasma membranes from human donors that displayed low motility was significantly reduced compared to that on normal motile sperm. Finally, progestin treatment of sperm membranes caused activation of G-proteins. These results suggest that, similar to its proposed function in fishes, mPRα is an intermediary in progestin stimulation of sperm motility in humans by a mechanism involving G-protein activation.  相似文献   

4.

Background  

In lower vertebrates, steroid-induced oocyte maturation is considered to involve membrane-bound progestin receptors. Two totally distinct classes of putative membrane-bound progestin receptors have been reported in vertebrates. A first class of receptors, now termed progesterone membrane receptor component (PGMRC; subtypes 1 and 2) has been studied since 1996 but never studied in a fish species nor in the oocyte of any animal species. A second class of receptors, termed membrane progestin receptors (mPR; subtypes alpha, beta and gamma), was recently described in vertebrates and implicated in the progestin-initiated induction of oocyte maturation in fish.  相似文献   

5.
Recently a novel cDNA was discovered in spotted seatrout ovaries encoding a protein with seven transmembrane domains that has the characteristics of the membrane progestin receptor (mPR) mediating maturation-inducing steroid (MIS) induction of oocyte maturation in this species. Preliminary results suggested the MIS also activates an mPR on the spermatozoa of spotted seatrout and a closely related species, Atlantic croaker, to stimulate sperm motility. We show here that plasma membranes of croaker sperm demonstrate high affinity (Kd approximately 20 nM), limited capacity (Bmax 0.08 nM), specific and displaceable binding for progestins that is characteristic of mPRs. The MIS (17,20beta,21-trihydroxy-4-pregnen-3-one, 20beta-S) displayed the greatest binding affinity for the sperm mPR among the steroids tested. Treatment of croaker testicular tissue in vitro with gonadotropin caused a several-fold increase in sperm mPR receptor concentrations that was partially blocked in the presence of cyanoketone, which suggests this action of gonadotropin is partially mediated by stimulation of steroidogenesis. Protein bands of the predicted sizes for the mPR and its dimer (40 and 80 kDa) were detected by Western blotting of croaker sperm membranes using a specific antibody to the novel seatrout mPR (mPRalpha). Immunocytochemistry of whole croaker spermatozoa with the mPRalpha antibody showed that staining was primarily localized on the midpiece, consistent with a role of the mPRalpha in mediating MIS stimulation of sperm motility. The results suggest that the mechanism of progestin action on fish sperm involving mPRs is basically similar to that in mammals and has been evolutionarily conserved amongst vertebrates.  相似文献   

6.
7.
Thomas P  Zhu Y  Pace M 《Steroids》2002,67(6):511-517
The endocrine control of oocyte maturation in fish has proven to be a valuable model for investigating rapid, nongenomic steroid actions at the cell surface. Considerable progress has been made over the last decade in identifying and characterizing progestin membrane receptors mediating these actions in fish, in understanding the hormonal regulation and physiological roles of these receptors in oocyte maturation, in elucidating the signal transduction pathways they activate, and in determining their nature. Recent advances on these topics are briefly reviewed. New data demonstrating the involvement of pertussis toxin-sensitive inhibitory G-proteins in induction of oocyte maturation by the maturation-inducing steroid (MIS) in teleosts is also presented. In addition, the cloning strategy to isolate the MIS receptor gene from spotted seatrout ovaries and the characteristics of a novel gene and protein discovered by this approach are discussed. Current evidence suggests this G-protein-coupled receptor-like protein is the long sought after MIS receptor mediating meiotic maturation of teleost oocytes.  相似文献   

8.
The maturation of fish oocytes is a well-characterized system induced by progestins via non-genomic actions. In a previous study, we demonstrated that diethylstilbestrol (DES), a non-steroidal estrogen, induces fish oocyte maturation via the membrane progestin receptor (mPR). Here, we attempted to evaluate the effect of DES as an environmental endocrine disrupting chemical (EDC) upon fish oocyte maturation using live zebrafish. DES triggered oocyte maturation within several hours in vivo when administrated directly into the surrounding water. The natural teleost maturation-inducing hormone, 17alpha, 20beta-dihydroxy-4-pregnen-3-one (17,20beta-DHP) also induced oocyte maturation in vivo. Steroids such as testosterone, progesterone or 17alpha-hydroxyprogesterone were also effective in vivo. Further studies indicated that externally applied 17,20beta-DHP even induced ovulation. In contrast to 17,20beta -DHP, DES induced maturation but not ovulation. Theoretically this assay system provides a means to distinguish pathways involved in the induction of ovulation, which are known to be induced by genomic actions from the pathway normally involved in the induction of oocyte maturation, a typical non-genomic action-dependent pathway. In summary, we have demonstrated the effect of EDCs on fish oocyte maturation in vivo. To address the effects, we have explored a conceptually new approach to distinguish between the genomic and non-genomic actions induced by steroids. The assay can be applied to screens of progestin-like effects upon oocyte maturation and ovulation for small molecules of pharmacological agents or EDCs.  相似文献   

9.
Three sex steroid hormones, estradiol-17β (E2), 11-ketotestosterone (11-KT), and 17α,20β-dihydroxy-4-pregnen-3-one (DHP), are well established as primary estrogen, androgen, and progestin, respectively, in teleost fish. Japanese eel, Anguilla japonica, would be a suitable candidate to study ovarian steroid physiology of fish because the ovarian growth and steroidogenesis is dormant under laboratory condition but can be induced by administration of exogenous gonadotropic reagents. In this review, we summarized our work on the function and production of sex steroid hormones in the ovary of the Japanese eel during ovarian growth and oocyte maturation artificially induced by treatment with extract of salmon pituitary. In vitro and in vivo assays suggest that 11-KT and E2 play primary roles in previtellogenic and vitellogenic growth of oocytes, respectively, whereas DHP is essential for induction of final oocyte maturation. We also reviewed the correlation between ovarian steroidogenesis to produce these sex steroid hormones, serum titers and gene expression.  相似文献   

10.
Oocyte maturation (OM) is initiated in lower vertebrates and echinoderms when maturation-inducing substances (MIS) bind oocyte membrane receptors. This study tested the hypothesis that activation of a Gi protein is necessary for MIS-mediated OM in spotted seatrout. Addition of MIS significantly decreased adenylyl cyclase activity in a steroid specific, pertussis toxin (PTX)-sensitive manner in oocyte membranes and microinjection of PTX into oocytes inhibited MIS-induced OM, suggesting the steroid activates a Gi protein. MIS significantly increased [35S]GTPγS binding to ovarian membranes, confirming that MIS receptor binding activates a G-protein, and immunoprecipitation studies showed the increased [35S]GTPγS binding was associated with Gαi1-3 proteins. Radioligand binding studies in ovarian membranes using GTPγS and PTX demonstrated that the MIS binds a receptor coupled to a PTX-sensitive G-protein. This study provides the first direct evidence in a vertebrate model that MIS-induced activation of a Gi protein is necessary for OM. These results support a mechanism of MIS action involving binding to a novel, G-protein coupled receptor and activation of an inhibitory G-protein, the most comprehensive and plausible model of MIS initiation of OM proposed to date.  相似文献   

11.
In starfish ovaries follicle cells that envelop each oocyte are thought to mediate the production of a maturation inducing substance (MIS), identified as 1-methyladenine, that induces maturation and spawning of oocytes after exposure to a gonadotropic substance secreted by the radial nerve (RNF). Studies were carried out to assess the possible role of extrafollicular cells within the ovarian wall in mediating this signal transduction process in the ovary of Pisaster ochraceus. Oocyte maturation and spawning occurred following the addition of RNF to intact ovarian tissue in vitro whereas no maturation occurred following the addition of RNF to germinal vesicle (GV) oocytes or GV oocytes surrounded by follicle cells. In contrast, oocyte maturation occurred when small ovarian wall fragments, lacking mature follicles, were incubated with GV oocytes and RNF. Neither actinomycin D nor cycloheximide altered RNF induction of oocyte maturation in the presence of the ovarian wall tissue whereas preheating (boiling water for 5 min) the tissue obliterated its response to RNF. Non-ovarian tissues failed to produce MIS in response to RNF. Results suggest that ovarian components other than the follicle cells that envelop fully grown immature oocyte are responsive to RNF and represent a significant and previously unrecognised intra-ovarian source of MIS.  相似文献   

12.
The recent discovery of a novel, membrane localized progestin receptor (mPR) unrelated to the classical progesterone receptor (PR) in fishes and its subsequent identification in mammals suggests a potential mediator of non-traditional progestin actions, particularly in tissues where PR is absent. While early studies on mPR focused on final oocyte maturation in fishes, more current studies have examined mPRs in multiple mammalian systems in both reproductive and non-reproductive tissues as well as in diseased tissues. Here we review the current data on mPR in mammalian systems including male and female reproductive tracts, liver, neuroendocrine tissues, the immune system and breast and ovarian cancer. We also provide new data demonstrating mPR expression in the RAW 264.7 immune cell line and bone marrow-derived macrophages as well as mPR expression and downstream gene regulation in ovarian cancer cells.  相似文献   

13.
Under the influence of maturation-inducing hormone (MIH) secreted from follicle cells, oocyte maturation is finally triggered by maturation-promoting factor (MPF), which consists of a homolog of the cdc2+ gene product of fission yeast (p34cdc2) and cyclin B. Two species of cyclin B clones were isolated from a cDNA library constructed from mature goldfish oocytes. Sequence comparisons revealed that these two clones are highly homologous (95%) and were found to be similar to Xenopus cyclin B1. Using monoclonal antibodies against Escherichia coli-produced goldfish cyclin B and the PSTAIR sequence of p34cdc2, we examined the levels of cyclin B and p34cdc2 proteins during goldfish oocyte maturation induced in vitro by 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one (17 alpha, 20 beta-DP), a natural MIH in fish. Protein p34cdc2 was found in immature oocyte extracts and did not remarkably change during oocyte maturation. Cyclin B was not detected in immature oocyte extracts and appeared when oocytes underwent germinal vesicle breakdown. Cyclin B that appeared during oocyte maturation was labelled with [35S]methionine, indicating its de novo synthesis. Introduction of E. coli-produced cyclin B into immature oocyte extracts induced p34cdc2 (MPF) activation. Although the possibility that immature goldfish oocytes contain an insoluble cyclin B is not completely excluded, these results strongly suggest that 17 alpha, 20 beta-DP induces oocytes to synthesize cyclin B, which in turn activates preexisting p34cdc2, forming active MPF.  相似文献   

14.
Growth factors are known to regulate ovarian function. In the present study, effects of these growth factors, TGF-α, TGF-β, and activin-A were tested on spontaneous porcine oocyte maturation. Cumulus-oocyte complexes (COC) were cultured in the presence of TGF-α, TGF-β, and activin-A for 48 hr. Stages of meiotic maturation were assessed by staining with acetic orcein. Among these factors, only TGF-α significantly enhanced the maturation rate, whereas TGF-β suppressed the spontaneous maturation rate. The site of action of TGF-α on COC and the interaction between TGF-α and EGF receptor was also examined. Denuded oocytes, alone or in coculture with cumulus cells, were cultured in the presence of TGF-α for 48 hr. TGF-α did not have any significant effect on denuded oocyte maturation. Heptanol was employed to investigate the role of gap junctions on TGF-α-induced oocyte maturation in COC. Although heptanol did not have any significant effect in the control medium, heptanol reversed the stimulatory effect of TGF-α on porcine oocyte maturation. TGF-α was able to displace 125I-EGF binding on COC. In conclusion, TGF-α enhances the spontaneous maturation of porcine oocytes by generating positive signal(s) in cumulus cells that are transferred to the oocyte via gap junctions. TGF-α shares the same receptor with EGF on porcine COC. TGF-β, in contrast, inhibits porcine oocyte maturation. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Full-grown oocytes of Atlantic croaker are insensitive to maturation-inducing steroid (MIS) unless they are primed with gonadotropin (GtH). The objective of this study was to examine the mechanism of GtH-induced maturational competence in croaker oocytes. Specifically, we determined the in vitro secretion of steroids by intact ovarian follicles of unprimed or hCG-primed fish, the direct effects of steroids on maturational competence, and the effects of steroid (cyanoketone), protein (cycloheximide), and RNA (actinomycin D) synthesis inhibitors on hCG-induced maturational competence and steroidogenesis in vitro. The steroid content of the incubation medium after hCG treatment was measured by RIA. The effects of hCG or exogenous steroid treatment on maturational competence were determined by recording the incidence of germinal vesicle breakdown (GVBD) after MIS-induced GVBD in a standard bioassay. Our major findings were: (1) induction of maturational competence occurred after exposure of ovarian follicles to hCG either in vivo or in vitro; (2) MIS secretion was detected in follicles of hCG-primed fish but not unprimed fish, and no MIS secretion was observed during hCG induction of maturational competence in vitro; (3) treatment with cyanoketone blocked the hCG-dependent secretion of testosterone and estradiol but not the development of maturational competence; (4) treatment with MIS or various other exogenous steroids in the absence of hCG did not induce maturational competence; and (5) hCG-induced maturational competence was inhibited by cycloheximide and actinomycin D. Therefore, the mechanisms of GtH induction of oocyte maturation in Atlantic croaker can be described in two distinct stages: a delta-4 steroid-(including MIS) and estrogen-independent priming stage followed by a MIS-mediated GVBD stage. The priming stage may involve mechanisms requiring RNA as well as protein synthesis.  相似文献   

16.
The study objectives aimed to investigate the maturation-inducing steroid (MIS) in marine protandrous black porgy, Acanthopagrus schlegeli. The characteristics of oocyte maturation were also described. Females were injected with two successive doses of LHRH analog (LHRH-A, 10 and 50 microg/kg of fish). The ovarian tissue was obtained at 6-h intervals for in vitro oocyte maturation. Both 17,20 beta-dihydroxy-4-pregnen-3-one (DHP) and 17,20 beta,21-trihydorxy-4-pregnen-3-one (20 beta-S) were the most effective steroids to induce in vitro maturation (e.g. germinal vesicle breakdown, GVBD) in oocytes cultured for either 24 h or 1 min. 20 beta-S had a better potency than DHP in inducing oocyte maturation. 17-hydroxyprogesterone, 11-deoxycortisol, and 20 beta-21-dihydroxy-4-pregnen-3-one also significantly induced oocyte maturation at high concentrations. The process of oocyte maturation (after the injection of LHRH analog) was founded to be divided into four stages: hormone-insensitive stage (insensitive to gonadotropin and MIS); MIS-insensitive (respond to gonadotropin, but not MIS); MIS-sensitive (respond to MIS); and spontaneous stage (GVBD in the hormone-free condition), respectively. Cycloheximide blocked GVBD at the MIS-insensitive stage, control (hormone-free), and hormone-induced GVBD at the MIS-sensitive stage in a dose-dependent effect.  相似文献   

17.
Prostaglandin involvement in ovulation and maturation of amphibian (Rana pipiens) ovarian follicular oocytes was investigated using in vitro-cultured ovarian follicles. Exposure of follicles to PGF2α during culture stimulated variable but generally low levels of ovulation without concomitant induction of maturation. Addition of PGF2α to cultured follicles markedly enhanced the incidence of ovulation in follicles exposed to progesterone or frog pituitary homogenate (FPH). Onset of the ovulatory process was further accelerated following addition of PGF2α to FPH-treated follicles. PGE, in contrast to PGF2α, exhibited no stimulatory effects on ovulation and consistently inhibited ovulation induction by FPH and progesterone. Cytological analysis of follicles undergoing ovulation revealed that ovulation of immature oocytes induced by PGF2α varied markedly from that seen following FPH or progesterone stimulation of follicles in vivo or in vitro. Immature oocytes in contrast to maturing oocytes were typically ovlulated with follicle cells still attached to the vitelline membrane. The observations indicate that PGF2α effected follicle rupture and contraction of the follicular epithelium and theca without prior separation of the follicle cells from the oocyte. Selective inhibitors of steroid synthesis (cyanoketone) and protein synthesis (cycloheximide) inhibited FPH-induced ovulation and maturation. PGF2α reversed the inhibitory effects of cyanoketone and cycloheximide on FPH-induced ovulation but not maturation of oocytes. Neither prostaglandins alone or in combination with progesterone or FPH induced ovulation of oocytes following removal of the follicular epithelium. Ovulatory effects of PGF2α appear to be mediated through the follicular epithelium. Results indicate that ovulation and maturation of amphibian oocytes can be induced independently of each other by separate classes of hormones. Normal synchronization of ovulation and maturation of oocytes may require the combined action of prostaglandins and steroids acting within different follicular compartments.  相似文献   

18.
Cdk2 kinase activity increases during oocyte maturation but neither cyclin A nor B is associated with Cdk2 in mature oocytes in goldfish. As a potential Cdk2 partner in meiosis, a cyclin E homolog was isolated from a goldfish oocyte cDNA library. A monoclonal antibody was raised against bacterially produced full-length goldfish cyclin E. Both cyclin E and Cdk2 were already present in immature oocytes and their protein levels did not change remarkably during oocyte maturation. Cyclin E formed a complex mainly with Cdk2 just at the time of germinal vesicle breakdown (GVBD) in association with the increase in Cdk2 kinase activity, although a fraction of cyclin E bound to Cdk(s) other than Cdk2 and Cdc2. Ectopic activation of cyclin E/Cdk2 by the injection of cyclin E messenger RNA (mRNA) into immature oocytes did not induce maturation-promoting factor (MPF) activation and GVBD. Furthermore, inhibition of cyclin E/Cdk2 kinase activity by the injection of p21SDI1 into the oocytes treated with 17alpha,20beta-dihydroxy-4-pregnen-3-one had no effect on MPF activation and GVBD. These results indicate that cyclin E/Cdk2 kinase activity is insufficient and unnecessary for initiating goldfish oocyte maturation.  相似文献   

19.
Changes in ovarian maturation-inducing steroid (MIS; 17,20 beta, 21-trihydroxy-4-pregnen-3-one [20 beta-S]) membrane receptor concentrations during the reproductive cycle were investigated in spotted seatrout (Cynoscion nebulosus) captured at their spawning grounds. Ovarian receptor concentrations increased gradually during ovarian recrudescence and subsequently increased rapidly during oocyte maturation, reaching 3.5-fold the prematuration values by the beginning of ovulation. The significant elevation of receptor concentrations by the germinal vesicle migration stage of oocyte maturation was accompanied by increases in circulating levels of gonadotropin (LH, GTH II) and MIS (20 beta-S). The regulation and physiological significance of the increase in ovarian MIS membrane receptor concentrations were investigated in a double in vitro incubation system. Incubation of fully grown, follicle-enclosed oocytes with hCG (10 IU/ml) for 6 h caused a two- to fourfold increase in oocyte and ovarian MIS receptor concentrations and the development of oocyte maturational competence (OMC; ability to complete oocyte maturation in vitro in response to exogenous 20 beta-S in a second incubation). Both upregulation of the MIS receptor and development of OMC in response to gonadotropin were blocked by coincubation with actinomycin D or cycloheximide, which are inhibitors of mRNA and protein synthesis, respectively, but not by cyanoketone, which is an inhibitor of 3 beta-hydroxysteroid dehydrogenase-dependent steroid synthesis. Incubation with a variety of steroids, including 20 beta-S, failed to increase receptor concentrations or to induce OMC, further supporting a steroid-independent mechanism of gonadotropin action. In contrast, insulin-like growth factor I (IGF-I) mimicked the actions of gonadotropin, which suggests IGF-I may be a component of the hormone signaling pathway. A close correlation was found between the relative increase in MIS receptor concentrations and the percentage of oocytes that became maturationally competent after treatment with different concentrations of gonadotropins and drugs that elevate cAMP levels. The finding that upregulation of the MIS receptor in response to gonadotropin and other treatments is invariably associated with the development of OMC indicates that these two processes are intimately related, and it suggests that the increase in MIS receptor concentrations is a critical regulatory step in the hormonal control of oocyte maturation.  相似文献   

20.
Mos plays a crucial role in meiotic cell division in vertebrates. In Xenopus, Mos is involved in the initiation of oocyte maturation as an initiator and in the arrest at the metaphase II stage (MII) as a component of the cytostatic factor (CSF). The function of Mos is mediated by MAP kinase (MAPK). We investigated the function of the Mos/MAPK pathway during goldfish oocyte maturation induced by 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DP), a natural maturation-inducing hormone in fishes. Mos was absent in immature goldfish oocytes. It appeared before the onset of germinal vesicle breakdown (GVBD), increased to a maximum in mature oocytes arrested at MII and disappeared after fertilization. MAPK was activated after Mos synthesis but before maturation-promoting factor (MPF) activation, and its activity reached maximum at MII. Injection of either Xenopus or goldfish c-mos mRNA into one blastomere of 2-cell-stage Xenopus and goldfish embryos induced metaphase arrest, suggesting that goldfish Mos has a CSF activity. Injection of constitutively active Xenopus c-mos mRNA into immature goldfish oocytes induced MAPK activation, but neither MPF activation nor GVBD occurred. Conversely, the injection of goldfish c-mos antisense RNA inhibited both Mos synthesis and MAPK activation in the 17α,20β-DP-treated oocytes, but these oocytes underwent GVBD. These results indicate that the Mos/MAPK pathway is not essential for initiating goldfish oocyte maturation despite its general function as a CSF. We discuss the general role of Mos/MAPK during oocyte maturation, with reference to the difference in contents of inactive MPF (pre-MPF) stored in immature oocytes. Received: 10 February 2000 / Accepted: 25 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号