首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In 12 dogs, we examined the correspondence between esophageal (Pes) and pericardial pressures over the anterior, lateral, and inferior left ventricular (LV) surfaces. Pleural pressure was decreased by spontaneous inspiration, Mueller maneuver, and phrenic stimulation and increased by intermittent positive pressure ventilation (IPPV) and positive end-expiratory pressure (PEEP). To separate effects due to blood flow, we analyzed beating and nonbeating hearts. In beating hearts, there were no significant differences between changes in Pes and pericardial pressures. In arrested hearts, increasing LV pressure by 8 Torr increased pericardial pressures by only 3.6 Torr. With IPPV and PEEP, increases in Pes and pericardial pressures were equal in live hearts and in low-volume arrested hearts (LV pressure = 4 Torr). In high-volume arrested hearts (LV pressure = 12 Torr), the increase in pericardial pressure over the anterior LV surface was less than Pes, whereas that over the lateral and inferior LV surfaces was the same as Pes. At high LV volume, in arrested hearts pericardial pressures decreased less than Pes during negative pressure maneuvers. In another six dogs, external LV configuration and volume were measured. In beating hearts during spontaneous inspiration, Mueller maneuver, and phrenic stimulation (endotracheal tube open), septal-lateral dimension and LV volume decreased by approximately 3% (P less than 0.05). This was also true for PEEP. In arrested hearts, septal-lateral dimension and LV volume decreased only with PEEP. We conclude that 1) the relationship between Pes and pericardial pressures is complex and depends on LV volume, local pericardial compliance, and the means by which Pes is changed, 2) changes in measured pericardial pressures did not completely explain changes in LV configuration, and 3) during different respiratory maneuvers, different forces account for the same observed changes in LV volume and configuration.  相似文献   

3.
In many patients with congenital heart disease, the right ventricle (RV) is subjected to abnormal loading conditions. To better understand the state of compensated RV hypertrophy, which could eventually progress to decompensation, we studied the effects of RV pressure overload in rats. In the present study, we report the biventricular adaptation to 6 wk of pulmonary artery banding (PAB). PAB resulted in an RV pressure overload to approximately 60% of systemic level and a twofold increase in RV mass (P < 0.01). Systemic hemodynamic parameters were not altered, and overt signs of heart failure were absent. Load-independent measures of ventricular function (end-systolic pressure-volume relation, preload recruitable stroke work relation, maximum first time derivative of pressure divided by end-diastolic volume), assessed by means of pressure-volume (PV) loops, demonstrated a two- to threefold increase in RV contractility under baseline conditions in PAB rats. RV contractility increased in response to dobutamine stimulation (2.5 microg.kg(-1).min(-1)) both in PAB and sham-operated rats in a similar fashion, indicating preserved RV contractile reserve in PAB rats. Left ventricular (LV) contractility at baseline was unaffected in PAB rats, although LV volume in PAB rats was slightly decreased. LV contractility increased in response to dobutamine (2.5 microg.kg(-1).min(-1)), both in PAB and sham rats, whereas the response to a higher dose of dobutamine (5 microg.kg(-1).min(-1)) was blunted in PAB rats. RV pressure overload (6 wk) in rats resulted in a state of compensated RV hypertrophy with preserved RV contractile reserve, whereas LV contractile state at baseline was not affected. Furthermore, this study demonstrates the feasibility of performing biventricular PV-loop measurements in rats.  相似文献   

4.
A new dynamic model of left ventricular (LV) pressure-volume relationships in beating heart was developed by mathematically linking chamber pressure-volume dynamics with cardiac muscle force-length dynamics. The dynamic LV model accounted for >80% of the measured variation in pressure caused by small-amplitude volume perturbation in an otherwise isovolumically beating, isolated rat heart. The dynamic LV model produced good fits to pressure responses to volume perturbations, but there existed some systematic features in the residual errors of the fits. The issue was whether these residual errors would be damaging to an application where the dynamic LV model was used with LV pressure and volume measurements to estimate myocardial contractile parameters. Good agreement among myocardial parameters responsible for response magnitude was found between those derived by geometric transformations of parameters of the dynamic LV model estimated in beating heart and those found by direct measurement in constantly activated, isolated muscle fibers. Good agreement was also found among myocardial kinetic parameters estimated in each of the two preparations. Thus the small systematic residual errors from fitting the LV model to the dynamic pressure-volume measurements do not interfere with use of the dynamic LV model to estimate contractile parameters of myocardium. Dynamic contractile behavior of cardiac muscle can now be obtained from a beating heart by judicious application of the dynamic LV model to information-rich pressure and volume signals. This provides for the first time a bridge between the dynamics of cardiac muscle function and the dynamics of heart function and allows a beating heart to be used in studies where the relevance of myofilament contractile behavior to cardiovascular system function may be investigated.  相似文献   

5.
Positive-pressure ventilation (PPV) may affect left ventricular (LV) performance by altering both LV diastolic compliance and pericardial pressure (Ppc). We measured the effect of PPV on LV intraluminal pressure, Ppc, LV volume, and LV cross-sectional area in 17 acute anesthetized dogs. To account for changes in lung volume independent of changes in Ppc and differences in contractility, measures were made during both open- and closed-chest conditions, during closed chest with and without chest wall binding, and after propranolol-induced acute ventricular failure (AVF). Apneic end-systolic pressure-volume relations (ESPVR) were generated by inferior vena caval occlusions. With the open chest, PPV had no effects. With the chest closed, PPV inspiration decreased LV end-diastolic volume (EDV) along its diastolic compliance curve and decreased end-systolic volume (ESV) such that the end-systolic pressure-volume domain was shifted to a point left of the LV ESPVR, even when referenced to Ppc. The decrease in EDV was greater in control than in AVF conditions, whereas the shift of the ESV to the left of the ESPVR was greater with AVF than in control conditions. We conclude that the hemodynamic effects of PPV inspiration are due primarily to changes in intrathoracic pressure and that the inspiration-induced decreases of LV EDV reflect direct effects of intrathoracic pressure on LV filling. The decreases in LV ESV exceed the amount explained solely by a reduction in LV ejection pressure.  相似文献   

6.
Measurements of right ventricular pressure in miniature swine were made at +Gz levels from +1 through +9 Gz. Polyethylene catheters were chronically placed in the cranial vena cava of five 2-yr-old female miniature swine (35-50 kg). The catheters were large enough to allow the introduction of a Millar pressure transducer into the venous system for placement in the right heart. The animals were fitted with an abdominal anti-G suit, restrained in a fiberglass couch, and exposed to the various +Gz levels on a centrifuge while fully conscious and unanesthetized. Right ventricular pressure and heart rate were measured during and for 2 min following 30-s exposures to each level of +Gz stress. The maximum right ventricular systolic pressure observed during +Gz was 200 Torr at +5 Gz with the maximum diastolic pressure being 88 Torr observed at +5 Gz. Mean heart rates were 200-210 beats/min at all levels of +Gz greater than or equal to +3 Gz when the animal remained stable. Mean maximum right ventricular pressures during +Gz stress were observed to increase through +5 Gz (85 Torr) and to decrease at higher levels of +Gz, indicating that through +5 Gz there is at least a partial compensation during acceleration stress. Decompensation in response to the stress began to occur during acceleration above +5 Gz with all animals decompensating during +9 Gz.  相似文献   

7.
8.
9.
To integrate myocardial contractile processes into left ventricular (LV) function, a mathematical model was built. Muscle fiber force was set equal to the product of stiffness and elastic distortion of stiffness elements, i.e., force-bearing cross bridges (XB). Stiffness dynamics arose from recruitment of XB according to the kinetics of myofilament activation and fiber-length changes. Elastic distortion dynamics arose from XB cycling and the rate-of-change of fiber length. Muscle fiber stiffness and distortion dynamics were transformed into LV chamber elastance and volumetric distortion dynamics. LV pressure equaled the product of chamber elastance and volumetric distortion, just as muscle-fiber force equaled the product of muscle-fiber stiffness and lineal elastic distortion. Model validation was in terms of its ability to reproduce cycle-time-dependent LV pressure response, DeltaP(t), to incremental step-like volume changes, DeltaV, in the isolated rat heart. All DeltaP(t), regardless of the time in the cycle at which DeltaP(t) was elicited, consisted of three phases: phase 1, concurrent with the leading edge of DeltaV; phase 2, a brief transient recovery from phase 1; and phase 3, sustained for the duration of systole. Each phase varied with the time in the cycle at which DeltaP(t) was elicited. When the model was fit to the data, cooperative activation was required to sustain systole for longer periods than was possible with Ca(2+) activation alone. The model successfully reproduced all major features of the measured DeltaP(t) responses, and thus serves as a credible indicator of the role of underlying contractile processes in LV function.  相似文献   

10.
Hypoxia has been reported to alter left ventricular (LV) diastolic function, but associated changes in right ventricular (RV) systolic and diastolic function remain incompletely documented. We used echocardiography and tissue Doppler imaging to investigate the effects on RV and LV function of 90 min of hypoxic breathing (fraction of inspired O(2) of 0.12) compared with those of dobutamine to reproduce the same heart rate effects without change in pulmonary vascular tone in 25 healthy volunteers. Hypoxia and dobutamine increased cardiac output and tricuspid regurgitation velocity. Hypoxia and dobutamine increased LV ejection fraction, isovolumic contraction wave velocity (ICV), acceleration (ICA), and systolic ejection wave velocity (S) at the mitral annulus, indicating increased LV systolic function. Dobutamine had similar effects on RV indexes of systolic function. Hypoxia did not change RV area shortening fraction, tricuspid annular plane systolic excursion, ICV, ICA, and S at the tricuspid annulus. Regional longitudinal wall motion analysis revealed that S, systolic strain, and strain rate were not affected by hypoxia and increased by dobutamine on the RV free wall and interventricular septum but increased by both dobutamine and hypoxia on the LV lateral wall. Hypoxia increased the isovolumic relaxation time related to RR interval (IRT/RR) at both annuli, delayed the onset of the E wave at the tricuspid annulus, and decreased the mitral and tricuspid inflow and annuli E/A ratio. We conclude that hypoxia in normal subjects is associated with altered diastolic function of both ventricles, improved LV systolic function, and preserved RV systolic function.  相似文献   

11.
12.
A method is presented in this paper for the in-vivo estimation of the nonlinear pressure-volume relationship of the human aorta. The method is based on nonlinear elastic reservoir theory and utilizes clinical data that can be obtained with a high degree of accuracy, namely stroke volume, end diastolic ventricular volume and aortic pressure trace data. The computational procedure is described and then carried out for six cardiac patients. A method for the estimation of instantaneous left ventricular volume during the ejection period based on the considered nonlinear elastic reservoir theory is also presented. The method is applied for the six cardiac patients cited and the results compared with those obtained for the same subjects by a method of estimation based on linear elastic reservoir theory described in a previous paper by the author (1969).  相似文献   

13.
Recent studies suggest that the external intercostal (EI) muscles of the upper rib cage, like the parasternals (PA), play an important ventilatory role, even during eupneic breathing. The purpose of the present study was to further assess the ventilatory role of the EI muscles by determining their response to various static and dynamic respiratory maneuvers and comparing them with the better-studied PA muscles. Applied interventions included 1) passive inflation and deflation, 2) abdominal compression, 3) progressive hypercapnia, and 4) response to bilateral cervical phrenicotomy. Studies were performed in 11 mongrel dogs. Electromyographic (EMG) activities were monitored via bipolar stainless steel electrodes. Muscle length (percentage of resting length) was monitored with piezoelectric crystals. With passive rib cage inflation produced either with a volume syringe or abdominal compression, each muscle shortened; with passive deflation, each muscle lengthened. During eupneic breathing, each muscle was electrically active and shortened to a similar degree. In response to progressive hypercapnia, peak EMG of each intercostal muscle increased linearly and to a similar extent. Inspiratory shortening also increased progressively with increasing PCO2, but in a curvilinear fashion with no significant differences in response among intercostal muscles. In response to phrenicotomy, the EMG and degree of inspiratory shortening of each intercostal muscle increased significantly. Again, the response among intercostal muscles was not significantly different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
The vertebrate embryonic ventricle transforms from a smooth-walled single tube to trabeculated right ventricular (RV) and left ventricular (LV) chambers during cardiovascular morphogenesis. We hypothesized that ventricular contraction patterns change from globally isotropic to chamber-specific anisotropic patterns during normal morphogenesis and that these deformation patterns are influenced by experimentally altered mechanical load produced by chronic left atrial ligation (LAL). We measured epicardial RV and LV wall strains during normal development and left heart hypoplasia produced by LAL in Hamburger-Hamilton stage 21, 24, 27, and 31 chick embryos. Normal RV contracted isotropically until stage 24 and then contracted preferentially in the circumferential direction. Normal LV contracted isotropically at stage 21, preferentially in the longitudinal direction at stages 24 and 27, and then in the circumferential direction at stage 31. LAL altered both RV and LV strain patterns, accelerated the onset of preferential RV circumferential strain patterns, and abolished preferential LV longitudinal strain (P < 0.05 vs. normal). Mature patterns of anisotropic RV and LV deformation develop coincidentally with morphogenesis, and changes in these deformation patterns reflect altered cardiovascular function and/or morphogenesis.  相似文献   

16.
To determine whether endurance exercise training can improve left ventricular function in response to beta-adrenergic stimulation, young healthy sedentary subjects (10 women and 6 men) were studied before and after 12 wk of endurance exercise training. Training consisted of 3 days/wk of interval training (running and cycling) and 3 days/wk of continuous running for 40 min. The training resulted in an increase in maximal O2 uptake from 41.0 +/- 2 to 49.3 +/- 2 ml.kg-1.min-1 (P less than 0.01). Left ventricular function was evaluated by two-dimensional echocardiography under basal conditions and during beta-adrenergic stimulation induced by isoproterenol infusion. Fractional shortening (FS) under basal conditions was unchanged after training (36 +/- 1 vs. 36 +/- 2%). During the highest dose of isoproterenol, FS was 52 +/- 1% before and 56 +/- 1% after training (P less than 0.05). At comparable changes in end-systolic wall stress (sigma es), the increase in FS induced by isoproterenol was significantly larger after training (13 +/- 1 vs. 17 +/- 2%, P less than 0.01). Furthermore there was a greater decrease in end-systolic dimension at similar changes in sigma es in the trained state during isoproterenol infusion (-4.6 +/- 0.1 mm before vs. -7.0 +/- 0.1 mm after training, P less than 0.01). There were no concurrent changes in end-diastolic dimension between the trained and untrained states during isoproterenol infusion, suggesting no significant changes in preload at comparable levels of sigma es.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
19.
20.
Assessment of right ventricular (RV) contractility from end-systolic pressure-volume relationships (ESPVR) is difficult due to problems in measuring RV instantaneous volume and to effects of changes in RV preload or afterload. We therefore investigated in anesthetized dogs whether RV ESPVR and contractility can be determined without measuring RV volume and without changing RV preload or afterload. The maximal RV pressure of isovolumic beats (P(max)) was predicted from isovolumic portions of RV pressure during ejecting beats and compared with P(max) measured during the first beat after pulmonary artery clamping. In RV pressure-volume loops obtained from RV pressure and integrated pulmonary arterial flow, end-systolic elastance (E(es)) was assessed as the slope of P(max)-derived ESPVR, pulmonary artery effective elastance (E(a)) as the slope of end-diastolic to end-systolic relation, and coupling efficiency as the E(es)-to-E(a) ratio (E(es)/E(a)). Predicted P(max) correlated with observed P(max) (r = 0.98 +/- 0.02). Dobutamine increased E(es) from 1.07 to 2.00 mmHg/ml and E(es)/E(a) from 1.64 to 2.49, and propranolol decreased E(es)/E(a) from 1.64 to 0.91 (all P < 0.05). After adrenergic blockade, preload reduction did not affect E(es), whereas hypoxia and arterial constriction markedly increased E(a) and somewhat increased E(es) due to the Anrep effect. Low preload did not affect E(es)/E(a) and high afterload decreased E(es)/E(a). In conclusion, in the right ventricle 1) P(max) can be calculated from normal beats, 2) P(max) can be used to determine ESPVR without change in load, and 3) P(max)-derived ESPVR can be used to assess ventricular contractility and ventricular-arterial coupling efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号