首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY: MetaFluxNet is a program package for managing information on the metabolic reaction network and for quantitatively analyzing metabolic fluxes in an interactive and customized way. It allows users to interpret and examine metabolic behavior in response to genetic and/or environmental modifications. As a result, quantitative in silico simulations of metabolic pathways can be carried out to understand the metabolic status and to design the metabolic engineering strategies. The main features of the program include a well-developed model construction environment, user-friendly interface for metabolic flux analysis (MFA), comparative MFA of strains having different genotypes under various environmental conditions, and automated pathway layout creation. AVAILABILITY: http://mbel.kaist.ac.kr/ Supplementary information: A manual for MetaFluxNet is available as PDF file.  相似文献   

2.
Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development.  相似文献   

3.
Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEval/downloads.  相似文献   

4.
Random mutagenesis and selection approaches used traditionally for the development of industrial strains have largely been complemented by metabolic engineering, which allows purposeful modification of metabolic and cellular characteristics by using recombinant DNA and other molecular biological techniques. As systems biology advances as a new paradigm of research thanks to the development of genome-scale computational tools and high-throughput experimental technologies including omics, systems metabolic engineering allowing modification of metabolic, regulatory and signaling networks of the cell at the systems-level is becoming possible. In silico genome-scale metabolic model and its simulation play increasingly important role in providing systematic strategies for metabolic engineering. The in silico genome-scale metabolic model is developed using genomic annotation, metabolic reactions, literature information, and experimental data. The advent of in silico genome-scale metabolic model brought about the development of various algorithms to simulate the metabolic status of the cell as a whole. In this paper, we review the algorithms developed for the system-wide simulation and perturbation of cellular metabolism, discuss the characteristics of these algorithms, and suggest future research direction.  相似文献   

5.
Systems biology has greatly contributed toward the analysis and understanding of biological systems under various genotypic and environmental conditions on a much larger scale than ever before. One of the applications of systems biology can be seen in unraveling and understanding complicated human diseases where the primary causes for a disease are often not clear. The in silico genome-scale metabolic network models can be employed for the analysis of diseases and for the discovery of novel drug targets suitable for treating the disease. Also, new antimicrobial targets can be discovered by analyzing, at the systems level, the genome-scale metabolic network of pathogenic microorganisms. Such applications are possible as these genome-scale metabolic network models contain extensive stoichiometric relationships among the metabolites constituting the organism's metabolism and information on the associated biophysical constraints. In this review, we highlight applications of genome-scale metabolic network modeling and simulations in predicting drug targets and designing potential strategies in combating pathogenic infection. Also, the use of metabolic network models in the systematic analysis of several human diseases is examined. Other computational and experimental approaches are discussed to complement the use of metabolic network models in the analysis of biological systems and to facilitate the drug discovery pipeline.  相似文献   

6.
简星星  高琪  花强 《微生物学通报》2015,42(9):1752-1761
【目的】近十年来,基因组代谢网络模型迅速发展。通过构建基因组代谢网络模型进行计算机仿真模拟已成为研究生物体复杂的生理代谢不可或缺的工具。实现对仿真结果的可视化分析,可以直观地追踪模型中的代谢流向,从而更好地对仿真结果进行分析。【方法】在简要概述目前可视化方法的基础上,提出了一种基于Matlab实现基因组规模代谢网络模型仿真结果可视化的方法:通过CellDesigner预先绘制与模型相匹配的图,通过RAVEN toolbox中的函数于Matlab进行读图、并实现仿真结果的可视化。【结果】以解脂耶氏酵母基因组规模代谢网络模型iYL619_PCP v1.7为对象,实现并阐明其仿真结果的可视化。【结论】通过该方法可以清晰地监测模型中的流量和流向变化,提高仿真结果的分析效率。  相似文献   

7.
Liming Liu 《FEBS letters》2010,584(12):2556-2564
The exploitation of microorganisms in industrial, medical, food and environmental biotechnology requires a comprehensive understanding of their physiology. The availability of genome sequences and accumulation of high-throughput data allows gaining understanding of microbial physiology at the systems level, and genome-scale metabolic models represent a valuable framework for integrative analysis of metabolism of microorganisms. Genome-scale metabolic models are reconstructed based on a combination of genome sequence information and detailed biochemical information, and these reconstructed models can be used for analyzing and simulating the operation of metabolism in response to different stimuli. Here we discuss the requirement for having detailed physiological insight in order to exploit microorganisms for production of fuels, chemicals and pharmaceuticals. We further describe the reconstruction process of genome-scale metabolic models and different algorithms that can be used to apply these models to gain improved insight into microbial physiology.  相似文献   

8.
To understand the metabolic characteristics of Clostridium acetobutylicum and to examine the potential for enhanced butanol production, we reconstructed the genome-scale metabolic network from its annotated genomic sequence and analyzed strategies to improve its butanol production. The generated reconstructed network consists of 502 reactions and 479 metabolites and was used as the basis for an in silico model that could compute metabolic and growth performance for comparison with fermentation data. The in silico model successfully predicted metabolic fluxes during the acidogenic phase using classical flux balance analysis. Nonlinear programming was used to predict metabolic fluxes during the solventogenic phase. In addition, essential genes were predicted via single gene deletion studies. This genome-scale in silico metabolic model of C. acetobutylicum should be useful for genome-wide metabolic analysis as well as strain development for improving production of biochemicals, including butanol. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. J. L. and H. Y. equally contributed to this work.  相似文献   

9.
10.
Increasing numbers of value added chemicals are being produced using microbial fermentation strategies. Computational modeling and simulation of microbial metabolism is rapidly becoming an enabling technology that is driving a new paradigm to accelerate the bioprocess development cycle. In particular, constraint-based modeling and the development of genome-scale models of industrial microbes are finding increasing utility across many phases of the bioprocess development workflow. Herein, we review and discuss the requirements and trends in the industrial application of this technology as we build toward integrated computational/experimental platforms for bioprocess engineering. Specifically we cover the following topics: (1) genome-scale models as genetically and biochemically consistent representations of metabolic networks; (2) the ability of these models to predict, assess, and interpret metabolic physiology and flux states of metabolism; (3) the model-guided integrative analysis of high throughput ‘omics’ data; (4) the reconciliation and analysis of on- and off-line fermentation data as well as flux tracing data; (5) model-aided strain design strategies and the integration of calculated biotransformation routes; and (6) control and optimization of the fermentation processes. Collectively, constraint-based modeling strategies are impacting the iterative characterization of metabolic flux states throughout the bioprocess development cycle, while also driving metabolic engineering strategies and fermentation optimization.  相似文献   

11.
12.
13.
The manner in which microorganisms utilize their metabolic processes can be predicted using constraint-based analysis of genome-scale metabolic networks. Herein, we present the constraint-based reconstruction and analysis toolbox, a software package running in the Matlab environment, which allows for quantitative prediction of cellular behavior using a constraint-based approach. Specifically, this software allows predictive computations of both steady-state and dynamic optimal growth behavior, the effects of gene deletions, comprehensive robustness analyses, sampling the range of possible cellular metabolic states and the determination of network modules. Functions enabling these calculations are included in the toolbox, allowing a user to input a genome-scale metabolic model distributed in Systems Biology Markup Language format and perform these calculations with just a few lines of code. The results are predictions of cellular behavior that have been verified as accurate in a growing body of research. After software installation, calculation time is minimal, allowing the user to focus on the interpretation of the computational results.  相似文献   

14.
Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is a capnophilic gram-negative bacterium that efficiently produces succinic acid, an industrially important four carbon dicarboxylic acid. In order to design a metabolically engineered strain which is capable of producing succinic acid with high yield and productivity, it is essential to optimize the whole metabolism at the systems level. Consequently, in silico modeling and simulation of the genome-scale metabolic network was employed for genome-scale analysis and efficient design of metabolic engineering experiments. The genome-scale metabolic network of M. succiniciproducens consisting of 686 reactions and 519 metabolites was constructed based on reannotation and validation experiments. With the reconstructed model, the network structure and key metabolic characteristics allowing highly efficient production of succinic acid were deciphered; these include strong PEP carboxylation, branched TCA cycle, relative weak pyruvate formation, the lack of glyoxylate shunt, and non-PTS for glucose uptake. Constraints-based flux analyses were then carried out under various environmental and genetic conditions to validate the genome-scale metabolic model and to decipher the altered metabolic characteristics. Predictions based on constraints-based flux analysis were mostly in excellent agreement with the experimental data. In silico knockout studies allowed prediction of new metabolic engineering strategies for the enhanced production of succinic acid. This genome-scale in silico model can serve as a platform for the systematic prediction of physiological responses of M. succiniciproducens to various environmental and genetic perturbations and consequently for designing rational strategies for strain improvement.  相似文献   

15.
Hamilton JJ  Reed JL 《PloS one》2012,7(4):e34670
Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here.  相似文献   

16.

Background  

Genome-scale flux models are useful tools to represent and analyze microbial metabolism. In this work we reconstructed the metabolic network of the lactic acid bacteria Lactococcus lactis and developed a genome-scale flux model able to simulate and analyze network capabilities and whole-cell function under aerobic and anaerobic continuous cultures. Flux balance analysis (FBA) and minimization of metabolic adjustment (MOMA) were used as modeling frameworks.  相似文献   

17.
Arthrospira (Spirulina) platensis is a promising feedstock and host strain for bioproduction because of its high accumulation of glycogen and superior characteristics for industrial production. Metabolic simulation using a genome-scale metabolic model and flux balance analysis is a powerful method that can be used to design metabolic engineering strategies for the improvement of target molecule production. In this study, we constructed a genome-scale metabolic model of A. platensis NIES-39 including 746 metabolic reactions and 673 metabolites, and developed novel strategies to improve the production of valuable metabolites, such as glycogen and ethanol. The simulation results obtained using the metabolic model showed high consistency with experimental results for growth rates under several trophic conditions and growth capabilities on various organic substrates. The metabolic model was further applied to design a metabolic network to improve the autotrophic production of glycogen and ethanol. Decreased flux of reactions related to the TCA cycle and phosphoenolpyruvate reaction were found to improve glycogen production. Furthermore, in silico knockout simulation indicated that deletion of genes related to the respiratory chain, such as NAD(P)H dehydrogenase and cytochrome-c oxidase, could enhance ethanol production by using ammonium as a nitrogen source.  相似文献   

18.
High-throughput data generation and genome-scale stoichiometric models have greatly facilitated the comprehensive study of metabolic networks. The computation of all feasible metabolic routes with these models, given stoichiometric, thermodynamic, and steady-state constraints, provides important insights into the metabolic capacities of a cell. How the feasible metabolic routes emerge from the interplay between flux constraints, optimality objectives, and the entire metabolic network of a cell is, however, only partially understood. We show how optimal metabolic routes, resulting from flux balance analysis computations, arise out of elementary flux modes, constraints, and optimization objectives. We illustrate our findings with a genome-scale stoichiometric model of Escherichia coli metabolism. In the case of one flux constraint, all feasible optimal flux routes can be derived from elementary flux modes alone. We found up to 120 million of such optimal elementary flux modes. We introduce a new computational method to compute the corner points of the optimal solution space fast and efficiently. Optimal flux routes no longer depend exclusively on elementary flux modes when we impose additional constraints; new optimal metabolic routes arise out of combinations of elementary flux modes. The solution space of feasible metabolic routes shrinks enormously when additional objectives---e.g. those related to pathway expression costs or pathway length---are introduced. In many cases, only a single metabolic route remains that is both feasible and optimal. This paper contributes to reaching a complete topological understanding of the metabolic capacity of organisms in terms of metabolic flux routes, one that is most natural to biochemists and biotechnologists studying and engineering metabolism.  相似文献   

19.
Bioethanol has been recognized as a potential alternative energy source. Among various ethanol-producing microbes, Zymomonas mobilis has acquired special attention due to its higher ethanol yield and tolerance. However, cellular metabolism in Z. mobilis remains unclear, hindering its practical application for bioethanol production. To elucidate such physiological characteristics, we reconstructed and validated a genome-scale metabolic network (iZM363) of Z. mobilis ATCC31821 (ZM4) based on its annotated genome and biochemical information. The phenotypic behaviors and metabolic states predicted by our genome-scale model were highly consistent with the experimental observations of Z. mobilis ZM4 strain growing on glucose as well as NMR-measured intracellular fluxes of an engineered strain utilizing glucose, fructose, and xylose. Subsequent comparative analysis with Escherichia coli and Saccharomyces cerevisiae as well as gene essentiality and flux coupling analyses have also confirmed the functional role of pdc and adh genes in the ethanologenic activity of Z. mobilis, thus leading to better understanding of this natural ethanol producer. In future, the current model could be employed to identify potential cell engineering targets, thereby enhancing the productivity of ethanol in Z. mobilis.  相似文献   

20.
Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design “fine-tuned” metabolic engineering strategies in silico that can be implemented directly with available genomic tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号