首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The light stimulation of transglutaminase (TGase EC 2.3.2.13) activity was verified by incubating isolated chloroplasts of Helianthus tuberosus L. continuously or for alternate periods of light or dark (light/dark and dark/light). The first 10 min of incubation always represented the critical period. Light-harvesting complexes of photosystem II (LHCII) were more intensely labelled by (14)C-polyamines under light and light/dark than under dark and dark/light conditions. Chloroplasts were fractionated into thylakoid- and stroma-enriched fractions in which multiple TGase forms and substrates were found. Antibodies against TGase recognised 58- and 24-kDa bands in thylakoids and a 150-kDa band in the stroma. The latter, and its 150-kDa fraction, catalysed the conjugation of 14C-polyamines to Rubisco. In both fractions (thylakoid-pre and stroma-pre) the analysis of polyamine glutamyl derivatives showed a significant light-affected conjugation of polyamines to endogenous proteins. Alternatively, entire chloroplasts were incubated and afterwards their sub-fractions were isolated (thylakoid-post and stroma-post). The PSII and LHCII complexes were more intensely immunodetected in thylakoid-post than in thylakoid-pre, especially under dark conditions. Conversely, the conjugation of polyamines to thylakoid proteins was clearly light-stimulated in thylakoid-post, and much less in thylakoid-pre. Stroma-pre proteins were poorly polyamine-conjugated and not light-affected; on the contrary, stroma-post proteins were much more polyamine-modified and strongly light-stimulated. Thus, the light-activated conjugation depends mainly on the presence of the thylakoid fraction during the assay. The protective effect on chloroplasts under photo-damage, stress or senescence conditions attributed in the literature to free polyamines is discussed with regard to the occurrence of polyamine conjugates catalysed by TGases.  相似文献   

3.
One of the most predominantly ubiquitinated protein species in Chlamydomonas, of which the apparent molecular mass in SDS-PAGE was 28 kDa, was found to exist abundantly in nuclei. The 28-kDa ubiquitinated protein was purified to homogeneity from the isolated nuclei of Chlamydomonas, and its partial amino acid sequence was determined. The N-terminal peptide sequence was identical with that of ubiquitin. Sequences homologous to those Chlamydomonas ubiquitin [corrected] and wheat histone H2B, and paired sequences of both of them were found in arginylendopeptidase-digested or protease V8-digested polypeptide fragments of the 28-kDa ubiquitinated protein. Based on these results, it was concluded that Chlamydomonas 28-kDa ubiquitinated protein is monoubiquitinated histone H2B.  相似文献   

4.
Reticulocytes contain a nonlysosomal proteolytic pathway that requires ATP and ubiquitin. By DEAE chromatography and gel filtration, we were able to fractionate the ATP-dependent system into a 30-300-kDa fraction that catalyzes the ATP-dependent conjugation of ubiquitin to substrates ("Conjugation Fraction") and a high mass fraction (greater than 450 kDa) necessary for hydrolysis of the conjugated proteins. The latter contains two distinct proteases. One protease is unusually large, approximately 1500 kDa, and degrades proteins only when ATP and the conjugating fractions are added. This activity precipitates at 0-38% (NH4)2SO4 saturation and is essential for ATP-dependent proteolysis. Like crude extracts, it is labile in the absence of nucleotides and is inhibited by heparin, poly(Glu-Ala-Tyr), 3,4-dichloroisocoumarin, hemin, decavanadate, N-ethylmaleimide, and various peptide chloromethyl ketones. It lacks amino-peptidase and insulin-degrading activities and does not require tRNA for activity. The ubiquitin-conjugate degrading enzyme, which we suggest be named UCDEN, is inactive against substrates that cannot undergo ubiquitin conjugation. The smaller protease (670 kDa), which precipitates at 40-80% (NH4)2SO4 saturation, does not require ATP or ubiquitin and is therefore not required for ATP-dependent proteolysis. It is stimulated by N-ethylmaleimide and 3,4-dichloroisocoumarin and is stable at 37 degrees C. It hydrolyzes fluorometric tetrapeptides and proteins, including proteins which cannot be conjugated to ubiquitin. Thus, reticulocytes contain two large cytosolic proteases: one is essential for the degradation of ubiquitin conjugates, while the function of the other is uncertain.  相似文献   

5.
6.
To characterize envelope proteins encoded by the chloroplast genome, envelopes were isolated from Chlamydomonas reinhardtii cells labeled with [35S] sulfate while blocking synthesis by cytoplasmic ribosomes. One and two-dimensional gel electrophoresis of envelopes and fluorography revealed four highly labeled proteins. Two with masses of 29 and 30 kDa and pI 5.5 were absent from the stroma and thylakoid fractions, while the others at 54 kDa, pI 5.2 and 61 kDa, pI 5.4 were detected there in smaller amounts. The 29- and 30-kDa proteins were associated with outer envelope membranes separated from inner envelope membranes after chloroplast lysis in hypertonic solution. A 32-kDa protein not labeled by [35S]sulfate was found exclusively in the inner membrane fraction, suggesting the existence of a phosphate translocator in C. reinhardtii. To identify envelope proteins exposed on the chloroplast surface, isolated active chloroplasts were surface-labeled with 125I and lactoperoxidase. The 54-kDa, pI 5.2 protein as well as a protein corresponding to either of the 29- or 30-kDa proteins described above were among the labeled components. These results show that envelope proteins of C. reinhardtii are encoded by the chloroplast genome and two are located on the outer envelope membranes.  相似文献   

7.
Mammalian cells grown at 37 degrees C contain a single low-molecular-weight heat shock (or stress) protein with an apparent mass of 28 kilodaltons (kDa) whose synthesis increases in cells after exposure to elevated temperatures or other forms of physiologic stress. Herein we present data demonstrating that heat shock protein 28 exists in a number of dynamic states depending upon the physiologic state of the cell. Biochemical fractionation of 37 degrees C cells in the absence of nonionic detergent revealed that the 28-kDa protein partitioned approximately equally between the soluble and insoluble fractions. The addition of detergent in the fractionation procedure resulted in all of the protein distributed within the soluble phase. In contrast, in cells first heat shocked and then fractionated in the presence of detergent, most of the 28-kDa protein was found within the insoluble fraction. These biochemical results appeared entirely consistent with indirect immunofluorescence experiments, demonstrating that the 28-kDa protein resided within the perinuclear region of 37 degrees C cells in close proximity to the Golgi complex. After heat shock treatment, the 28-kDa protein relocalized within the nucleus and resisted detergent extraction. The extent of 28-kDa protein redistribution into the nucleus and its detergent insolubility increased as a function of the severity of the heat shock treatment. With time of recovery from the heat treatment there occurred a gradual return of the 28-kDa protein into the detergent-soluble phase. Concomitant with these changes in 28-kDa protein solubility was a corresponding change in the apparent size of the protein as determined by gel filtration. While at 37 degrees C cells the protein exhibited a mass of 200 to 800 kDa; after heat shock the protein assumed sizes of 2 MDa or greater. Using immunoelectron microscopy, we show an accumulation of these aggregates of 28-kDa protein within the nucleus. Finally, we show that the heat-dependent redistribution of the 28-kDa protein from the cytoplasm into the nucleus was greatly diminished when the cells were first rendered thermotolerant, and we suggest that this simple assay (i.e., 28-kDa protein detergent solubility) may prove useful in evaluating the thermotolerant status of a cell or tissue.  相似文献   

8.
9.
A series of nonhydrolyzable ubiquitin dimer analogues has been synthesized and evaluated as inhibitors of ubiquitin-dependent processes. Dimer analogues were synthesized by cross-linking ubiquitin containing a terminal cysteine (G76C) to ubiquitin containing cysteine at position 11 ((76-11)Ub(2)), 29 ((76-29)Ub(2)), 48 ((76-48)Ub(2)), or 63 ((76-63)Ub(2)). A head-to-head dimer of cysteine G76C ((76-76)Ub(2)) served as a control. These analogues are mimics of the different chain linkages observed in natural polyubiquitin chains. All analogues showed weak inhibition toward the catalytic domain of UCH-L3 and a UBP pseudogene. In the absence of ubiquitin, isopeptidase T was inhibited only by the dimer linked through residue 29. In the presence of 0.5 microM ubiquitin, isopeptidase T was inhibited by several of the dimer analogues, with the (76-29)Ub(2) dimer exhibiting a K(i) of 1.8 nM. However, USP14, the human homologue of yeast Ubp6, was not inhibited at the concentrations tested. Some analogues of ubiquitin dimer also acted as selective inhibitors of conjugation and deconjugation of ubiquitin catalyzed by reticulocyte fraction II. (76-76)Ub(2) and (76-11)Ub(2) did not inhibit the conjugation of ubiquitin, while (76-29)Ub(2), (76-48)Ub(2), and (76-63)Ub(2) were potent inhibitors of conjugation. This specificity is consistent with the known ability of cells to form K29-, K48-, and K63-linked polyubiquitin chains. While (76-11)Ub(2), (76-29)Ub(2), and (76-63)Ub(2) inhibited release of ubiquitin from a pool of total conjugates, (76-48)Ub(2) and (76-76)Ub(2) showed no significant inhibition. Isopeptidase T was shown to specifically disassemble two conjugates (assumed to be di- and triubiquitin with masses of 26 and 17 kDa) formed in the reticulocyte lysate system. This activity was inhibited differentially by all dimer analogues. The inhibitor selectivity for deconjugation of the 26 and 17 kDa conjugates was similar to that observed for isopeptidase T. The observations suggest that these two conjugated proteins of the reticulocyte lysate are specific substrates for isopeptidase T in lysates.  相似文献   

10.
In vivo radiolabeling of chloroplast proteins in grain sorghum (Sorghum bicolor L. cv. Texas 610) leaves and their separation by one-dimensional electrophoresis revealed at least 6 heat shock proteins (HSPs) between 24 and 94 kDa. of which the 24 kDa protein was the most prominent. All of these chloroplast heat shock proteins were found exclusively in the stroma. The 24 kDa heat shock protein, upon closer examination using two-dimensional electrophoresis proved to be two similarly-sized heat shock polypeptides with identical molecular masses and level of radiolahel incorporation, hut slightly different in isoeiectric points, suggesting isomers. Separation of stromal heat shock proteins synthesised in two other C4 monocotyledons ( Punicum miliaceum L. and Umchloa panictrides L.) revealed similar putative isomers. each of 24 kDa. Several other, previously unidentified, heat shock proteins between 22 and 38 kDa were also observed in all three species. In P. miliaceum. the most prominent HSP was the pair of 24 kDa proteins, whereas in U. panicoides. it was a group of 35 to 38 kDa HSPs that was most abundant. In vivo chlorophyll fluorescence measurements showed that no sustained impairment to photosynthetic efficiency had occurred for each species after the heat stress regime. However, when cytoplasmic protein synthesis was inhibited during the high temperature treatment, a dramatic decrease was observed in photosynthetic efficiency, suggesting a possible protective role for chloroplast heat shock proteins. It was also shown that a single chloroplast HSP complex of around 380 kDa was observed in the stroma of both 5. bicolor and P. miliaceum leaves in vivo. This was in contrast to the smaller HSP complex (200–265 kDa) observed in previous studies on chloroplast heat shock proteins in Cj species.  相似文献   

11.
The effect of restrictive temperature on ubiquitin conjugation activity has been studied in cells of ts20, a temperature-sensitive cell cycle mutant of the Chinese hamster cell line E36. Ts20 is arrested in early G2 phase at nonpermissive temperature. Immunoblotting with antibodies to ubiquitin conjugates shows that conjugates disappear rapidly at restrictive temperatures in ts20 mutant but not in wild type E36 cells. The incorporation of 125I-ubiquitin into permeabilized ts20 cells is temperature-sensitive. Addition of extracts of another G2 phase mutant, FM3A ts85, with a temperature-sensitive ubiquitin activation enzyme (E1), to permeabilized ts20 cells at restrictive temperatures fails to complement their ubiquitin ligation activity. This indicates that the lesions in the two mutants are similar. Purified E1 from reticulocytes restores the conjugation activity of heat-inactivated permeabilized ts20 cells. Ubiquitin conjugation activity of cell-free extracts of ts20 cells was temperature-sensitive and could be restored by adding purified reticulocyte E1. Purified reticulocyte E2 or E3, on the other hand, did not restore the ubiquitin conjugation activity of heat-treated ts20 extracts. These results are consistent with the conclusion that ts20 has temperature-sensitive ubiquitin-activating enzyme (E1). The fact that two E1 mutants (ts20 and ts85) derived from different cell lines are arrested at the S/G2 boundary at restrictive temperatures strongly indicates that ubiquitin ligation is necessary for passage through this part of the cell cycle. The temperature thresholds of heat shock protein synthesis of ts20 and wild type E36 cells were identical. The implications of these findings with respect to a suggested role of ubiquitin in coupling between protein denaturation and the heat shock response are discussed.  相似文献   

12.
Exposure of cultured rat hepatoma (HTC) cells to a 43 degrees C heat shock transiently accelerates the degradation of the long-lived fraction of cellular proteins. The rapid phase of proteolysis which lasts approximately 2 h after temperature step-up is followed by a slower phase of proteolysis. During the first 2 h after temperature step-up there is a wave of ubiquitin conjugation to cellular proteins which is accompanied by a fall in ubiquitin and ubiquitinated histone 2A (uH2A) levels. Upon continued incubation at 43 degrees C the levels of ubiquitin conjugates fall with a corresponding increase of ubiquitin and uH2A to initial levels. The burst of protein degradation and ubiquitin conjugation after temperature step-up is not affected by the inhibition of heat shock protein synthesis. Cells of the FM3A ts85 mutant, which have a thermolabile ubiquitin activating enzyme (E1), do not accelerate protein degradation in response to a 43 degrees C heat shock, whereas wild-type FM3A mouse cells do. This observation indicates that the ubiquitin system is involved in the degradation of heat-denatured proteins. Sequential temperature jump experiments show that the extent of proteolysis at temperatures up to 43 degrees C is related to the final temperature and not to the number of steps taken to attain it. Temperature step-up to 45 degrees C causes the inhibition of intracellular proteolysis. We propose the following explanation of the above observations. Heat shock causes the conformational change or denaturation of a subset of proteins stable at normal temperatures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
Watermelon ( Citrullus vulgaris Schrad. cv. Fairfax) cotyledons were excised from the embryo and grown in the dark for 4 days. They were then transferred to 10 μm benzyladenine (BA) solution or illuminated with white light. We have compared changes in ultrastructure of the plastids and of their polypeptide pattern induced by the two treatments.
At the end of the 4-day-period in the dark the plastids differentiated to amyloplasts and had few polypeptides: only the two subunits of ribulose bisphosphate carboxylase (RuBP) were clearly observed. Both light and BA induced starch depletion and gratia formation after 12–24 h. BA was less efficient than light in inducing thylakoid formation and more efficient in inducing starch depletion. After 6 h both factors induced the appearance of the same new polypeptides in the 28–53 kDa range. Most prominent among them is a 32 kDa band. Light is much more effective in inducing the formation of a 29 kDa band than is BA. In mature chloroplasts this band stains very strongly, while the 32 kDa band disappears. We suggest that the 29 kDa polypeptide is the light harvesting complex (LHC), since a purified LHC preparation from cotyledons grown either on water in light or on BA in the dark migrates on the polyacrylamide gel as a single 29 kDa band.  相似文献   

15.
Immunoblotting experiments performed with an anti-ubiquitin antibody revealed that Skeletonema costatum (Grev.) Cleve cells contained free ubiquitin as well as ubiquitin conjugated to various endogenous proteins. A temperature shift from 18° to 30°C greatly increased the total amount of ubiquitin and particularly the ubiquitin fraction in high molecular mass conjugates. A solid-phase immunoassay indicated values of 0.031 ± 0.004 pmol·10?6 cells for free ubiquitin and 0.046 ± 0.004 pmol·10?6 cells for conjugated ubiquitin for cells grown at 18°C, and 0.056 ± 0.008pmol·10?6cells and 0.21 ± 0.03 pmol·10?6cells, respectively, after a temperature increase from 18° to 30°C. Cell-free extracts of S. costatum were equally able to form thiol ester linkages with 125I-ubiquitin in an adenosine triphosphate–dependent manner at 18° C and at 30°C. Cell-free extracts were also able to conjugate 125I-ubiquitin to endogenous proteins, but the ubiquitin conjugation rate at 30°C was lower than at 18°C. Incubation of S. costatum for 3 h at 30°C and then for 3 h at 18°C resulted in the formation of high amounts of ubiquitin conjugates, suggesting that partially inactive or denaturated proteins accumulate during heat stress. These denaturated proteins are then conjugated to ubiquitin very efficiently when the physiological temperature is restored. Thus, S. costatum cells contain ubiquitin and an active ubiquitin conjugation system responding to stress conditions (temperature stress). The intracellular concentration of ubiquitin conjugates is most likely limited by the availability of protein substrates to be conjugated rather than by ubiquitin-conjugating activity.  相似文献   

16.
17.
Ubiquitin, a highly conserved 76-residue protein found in all eukaryotic cells, can be covalently bound to a wide variety of proteins in the nucleus, cytosol, cytoskeleton, and plasmalemma. This diversity of target proteins reflects a diversity of functions for ubiquitin conjugation. Previous studies have showed enhanced localization of ubiquitin conjugates to Z-bands of normal skeletal muscle and increased ubiquitination in atrophic muscles. These results have implicated a ubiquitin-mediated pathway in protein turnover and degradation in striated muscle. To investigate whether such a pathway might also exist in cardiac striated muscle, we used an affinity-purified polyclonal antibody (conjugate specific) and indirect immunofluorescence to localize ubiquitin conjugates in neonatal and adult rat cardiac myocytes both in vitro and in vivo. In both cultured myocytes and heart tissue, fluorescent ubiquitin conjugates were found in the nucleus as aggregates, in the cytoplasm in a striated pattern indicative of Z-bands, and in intercellular junctions at the intercalated discs between myocytes. Although the acceptor proteins and the physiological significance of ubiquitination at these locations are unknown, the targeting of ubiquitin to specific sites within the nucleus, myofibrils, and sarcolemma could provide a means for selective processing of individual components within these larger macromolecular assemblies, thus implying a regulatory role for ubiquitin conjugation in turnover or stability of proteins in the heart.  相似文献   

18.
The wild type (Wt) and the polyamine-deficient strain (PAvs) of the halotolerant Dunaliella salina were subjected to stress caused by 3.5 mol/L NaCl concentration. The chloroplasts were isolated and the molecular aspects of their reaction to salt stress were studied together with their recovery response to these hyper-saline conditions.In the Wt, the photosynthetic complexes were found to be severely affected by salt stress under light conditions. Transglutaminases, which are present in chloroplasts as two units of 25 and 50 kDa, were immunorecognized by antibodies raised against rat prostatic gland transglutaminase. The amount, in particular that of the 50 kDa unit, underwent an immediate change following hyper-saline stress. These concentration changes were found to coincide with variations in enzymic activity, which is also affected by the presence or absence of light.The PAvs has a concentration of proteins and chlorophylls which is much lower than that of the Wt. In addition, the PAvs appeared to be more severely affected by both salt and subculture stresses. Its recovery time was also longer. Its TGase activity increased after salt stress and was always higher in the light than in the dark, except soon after subculture, showing an additive stress effect of salt and light. In the PAvs acclimated to high salinity, or immediately after stress application, the chloroplast content of chlorophyll a and b was considerably enhanced, like the TGase activity (by two-fold or more), and these changes exhibited almost coincident behaviours.Some transglutaminase substrates (proteins of 68, 55, 29 and 27 kDa) were found to be similar to those present in higher plants (thylakoid photosynthetic complexes and Rubisco). They were more markedly labelled by [1,4-14C] polyamines when the transglutaminase assay was performed in the light than in the dark, and much more in algae already acclimated to hyper-saline conditions than in those cultured in the optimal saline medium, or subjected to stress. The amount of 68 and 55 kDa polypeptides was particularly high in the 3.5 mol/L NaCl acclimated cells. The possible role of polyamine conjugation in the assembly of chloroplast proteins in cells affected by salt stress is discussed.  相似文献   

19.
Ubiquitin and ubiquitin-protein conjugates in PC12h cells were detected with in vitro [125I]ubiquitination, and quantified by immunoblotting. These levels were altered by nerve growth factor (NGF), which promotes neuronal differentiation. (i) Levels of high molecular weight (HMW) ubiquitin-protein conjugates ranging from 40 to 1,000kDa were increased by 2 days of NGF treatment, and remained high up to 10 days of NGF treatment. (ii) Ubiquitin and a 23-kDa conjugate tended to be decreased from days 2 to 10 of NGF treatment. 10-Day culture with 10 nM staurosporine, an protein kinase inhibitor, that blocks NGF-induced neurite outgrowth suppressed the NGF-induced increases in levels of HMW conjugates. Cyclic AMP and forskolin, both of which promote neurite outgrowth, mimicked the NGF-induced changes in ubiquitin and HMW conjugates, but phorbol ester and epidermal growth factor had little effect. These findings suggest that changes in ubiquitin-protein conjugates are closely coupled with neuronal differentiation.  相似文献   

20.
Cells of Chlamydomonas reinhardi Dangeard were grown synchronouslyunder a 12 hr light-12 hr dark regime. Time courses of nucleardivision, chloroplast division, "apparent cytokinesis" and zoosporeliberation were followed during the vegetative cell cycle inthe synchronous culture. Liberation of zoospores occurred atabout 23–24 hr after the beginning of the light periodat 25°C. Four zoospores were produced per mother cell underthe conditions used. At lower temperatures, the process of zoosporeliberation as well as length of the cell cycle was markedlyprolonged, but the number of zoospores produced per mother cellwas approximately the same. At different light intensities,lengths of the cell cycle were virtually the same, while thenumber of zoospores liberated was larger at higher rather thanat lower light intensities. During the dark period, nuclear division, chloroplast divisionand apparent cytokinesis took place, in diis order, and proceededless synchronously than did the process of zoospore liberation.When the 12 hr dark period was replaced with a 12 hr light periodduring one cycle, the time of initiation as well as the durationof zoospore liberation was litde affected in most cases, whereasnuclear division, chloroplast division and apparent cytokinesiswere considerably accelerated by extended illumination. Whenalgal cells which had been exposed to light for 24 hr were furtherincubated in the light, zoospore liberation started much earlierand proceeded far less synchronously, compared with that under12 hr light-12 hr dark alternation. (Received October 12, 1970; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号