首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylan comprises up to one‐third of plant cell walls, and it influences the properties and processing of biomass. Glucuronoxylan in Arabidopsis is characterized by a linear β‐(1,4)‐linked backbone of xylosyl residues substituted by glucuronic acid and 4‐O‐methylglucuronic acid (collectively termed [Me]GlcA). The role of these substitutions remains unclear. GUX1 (glucuronic acid substitution of xylan 1) and GUX2, recently identified as glucuronyltransferases, are both required for substitution of the xylan backbone with [Me]GlcA. Here, we demonstrate clear differences in the pattern of [Me]GlcA substitution generated by each of these glucuronyltransferases. GUX1 decorates xylan with a preference for addition of [Me]GlcA at evenly spaced xylosyl residues. Intervals of eight or 10 residues dominate, but larger intervals are observed. GUX2, in contrast, produces more tightly clustered decorations with most frequent spacing of five, six or seven xylosyl residues, with no preference for odd or even spacing. Moreover, each of these GUX transferases substitutes a distinct domain of secondary cell wall xylan, which we call the major and minor domains. These major and minor xylan domains were not separable from each other by size or charge, a finding that suggests that they are tightly associated. The presence of both differently [Me]GlcA decorated domains may produce a xylan molecule that is heterogeneous in its properties. We speculate that the major and minor domains of xylan may be specialised, such as for interaction with cellulose or lignin. These findings have substantial implications for our understanding of xylan synthesis and structure, and for models of the molecular architecture of the lignocellulosic matrix of plant cell walls.  相似文献   

2.
Xylan is a major component of the plant cell wall and the most abundant noncellulosic component in the secondary cell walls that constitute the largest part of plant biomass. Dicot glucuronoxylan consists of a linear backbone of β(1,4)-linked xylose residues substituted with α(1,2)-linked glucuronic acid (GlcA). Although several genes have been implicated in xylan synthesis through mutant analyses, the biochemical mechanisms responsible for synthesizing xylan are largely unknown. Here, we show evidence for biochemical activity of GUX1 (for GlcA substitution of xylan 1), a member of Glycosyltransferase Family 8 in Arabidopsis (Arabidopsis thaliana) that is responsible for adding the glucuronosyl substitutions onto the xylan backbone. GUX1 has characteristics typical of Golgi-localized glycosyltransferases and a K(m) for UDP-GlcA of 165 μm. GUX1 strongly favors xylohexaose as an acceptor over shorter xylooligosaccharides, and with xylohexaose as an acceptor, GlcA is almost exclusively added to the fifth xylose residue from the nonreducing end. We also show that several related proteins, GUX2 to GUX5 and Plant Glycogenin-like Starch Initiation Protein6, are Golgi localized and that only two of these proteins, GUX2 and GUX4, have activity as xylan α-glucuronosyltransferases.  相似文献   

3.
Lee C  Teng Q  Zhong R  Ye ZH 《Plant & cell physiology》2012,53(7):1204-1216
Xylan, the second most abundant cell wall polysaccharide, is composed of a linear backbone of β-(1,4)-linked xylosyl residues that are often substituted with sugar side chains, such as glucuronic acid (GlcA) and methylglucuronic acid (MeGlcA). It has recently been shown that mutations of two Arabidopsis family GT8 genes, GUX1 and GUX2, affect the addition of GlcA and MeGlcA to xylan, but it is not known whether they encode glucuronyltransferases (GlcATs) or indirectly regulate the GlcAT activity. In this study, we performed biochemical and genetic analyses of three Arabidopsis GUX genes to determine their roles in the GlcA substitution of xylan and secondary wall deposition. The GUX1/2/3 genes were found to be expressed in interfascicular fibers and xylem cells, the two major types of secondary wall-containing cells that have abundant xylan. When expressed in tobacco BY2 cells, the GUX1/2/3 proteins exhibited an activity capable of transferring GlcA residues from the UDP-GlcA donor onto xylooligomer acceptors, demonstrating that these GUX proteins possess xylan GlcAT activity. Analyses of the single, double and triple gux mutants revealed that simultaneous mutations of all three GUX genes led to a complete loss of GlcA and MeGlcA side chains on xylan, indicating that all three GUX proteins are involved in the GlcA substitution of xylan. Furthermore, a complete loss of GlcA and MeGlcA side chains in the gux1/2/3 triple mutant resulted in reduced secondary wall thickening, collapsed vessel morphology and reduced plant growth. Together, our results provide biochemical and genetic evidence that GUX1/2/3 are GlcATs responsible for the GlcA substitution of xylan, which is essential for normal secondary wall deposition and plant development.  相似文献   

4.
Two rat monoclonal antibodies have been generated to plant cell wall (1-->4)-beta-D-xylans using a penta-1,4-xylanoside-containing neoglycoprotein as an immunogen. The monoclonal antibodies, designated LM10 and LM11, have different specificities to xylans in relation to the substitution of the xylan backbone as indicated by immunodot assays and competitive-inhibition ELISAs. LM10 is specific to unsubstituted or low-substituted xylans, whereas LM11 binds to wheat arabinoxylan in addition to unsubstituted xylans. Immunocytochemical analyses indicated the presence of both epitopes in secondary cell walls of xylem but differences in occurrence in other cell types.  相似文献   

5.
Butyrivibrio fibrisolvens andThermoanaerobacter strain B6A are xylanolytic anaerobes isolated from rumen and geothermal sources respectively. Both organisms fermented larchwood xylan, oatspelt xylan, or 4-O-methylglucuronoaxylan, extensively utilizing both the monosaccharide (glucose, xylose, arabinose) and uronic acid components. Citrus pectin or polygalacturonate also supported growth of both organisms, but onlyB. fibrisolvens was able to use the monomers glucuronate or galacturonate as the sole added energy source. Strain B6A was able to utilize these two uronic acids when glucose, xylose, arabinose, or oatspelt xylan was also provided as a second energy source. Xylanase, xylosidase, and arabinofuranosidase activities were found to be produced by strain B6A, but the levels and distribution (cell bound vs. culture fluid) were influenced by growth substrate. The highest levels were observed with growth on xylans when xylanase activity was mainly extracellular, but the other two activities were mostly cell bound. Apparently,Thermoanaerobacter strain B6A, but notB. fibrisolvens, requires xylan degradation products generated by these three activities to provide energy sources to utilize the uronic acid components on xylans.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

6.
Hemicelluloses, mainly xylans, can be a major component of diets consumed by ruminants and undergo various degrees of microbial digestion in the rumen. The ability of Butyrivibrio fibrisolvens, a major xylanolytic ruminal species, to degrade and utilize nine chemically and physically different xylans for growth was examined. The arabinoxylans used included two isolated from corncobs (CCX-A and CCX-B), a native xylan excreted by corn cell tissue cultures (CX), an oxalic acid-treated, arabinose-depleted CX, and oat spelt xylan. Except for CCX-A, these xylans were extensively converted within 3 h of growth to acid-alcohol-soluble forms that remained at high levels for the duration of culture growth. These xylans contain mainly xylose and arabinose with small amounts of uronic acids. For a given xylan, all three components were used at about the same rate and extent. During the early stages of growth B. fibrisolvens also rapidly solubilized glucuronoxylans from birchwood, larchwood, 4-O-methylglucuronoxylan, and the xylose homopolymer xylan isolated from beechwood (BEWX). In contrast to the findings for the arabinoxylans, little acid-alcohol-soluble carbohydrate remained in these cultures after 9 h of growth, except for BEWX. Initially, with birchwood, larchwood, and 4-O-methylglucuronoxylan the uronic acid components were preferentially used over the xylose. Final xylan utilization measured at 72 h for all xylans varied from 57% for CCX-A to 92% for BEWX and was correlated with the initial 12-h utilization rate for a given xylan. Since CCX-A and BEWX are both highly water insoluble, this aspect did not appear to influence overall utilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The capacity of four xylan-directed probes (carbohydrate-binding modules Cf CBM2b-1-2 and Cj CBM15; monoclonal antibodies LM10 and LM11) to recognize xylan polysaccharides in primary and secondary cell walls of tobacco stem sections has been determined. Enzymatic removal of pectic homogalacturonan revealed differential recognition of xylans in restricted regions of cortical primary cell walls. Monoclonal antibody binding to these exposed xylans was more sensitive to xylanase action than carbohydrate-binding module (CBM) binding. In contrast, the recognition of xylans by CBMs in secondary cell walls of the same organ was more sensitive to xylanase action than the recognition of xylans by the monoclonal antibodies. A methodology was developed to quantify indirect immunofluorescence intensities, and to evaluate xylanase impacts. The four xylan probes were also used to detect xylan populations in chromatographic separations of solubilized cell wall materials from tobacco stems. Altogether, these observations reveal the heterogeneity of the xylans in plant cell walls. They indicate that although CBM and antibody probes can exhibit similar specificities against solubilized polymers, they can have differential capacities for xylan recognition in muro , and that the access of molecular probes and enzymes to xylan epitopes/ligands also varies between primary and secondary cell walls that are present in the same organ.  相似文献   

8.
Secondary walls in vessels and fibers of dicotyledonous plants are mainly composed of cellulose, xylan, and lignin. Although genes involved in biosynthesis of cellulose and lignin have been intensively studied, little is known about genes participating in xylan synthesis. We found that Arabidopsis thaliana fragile fiber8 (fra8) is defective in xylan synthesis. The fra8 mutation caused a dramatic reduction in fiber wall thickness and a decrease in stem strength. FRA8 was found to encode a member of glycosyltransferase family 47 and exhibits high sequence similarity to tobacco (Nicotiana plumbaginifolia) pectin glucuronyltransferase. FRA8 is expressed specifically in developing vessels and fiber cells, and FRA8 is targeted to Golgi. Comparative analyses of cell wall polysaccharide fractions from fra8 and wild-type stems showed that the xylan and cellulose contents are drastically reduced in fra8, whereas xyloglucan and pectin are elevated. Further structural analysis of cell walls revealed that although wild-type xylans contain both glucuronic acid and 4-O-methylglucuronic acid residues, xylans from fra8 retain only 4-O-methylglucuronic acid, indicating that the fra8 mutation results in a specific defect in the addition of glucuronic acid residues onto xylans. These findings suggest that FRA8 is a glucuronyltransferase involved in the biosynthesis of glucuronoxylan during secondary wall formation.  相似文献   

9.
We investigated the spatial and temporal distribution of xylans in the cell walls of differentiating earlywood tracheids of Cryptomeria japonica using two different types of monoclonal antibodies (LM10 and LM11) combined with immunomicroscopy. Xylans were first deposited in the corner of the S1 layer in the early stages of S1 formation in tracheids. Cell corner middle lamella also showed strong xylan labeling from the early stage of cell wall formation. During secondary cell wall formation, the innermost layer and the boundary between the S1 and S2 layers (S1/S2 region) showed weaker labeling than other parts of the cell wall. However, mature tracheids had an almost uniform distribution of xylans throughout the entire cell wall. Xylan localization labeled with LM10 antibody was stronger in the outer S2 layer than in the inner layer, whereas xylans labeled with LM11 antibody were almost uniformly distributed in the S2 layer. In addition, the LM10 antibody showed almost no xylan labeling in the S1/S2 region, whereas the LM11 antibody revealed strong xylan labeling in the S1/S2 region. These findings suggest that structurally different types of xylans may be deposited in the tracheid cell wall depending on the developmental stage of, or location in, the cell wall. Our study also indicates that deposition of xylans in the early stages of tracheid cell wall formation may be spatially consistent with the early stage of lignin deposition in the tracheid cell wall.  相似文献   

10.
Relationships between activities of xylanases and xylan structures   总被引:1,自引:0,他引:1  
Structures of five water-soluble xylans have been determined. Four purified xylanase enzymes have been studied for the hydrolysis of the xylans. Different xylanases have different activities against various xylan structures. The key factors that influence the rate of xylan hydrolysis are chain length and degree of substitution. Two family 11 xylanases, Orpinomyces pc2 xylanase and Trichoderma longibrachiatum xylanase, can rapidly hydrolyze xylans that have a chain length greater than 8 xylose residues, and their hydrolytic rates are not sensitive to substituents on the xylan backbone. A family 11 xylanase from Aureobasidium pullulans is most effective on xylans that have a long chain (greater than 19 xylose residues), and also is effective against substituent groups. Although Thermatoga maritima xylanase is also more active on a long xylan chain (greater than 19 xylose residues), its hydrolytic rate is greatly reduced by substituents on xylan backbones.  相似文献   

11.
Alpha-glucuronidases, components of an ensemble of enzymes central to the recycling of photosynthetic biomass, remove the alpha-1,2 linked 4-O-methyl glucuronic acid from xylans. The structure of the alpha-glucuronidase, GlcA67A, from Pseudomonas cellulosa reveals three domains, the central of which is a (beta/alpha)(8) barrel housing the catalytic apparatus. Complexes of the enzyme with the individual reaction products, either xylobiose or glucuronic acid, and the ternary complex of both glucuronic acid and xylotriose reveal a "blind" pocket which selects for short decorated xylooligosaccharides substituted with the uronic acid at their nonreducing end, consistent with kinetic data. The catalytic center reveals a constellation of carboxylates; Glu292 is poised to provide protonic assistance to leaving group departure with Glu393 and Asp365 both appropriately positioned to provide base-catalyzed assistance for inverting nucleophilic attack by water.  相似文献   

12.
Glucuronoxylan (GX), an important component of hemicellulose in the cell wall, appears to affect aluminium (Al) sensitivity in plants. To investigate the role of GX in cell‐wall‐localized xylan, we examined the Arabidopsis thaliana parvus mutant in detail. This mutant lacks α‐D‐glucuronic acid (GlcA) side chains in GX and has greater resistance to Al stress than wild‐type (WT) plants. The parvus mutant accumulated lower levels of Al in its roots and cell walls than WT despite having cell wall pectin content and pectin methylesterase (PME) activity similar to those of WT. Our results suggest that the altered properties of hemicellulose in the mutant contribute to its decreased Al accumulation. Although we observed almost no differences in hemicellulose content between parvus and WT under control conditions, less Al was retained in parvus hemicellulose than in WT. This observation is consistent with the finding that GlcA substitutions in WT GX, but not mutant GX, were increased under Al stress. Taken together, these results suggest that the modulation of GlcA levels in GX affects Al resistance by influencing the Al binding capacity of the root cell wall in Arabidopsis.  相似文献   

13.
Endo-beta-1,4-xylanases (xylanases), which cleave beta-1,4 glycosidic bonds in the xylan backbone, are important components of the repertoire of enzymes that catalyze plant cell wall degradation. The mechanism by which these enzymes are able to hydrolyze a range of decorated xylans remains unclear. Here we reveal the three-dimensional structure, determined by x-ray crystallography, and the catalytic properties of the Cellvibrio mixtus enzyme Xyn10B (CmXyn10B), the most active GH10 xylanase described to date. The crystal structure of the enzyme in complex with xylopentaose reveals that at the +1 subsite the xylose moiety is sandwiched between hydrophobic residues, which is likely to mediate tighter binding than in other GH10 xylanases. The crystal structure of the xylanase in complex with a range of decorated xylooligosaccharides reveals how this enzyme is able to hydrolyze substituted xylan. Solvent exposure of the O-2 groups of xylose at the +4, +3, +1, and -3 subsites may allow accommodation of the alpha-1,2-linked 4-O-methyl-d-glucuronic acid side chain in glucuronoxylan at these locations. Furthermore, the uronic acid makes hydrogen bonds and hydrophobic interactions with the enzyme at the +1 subsite, indicating that the sugar decorations in glucuronoxylan are targeted to this proximal aglycone binding site. Accommodation of 3'-linked l-arabinofuranoside decorations is observed in the -2 subsite and could, most likely, be tolerated when bound to xylosides in -3 and +4. A notable feature of the binding mode of decorated substrates is the way in which the subsite specificities are tailored both to prevent the formation of "dead-end" reaction products and to facilitate synergy with the xylan degradation-accessory enzymes such as alpha-glucuronidase. The data described in this report and in the accompanying paper indicate that the complementarity in the binding of decorated substrates between the glycone and aglycone regions appears to be a conserved feature of GH10 xylanases.  相似文献   

14.
Cell wall hemicelluloses and pectins are O‐acetylated at specific positions, but the significance of these substitutions is poorly understood. Using a transgenic approach, we investigated how reducing the extent of O‐acetylation in xylan affects cell wall chemistry, plant performance and the recalcitrance of lignocellulose to saccharification. The Aspergillus niger acetyl xylan esterase AnAXE1 was expressed in Arabidopsis under the control of either the constitutively expressed 35S CAMV promoter or a woody‐tissue‐specific GT43B aspen promoter, and the protein was targeted to the apoplast by its native signal peptide, resulting in elevated acetyl esterase activity in soluble and wall‐bound protein extracts and reduced xylan acetylation. No significant alterations in cell wall composition were observed in the transgenic lines, but their xylans were more easily digested by a β‐1,4‐endoxylanase, and more readily extracted by hot water, acids or alkali. Enzymatic saccharification of lignocellulose after hot water and alkali pretreatments produced up to 20% more reducing sugars in several lines. Fermentation by Trametes versicolor of tissue hydrolysates from the line with a 30% reduction in acetyl content yielded ~70% more ethanol compared with wild type. Plants expressing 35S:AnAXE1 and pGT43B:AnAXE1 developed normally and showed increased resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis, probably due to constitutive activation of defence pathways. However, unintended changes in xyloglucan and pectin acetylation were only observed in 35S:AnAXE1‐expressing plants. This study demonstrates that postsynthetic xylan deacetylation in woody tissues is a promising strategy for optimizing lignocellulosic biomass for biofuel production.  相似文献   

15.

Xylan has a main chain consisting of β-1,4-linked xylose residues with diverse substituents. Endoxylanases cleave the xylan chain at cleavage sites determined by the substitution pattern and thus give different oligosaccharide product patterns. Most known endoxylanases belong to glycoside hydrolase (GH) families 10 and 11. These enzymes work well on unsubstituted xylan but accept substituents in certain subsites. The GH11 enzymes are more restricted by substituents, but on the other hand, they are normally more active than the GH10 enzymes on insoluble substrates, because of their smaller size. GH5 endoxylanases accept arabinose substituents in several subsites and require it in the − 1 subsite. This specificity makes the GH5 endoxylanases very useful for degradation of highly arabinose-substituted xylans and for the selective production of arabinoxylooligosaccharides, without formation of unsubstituted xylooligosaccharides. The GH30 endoxylanases have a related type of specificity in that they require a uronic acid substituent in the − 2 subsite, which makes them very useful for the production of uronic acid substituted oligosaccharides. The ability of dietary xylooligosaccharides to function as prebiotics in humans is governed by their substitution patterns. Endoxylanases are thus excellent tools to tailor prebiotic oligosaccharides to stimulate various types of intestinal bacteria and to cause fermentation in different parts of the gastrointestinal tract. Continuously increasing knowledge on the function of the gut microbiota and discoveries of novel endoxylanases increase the possibilities to achieve health-promoting effects.

  相似文献   

16.
Kim JS  Sandquist D  Sundberg B  Daniel G 《Planta》2012,235(6):1315-1330
Xylans occupy approximately one-third of the cell wall components in hardwoods and their chemical structures are well understood. However, the microdistribution of xylans (O-acetyl-4-O-methylglucuronoxylans, AcGXs) in the cell wall and their correlation with functional properties of cells in hardwood xylem is poorly understood. We demonstrate here the spatial and temporal distribution of xylans in secondary xylem cells of hybrid aspen using immunolocalization with LM10 and LM11 antibodies. Xylan labeling was detected earliest in fibers at the cell corner of the S? layer, and then later in vessels and ray cells respectively. Fibers showed a heterogeneous labeling pattern in the mature cell wall with stronger labeling of low substituted xylans (lsAcGXs) in the outer than inner cell wall. In contrast, vessels showed uniform labeling in the mature cell wall with stronger labeling of lsAcGXs than fibers. Xylan labeling in ray cells was detected much later than that in fibers and vessels, but was also detected at the beginning of secondary cell wall formation as in fibers and vessels with uniform labeling in the cell wall regardless of developmental stage. Interestingly, pit membranes including fiber-, vessel- and ray-vessel pits showed strong labeling of highly substituted xylans (hsAcGXs) during differentiation, although this labeling gradually disappeared during pit maturation. Together our observations indicate that there are temporal and spatial variations of xylan deposition and chemical structure of xylans between cells in aspen xylem. Differences in xylan localization between aspen (hardwood) and cedar (softwood) are also discussed.  相似文献   

17.
Methylation and partial acid hydrolysis of xylans from the bast and core of kenaf (Hibiscus cannabinus) showed that the main chain of these xylans consists of (1 → 4)-linked β-d-xylopyranosyl (Xylp) residues, some of which carry a -1,2-linked 4-O-methyl-glucopyranosyluronic acid (Me-GlcAp) and glucopyranosyluronic acid (GlcAp) residues as side chains. Partial hydrolysis of kenaf xylans afforded two series of aldouronic acids from aldobio- to aldotetraouronic acids. The acids of the first series composed of 4-O-Me-d-GlcAp and d-Xylp residues: 4-O-Me-GlcA-Xyl3, 4-O-Me-GlcA-Xyl2 and 4-O-Me-GlcA-Xyl. The second series composed of d-GlcAp and d-Xylp: GlcA-Xyl3, GlcA-Xyl2 and GlcA-Xyl.

In addition to these acids, another aldobiouronic acid, 4-O-(-d-GalAp)-d-Xyl was found to be present in the partial hydrolysate.

The molar ratio of GalA, GlcA, 4-O-Me-GlcA, and Xyl residues was calculated to be 1.0:2.0:9.4:119 for the bast xylan and 1.0:1.3:7.9:99.4 for the core xylan.  相似文献   


18.
BackgoundXylan is the second most abundant plant cell wall polysaccharide after cellulose with α-L-arabinofuranose (L-Araf) as one of the major side substituents. Capacity to degrade xylan is characteristic of many plant pathogens; and corresponding enzymes that debranch arabinoxylan provide tools to tailor xylan functionality or permit its full hydrolysis.MethodThree GH62_2 family α-arabinofuranosidases (Abfs) from plant pathogenic fungi, NhaAbf62A from Nectria haematococca, SreAbf62A from Sporisorium reilianum and GzeAbf62A from Gibberella zeae, were recombinantly produced in Escherichia coli. Their biochemical properties and substrate specificities were characterized in detail. Particularly with 1H NMR, the regioselectivity and debranching preference of the three Abfs were directly compared.ResultsThe activities of selected Abfs towards arabinoxylan were all optimal at pH 6.5. Their preferred substrates were wheat arabinoxylan, followed by soluble oat spelt xylan. The Abfs displayed selectivity towards either α-(1 → 2) or α-(1 → 3)-L- Araf mono-substituents in arabinoxylan. Specifically, SreAbf62A and GzeAbf62A removed m-α-(1 → 3)-L-Araf and m-α-(1 → 2)-L-Araf substituents with a similar rates, whereas NhaAbf62A released m-α-(1 → 3)-L-Araf 1.9 times faster than m-α-(1 → 2)-L-Araf.Major conclusionsBuilding upon the known selectivity of GH62 family α-arabinofuranosidases towards L-Araf mono-substituents in xylans, the current study uncovers enzyme-dependent preferences towards m-α-(1 → 3)-L-Araf and m-α-(1 → 2)-L-Araf substitutions. Comparative sequence-structure analyses of Abfs identified an arginine residue in the xylose binding +2R subsite that was correlated to the observed enzyme-dependent L-Araf debranching preferences.General significanceThis study expands the limited pool of characterized GH62 Abfs particularly those from plant pathogenic fungi, and provides biochemical details and methodology to evaluate regioselectivity within this glycoside hydrolase family.  相似文献   

19.
The interaction between xylan and cellulose microfibrils is important for secondary cell wall properties in vascular plants; however, the molecular arrangement of xylan in the cell wall and the nature of the molecular bonding between the polysaccharides are unknown. In dicots, the xylan backbone of β‐(1,4)‐linked xylosyl residues is decorated by occasional glucuronic acid, and approximately one‐half of the xylosyl residues are O‐acetylated at C‐2 or C‐3. We recently proposed that the even, periodic spacing of GlcA residues in the major domain of dicot xylan might allow the xylan backbone to fold as a twofold helical screw to facilitate alignment along, and stable interaction with, cellulose fibrils; however, such an interaction might be adversely impacted by random acetylation of the xylan backbone. Here, we investigated the arrangement of acetyl residues in Arabidopsis xylan using mass spectrometry and NMR. Alternate xylosyl residues along the backbone are acetylated. Using molecular dynamics simulation, we found that a twofold helical screw conformation of xylan is stable in interactions with both hydrophilic and hydrophobic cellulose faces. Tight docking of xylan on the hydrophilic faces is feasible only for xylan decorated on alternate residues and folded as a twofold helical screw. The findings suggest an explanation for the importance of acetylation for xylan–cellulose interactions, and also have implications for our understanding of cell wall molecular architecture and properties, and biological degradation by pathogens and fungi. They will also impact strategies to improve lignocellulose processing for biorefining and bioenergy.  相似文献   

20.
The structure/function relationship of two acidic heteroxylan types, the arabino-(glucurono)xylan from corn cobs (AGX) and 4-O-methylglucuronoxylans (GXs) from beechwood and three medicinal herbs (Rudbeckia, Altheae, and Mahonia), has been studied. The effect of the molecular mass of AGX, as well as the content and distribution of the 4-O-methylglucuronic acid side chains in GXs on the immunological activity of these xylans was characterized by their biological response in the mitogenic and comitogenic thymocyte in vitro tests. Depolymerization of AGX by ultrasonication resulted in unequivocal decrease of the immunomodulatory activity, whereas already a short treatment by endo-beta-1,4-xylanase brought about a significant increase in its activity when applied in the highest dose. In the case of the GX samples, neither the uronic acid content nor the distribution pattern of the uronic acid side chains was found to be determinant for the expression of their immunomodulatory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号