首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel electrogenerated chemiluminescence (ECL) biosensor for highly sensitive and selective detection of mercury ion was developed on the basis of mercury-specific oligonucleotide (MSO) served as a molecular recognition element and the ruthenium(II) complex (Ru1) as an ECL emitting species. The biosensor was fabricated on a glassy carbon electrode coated with a thin layer of single wall carbon nanotubes, where the ECL probe, NH(2)-(CH(2))(6)-oligo(ethylene oxide)(6)-MSO?Dend-Ru1, was covalently attached. The Dend-Ru1 pendant was prepared by covalent coupling Ru1 with the 4th generation polyamidoamine dendrimer (Dend), in which each dendrimer contained 35 Ru1 units so that a large amplification of ECL signal was obtained. Upon binding of Hg(2+) to thymine (T) bases of the MSO, the T-Hg-T structure was formed, and the MSO changed from its linear shape to a "hairpin" configuration. Consequently, the Dend-Ru1 approached the electrode surface resulting in the increase of anodic ECL signal in the presence of the ECL coreactant tri-n-propylamine. The reported biosensor showed a high reproducibility and possessed long-term storage stability (92.3% initial ECL recovery over 30 day's storage). An extremely low detection limit of 2.4 pM and a large dynamic range of 7.0 pM to 50 nM Hg(2+) were obtained. An apparent binding constant of 1.6 × 10(9)M(-1) between Hg(2+) and the MSO was estimated using an ECL based extended Langmuir isotherm approach involving multilayer adsorption. Determination of Hg(2+) contents in real water samples was conducted and the data were consistent with the results from cold vapor atomic fluorescence spectroscopy.  相似文献   

2.
In this work, an electrochemiluminescence (ECL) sensor chip for sensitive detection of thrombin (TB) was prepared using a screen-printed electrode (SPE) as a working electrode and an aptamer as a specific recognition moiety. To produce an ECL sensor chip, a layer of pL-Cys was immobilized on the surface of the SPE using the cyclic voltammetry scanning method. A layer of gold nanoparticles (AuNPs) was assembled through an Au–S bond and hairpin DNA was further immobilized on the electrode surface. Ru(bpy)2(mcpbpy)2+, as a luminescent reagent, was covalently bound to single-stranded DNA (ssDNA) to prepare a luminescence probe ssDNA-Ru. The probe was hybridized with TB aptamer to form a capture probe. In the presence of TB, the TB aptamer in the capture probe bound to TB, causing the release of ssDNA-Ru that could bind to hairpin DNA on the electrode surface. The Ru(II) complex as a luminescent reagent was assembled onto the electrode, and pL-Cys was used as a co-reactant to enhance the ECL efficiency. The ECL signal of the sensor chip generated based on the above principles had a linear relationship with log TB concentration at the range 10 fM to1 nM, and the detection limit was 0.2 fM. Finally, TB detection using this method was verified using real blood samples. This work provides a new method using an aptamer as a foundation and SPE as a material for the detection of biological substances.  相似文献   

3.
A multifunctional bio-sensing chip was designed based on the electrochemiluminescent (ECL) detection of enzymatically produced hydrogen peroxide. Six different oxidases specific for choline, glucose, glutamate, lactate, lysine and urate were non-covalently immobilised on imidodiacetic acid chelating beads (glucose oxidase only) or on diethylaminoethyl (DEAE) anion exchanger beads, and spotted on the surface of a glassy carbon foil (25 mm(2) square), entrapped in PVA-SbQ photopolymer. The chip measurement was achieved by applying during 3 min a +850 mV potential between the glassy carbon electrode and a platinum pseudo-reference, while capturing a numeric image of the multifunctional bio-sensing chip with a CCD camera. The use of luminol supporting beads (DEAE-Sepharose) included in the sensing layer was shown to enable the achievement of spatially well defined signals, and to solve the hydrogen peroxide parasite signal which appeared between contiguous spots using luminol free in solution. The detection limits of the different biosensor were found to be 1 microM for glutamate, lysine and uric acid, 20 microM for glucose and 2 microM for choline and lactate. The detection ranges were 1-25 microM (uric acid), 1 microM-0.5 mM (glutamate and lysine), 20 microM-2 mM (glucose) and 2 microM-0.2 mM (choline and lactate). The ECL chip was used for the detection of glucose, lactate and uric acid in human serum matrix. Good correlations between measured and expected values were found without the need of internal calibration of the sample, demonstrating the potentiality of the ECL multifunctional bio-sensing chip.  相似文献   

4.
Ethylene glycol poisoning is a common clinical problem and identification as well as quantitation of ethylene glycol in serum is important for medical and legal purposes. Most investigators described determination of ethylene glycol by gas chromatography without derivatization or derivatives forming a molecular ion <200. We describe a novel derivatization technique of ethylene glycol using perfluorooctanoyl chloride, after extraction from serum using acetone. This derivative has a molecular mass of 854 and produces a base peak at m/z 441 and other diagnostic strong peaks for unambiguous identification. Moreover, this derivative is less volatile and is free from interferences from endogenous serum components. Quantitation can be achieved by using 1,4-butanediol as an internal standard. The assay showed within-run and between-run precision of 7.2% and 8.0%, respectively, and linearity over the serum ethylene glycol concentration range 70–2240 μg/ml with a detection limit of 5 μg/ml.  相似文献   

5.
A novel nanoparticle-based electrochemiluminescence (ECL) immunosensor was designed for highly sensitive and selective detection of human cardiac troponin I (cTnI), an important Acute Myocardial Infarction (AMI)-related biomarker, by using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles (ABEI-AuNPs) as labels. ABEI-AuNPs were successfully synthesized via a simple seed growth method. A great number of luminescence molecules ABEI as stabilizers were coated on the surface of the AuNPs, which exhibited better ECL activities than previously reported luminol functionalized gold nanoparticles. ABEI-AuNPs were used as new ECL labels to build bio-probes by conjugation with secondary antibodies, which showed good ECL activity, immunological activity, and stability. Another kind of AuNPs functionalized with streptavidin was modified on the electrode surface for biotinylated antibodies capture through the specific interaction of biotin/streptavidin and enhancing the electrical connectivity. By combining with the novel ECL labels and amplification of AuNPs and biotin-streptavidin system, a high sensitive sandwich-type electrochemiluminescence immunoassay was developed for detecting human cTnI with a low detection limit of 2 pg/mL. The immunosensor showed good precision, acceptable stability and reproducibility and could be used for the detection of cTnI in real samples, which was of great potential application in clinical analysis. Importantly, the sensitive detection would have far more diagnostic value than would absolute measurements during the early stage of AMI.  相似文献   

6.
We introduce two methods for the visualization of phosphorylated proteins using alkoxide-bridged dinuclear metal (i.e. Zn(2+) or Mn(2+)) complexes as novel phosphate-binding tag (Phos-tag) molecules. Both Zn(2+)- and Mn(2+)-Phos-tag molecules preferentially capture phosphomonoester dianions bound to Ser, Thr, and Tyr residues. One method is based on an ECL system using biotin-pendant Zn(2+)-Phos-tag and horseradish peroxidase-conjugated streptavidin. We demonstrate the electroblotting analyses of protein phosphorylation status by the phosphate-selective ECL signals. Another method is based on the mobility shift of phosphorylated proteins in SDS-PAGE with polyacrylamide-bound Mn(2+)-Phos-tag. Phosphorylated proteins in the gel are visualized as slower migration bands compared with corresponding dephosphorylated proteins. We demonstrate the kinase and phosphatase assays by phosphate affinity electrophoresis (Mn(2+)-Phos-tag SDS-PAGE).  相似文献   

7.
Gu J  Xiao Z  Yam CM  Qin G  Deluge M  Boutet S  Cai C 《Biophysical journal》2005,89(5):L31-L33
We present a general approach for preparing well-defined AFM tips for probing single target molecules. We demonstrated that carboxylic acid groups could be generated by electrochemical oxidation selectively at the apex of an AFM tip that is coated with a monolayer of oligo(ethylene glycol) derivatives for resisting nonspecific interactions. These carboxylic acid groups were used as handles to tether only one ligand molecule, such as biotin, to the tip apex for measurement of specific interactions with biomolecules.  相似文献   

8.
F(ab) fragments imprinted surface plasmon resonance (SPR) chip was prepared for the real-time detection of human immunoglobulin G (IgG). In order to attach polymerization precursor on SPR chip, the SPR chip surface was modified with allyl mercaptan. F(ab) fragments of the IgG molecules were prepared by papain digestion procedure and collected by fast protein liquid chromatography (FPLC) system using Hi-Trap_r Protein A FF column. The collected F(ab) fragments were complexed with histidine containing specific monomer, N-methacryloyl-l-histidine methyl ester (MAH). Molecular imprinted polymeric nanofilm was prepared on SPR chip in the presence of ethylene glycol dimethacrylate and 2-hydroxyethylmethacrylate. The template molecules, F(ab) fragments, were removed from the polymeric nanofilm using 1M NaCl solution (pH: 7.4, phosphate buffer system). The molecular imprinted SPR chip was characterized by contact angle, atomic force microscopy and Fourier transform infrared spectroscopy. By the real-time IgG detection studies carried out using aqueous IgG solutions in different concentrations, the kinetics and isotherm parameters of the molecular imprinted SPR chip-IgG system were calculated. To show selectivity and specificity of the molecular imprinted SPR chip, competitive kinetic analyses were performed using bovine serum albumin (BSA), IgG, F(ab) and F(c) fragments in singular and competitive manner. As last step, IgG detection studies from human plasma were performed and the measured IgG concentrations were well matched with the results determined by enzyme-linked immunosorbent assay (ELISA). The results obtained with the molecular imprinted SPR chip were well fitted to Langmuir isotherm and the detection limit was found as 56 ng/mL. In the light of the results, we can conclude that the proposed molecular imprinted SPR chip can detect IgG molecules from both aqueous solutions and complex natural samples.  相似文献   

9.
Recent development of the phosphate chelator, Phos-tag, together with Phos-tag pendant reagents, has provided new methods for detection of phosphorylated serine, threonine, tyrosine, and histidine residues in phosphoproteins. We have investigated the use of Phos-tag for detection and quantification of phospho-aspartate in response regulator proteins that function within two-component signaling systems. Alternative methods are especially important, because the labile nature of the acylphosphate bond in response regulator proteins has restricted the application of many traditional methods of phosphoprotein analysis. We demonstrate that Phos-tag gel stain can be used to detect phospho-Asp in response regulators and that Phos-tag acrylamide gel electrophoresis can be used to separate phosphorylated and unphosphorylated forms of response regulator proteins. The latter method, coupled to Western blot analysis, enables detection of specific phosphorylated proteins in complex mixtures such as cell lysates. Standards of phosphorylated proteins can be used to correct for hydrolysis of the labile phospho-Asp bond that invariably occurs during analysis. We have employed Phos-tag methods to characterize the phosphorylation state of the Escherichia coli response regulator PhoB both in vitro, using purified protein, and in vivo, by analyzing lysates of cells grown under different conditions of induction of the PhoR/PhoB phosphate assimilation pathway.  相似文献   

10.
Phos-tag是新研制出的一种对磷酸基团具有特殊亲和力的化合物。由于其对磷酸化蛋白质具有高特异性、高亲和力等特点使其迅速在磷酸化蛋白质的检测、分离和纯化等方面得到广泛的应用。本文综述了Phos-tag的化学性质、原理及其近年来在磷酸化蛋白质组学中的应用,并与传统的磷酸化蛋白质组学研究技术做了比较,对未来磷酸化蛋白质组学的研究技术作了展望。  相似文献   

11.
An enzyme-based solid-state electrochemiluminescence (ECL) sensing platform for sensitive detection of a single point mutation is developed successfully using p53 tumor suppressor gene as a model analyte. A composite of multiwalled carbon nanotubes and Ruthenium (II) tris-(bipyridine) (MWNTs-Ru(bpy)(3)(2+)) was prepared and coated on an electrode surface, which was covered by polypyrrole (PPy) to immobilize ssDNA. Then, the ssDNA recognized the gold nanoparticle (AuNP)-labeled p53 tumor suppressor gene, and produced AuNP-dsDNA electrode with AuNP layer. The surface adsorbed the glucose-dehydrogenase (GDH) molecules for producing ECL signal. This system combined enzyme reaction with ECL detection, and it can recognize sequence-specific wild type p53 sequence (wtp53) and muted type p53 sequence (mtp53) with discrimination of up to 56.3%. The analytic results were sensitive and specific. It holds promise for the diagnosis and management of cancer.  相似文献   

12.
Use of a high affinity DNA ligand in flow cytometry.   总被引:3,自引:1,他引:2       下载免费PDF全文
To investigate the feasibility of using oligonucleotides in flow cytometry we describe a model system consisting of human neutrophil elastase (HNE) coated on 3.3 micro beads and a high affinity DNA ligand for HNE isolated by in vitro selection (SELEX). In this system the fluoresceinated DNA ligand was equally effective as an anti- HNE antibody in detecting HNE on beads. The location on and the chemistry of attachment of fluorescein to the DNA ligand is critical for the sensitivity of detection. DNA constructs in which fluorescein was conjugated via an ethylene glycol tether to either the 5'-end or near the 3'-end gave much higher signals than did probes with fluorescein directly conjugated to either end. Second-step staining with strepavidin-conjugated phycoerythrin was accomplished using a biotinylated DNA ligand in the initial staining of HNE beads. These data suggest that instead of, or in addition to, antibodies high affinity oligonucleotide probes can be useful in diagnostic applications based on flow cytometry.  相似文献   

13.
Recombinant coagulation factor VIII (r-VIII SQ) was chemically modified with monomethoxy poly(ethylene glycol) (mPEG). Three mPEG derivatives were used for coupling to the r-VIII SQ lysines, a mixed anhydride of monomethoxy poly(ethylene glycol) succinic acid (mPEG-SAH), monomethoxy poly(ethylene glycol) succinimidyl succinate (mPEG-SS), and monomethoxy poly(ethylene glycol) tresylate (mPEG-TRES). A consequence of the modification with all derivatives was a substantial reduction in coagulant activity, even at very low degrees of modification. A method was developed with the purpose of avoiding conjugation at certain important biological sites on the factor VIII and thereby producing conjugates with better retained activity. This was achieved by immobilizing the protein onto a solid matrix during the modification reaction. Characterization of conjugates by SDS-PAGE, western blots, interaction with von Willebrand factor (vWf), and thrombin activation/inactivation analyses was undertaken. The SDS-PAGE and western blots revealed coupling heterogeneity regarding degree of modification. The amount of factor VIII able to bind to vWf decreased with the conjugation. Thrombin activated the modified factor VIII to essentially the same extent as the reference preparation of r-VIII SQ. Inactivation of the modified factor VIII was, however, slower than inactivation of the unmodified protein. Finally, an in vitro study was performed to evaluate the influence of the mPEG modification on the protein stability in extract of porcine tissue. Despite that conjugates with low degrees of modification were included in the study, the coagulant activity was preserved to a significantly higher extent in all incubation mixtures containing conjugates compared to that with unmodified protein.  相似文献   

14.
We developed an automated diagnostic system for the detection of virus-specific immunoglobulin Gs (IgGs) that was based on a microarray platform. We compared efficacies of our automated system with conventional enzyme immunoassays (EIAs). Viruses were immobilized to microarrays using a radical cross-linking reaction that was induced by photo-irradiation. A new photoreactive polymer containing perfluorophenyl azide (PFPA) and poly(ethylene glycol) methacrylate was prepared and coated on plates. Inactivated measles, rubella, mumps, Varicella-Zoster and recombinant Epstein-Barr viruse antigen were added to coated plates, and irradiated with ultraviolet light to facilitate immobilization. Virus-specific IgGs in healthy human sera were assayed using these prepared microarrays and the results obtained compared with those from conventional EIAs. We observed high correlation (0.79–0.96) in the results between the automated microarray technique and EIAs. The microarray-based assay was more rapid, involved less reagents and sample, and was easier to conduct compared with conventional EIA techniques. The automated microarray system was further improved by introducing reagent storage reservoirs inside the chamber, thereby conserving the use of expensive reagents and antibodies. We considered the microarray format to be suitable for rapid and multiple serological diagnoses of viral diseases that could be developed further for clinical applications.  相似文献   

15.
Eleven commercially available alcohol and ethylene glycol derivatives were tested for their toxicity toward a problem organism in jet fuel, Cladosporium resinae. In the presence of glucose, 20% (vol/vol) ethylene glycol monomethyl ether prevented spore germination and mycelial growth, and 10% (vol/vol) 2-ethoxybutanol, 10% 2-isopropoxyethanol, 10% 3-methoxybutanol, 5% 2-butyloxyethanol, 5% ethylene glycol dibutyl ether, and 5% diethylene glycol monobutyl ether were found to have similar effects. In a biphasic kerosene-water system, 3-methoxybutanol, 2-butyloxyethanol, and diethylene glycol monobutyl ether were again found to be more toxic than ethylene glycol monomethyl ether. Considerable potassium efflux, protein leakage, and inhibition of endogenous respiration were observed in the presence of the more toxic compounds. 2-Butyloxyethanol also caused loss of sterols from cells.  相似文献   

16.
Poly(ethylene glycol)–chitosan hybrids of various molecular weights having different degree of substitution were synthesized, by reductive N-alkylation of chitosan with poly(ethylene glycol) aldehyde, to study their bioactivities. The influence of these chitosan derivatives on the reactive oxygen species generation from canine polymorphonuclear leukocyte cells was investigated in vitro by chemiluminescence response. Reactive oxygen species generation by the influence of poly(ethylene glycol)–chitosan hybrids was decreased with the increase of degree of substitution. The reduction of interaction of poly(ethylene glycol)–chitosan hybrids with polymorphonuclear leukocyte cells might be caused by the decrease of amino group in chitosan main chain and increase of the steric hindrance by poly(ethylene glycol) chain. The influence of the poly(ethylene glycol)–chitosan hybrids on complement component C3 activation was investigated by single radial immunodiffusion method. Influence on complement component C3 activation by poly(ethylene glycol)–chitosan hybrids was almost same as chitosan.  相似文献   

17.
A precursor feeding strategy for effective biopolymer producer strain Azotobacter chroococcum 7B was used to synthesize various poly(3-hydroxybutyrate) (PHB) copolymers. We performed experiments on biosynthesis of PHB copolymers by A. chroococcum 7B using various precursors: sucrose as the primary carbon source, various carboxylic acids and ethylene glycol (EG) derivatives [diethylene glycol (DEG), triethylene glycol (TEG), poly(ethylene glycol) (PEG) 300, PEG 400, PEG 1000] as additional carbon sources. We analyzed strain growth parameters including biomass and polymer yields as well as molecular weight and monomer composition of produced copolymers. We demonstrated that A. chroococcum 7B was able to synthesize copolymers using carboxylic acids with the length less than linear 6C, including poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) (PHB-4MHV) using Y-shaped 6C 3-methylvaleric acid as precursor as well as EG-containing copolymers: PHB–DEG, PHB–TEG, PHB–PEG, and PHB–HV–PEG copolymers using short-chain PEGs (with n?≤?9) as precursors. It was shown that use of the additional carbon sources caused inhibition of cell growth, decrease in polymer yields, fall in polymer molecular weight, decrease in 3-hydroxyvalerate content in produced PHB–HV–PEG copolymer, and change in bacterial cells morphology that were depended on the nature of the precursors (carboxylic acids or EG derivatives) and the timing of its addition to the growth medium.  相似文献   

18.
A microchip electrophoretic method was applied to monitor and characterize the covalent attachment of poly(ethylene glycol) (PEGylation) of two proteins, α-lactalbumin and bovine serum albumin, using several poly(ethylene glycol) (PEG) derivatives with molecular weights from 1 to 20 kDa. This method effectively separated multi-PEGylated proteins in a size-based manner and allowed monitoring of the PEGylation pattern with the advantages of high speed, minimal sample consumption, and high reproducibility. Microchip electrophoresis would be a very useful tool for protein PEGylation studies such as reaction monitoring, purity checks, and characterization of PEGylated protein products.  相似文献   

19.
Lee Y  Lee EK  Cho YW  Matsui T  Kang IC  Kim TS  Han MH 《Proteomics》2003,3(12):2289-2304
We have developed a highly sensitive microarray protein chip, ProteoChip, coated with ProLinker, novel calixcrown derivatives with a bifunctional coupling property that permits efficient immobilization of capture proteins on solid matrixes and makes high-throughput analysis of protein-protein interactions possible. The analysis of quartz crystal microbalance showed that both monoclonal antibody (mAb) and antigen (Ag) bound to the gold film of the sensor surface coated with ProLinker B and that it is useful for studies of Ab-Ag interactions. ProteoChip, aminated glass slide coated with ProLinker A, was also demonstrated to be useful for preparation of high-density array spots by using a microarrayer and for analysis of analyte Ags either by direct or sandwich methods of fluorescence immunoassay. The detection sensitivity of ProteoChip was as low as 1-10 femtogram/mL of analyte protein, useful for detection of tumor markers. ProteoChip was also useful for studies of direct protein-protein interactions as demonstrated by analysis of integrin-extracellular matrix protein interaction. These experimental results suggest that ProteoChip is a powerful tool for development of chip-based lead screening microarrays to monitor protein-protein interactions (i.e. drug target) as well as for biomarker assays which require high detection sensitivity.  相似文献   

20.
This paper describes fabrication of a poly(dimethyl siloxane) (PDMS)-based chip to analyze multiple protein interactions utilizing glycidyl methacrylate (GMA) photopolymer for a site-specific immobilization of capture proteins in a closed system. First, using one direction channels of a PDMS mold having cross-channels, GMA micropads were prepared by photopolymerizing GMA solution by 365 nm light irradiation at predetermined positions. After the first mold was replaced with a second mold having higher height or directly without mold changing, capture proteins were allowed to be covalently immobilized onto the surface of the epoxide-activated GMA pads. Following immobilization, poly(ethylene glycol) diacrylate (PEG-DA) precursor was photopolymerized at specific regions to generate plugs for prevention of mixing between different sample injection channels, diminishing the need of a mold changing for sample injections. Final chip was assembled by connecting separated sample injection channels using a connector mold. The viability of this strategy was successfully demonstrated by simultaneous detection of two different antigen-antibody interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号