首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many members of the spiralian phyla (i.e., annelids, echiurans, vestimentiferans, molluscs, sipunculids, nemerteans, polyclad turbellarians, gnathostomulids, mesozoans) exhibit early, equal cleavage divisions. In the case of the equal-cleaving molluscs, animal-vegetal inductive interactions between the derivatives of the first quartet micromeres and the vegetal macromeres specify which macromere becomes the 3D cell during the interval between fifth and sixth cleavage. The 3D macromere serves as a dorsal organizer and gives rise to the 4d mesentoblast. Even though it has been argued that this situation represents the ancestral condition among the Spiralia, these inductive events have only been documented in equal-cleaving molluscs. Embryos of the nemertean Cerebratulus lacteus also undergo equal, spiral cleavage, and the fate map of these embryos is similar to that of other spiralians. The role of animal first quartet micromeres in the establishment of the dorsal (D) cell quadrant was examined in C. lacteus by removing specific combinations of micromeres at the eight-cell stage. To follow the development of various cell quadrants, one quadrant was labeled with DiI at the four-cell stage, and specific first quartet micromeres were removed from discrete positions relative to the location of the labeled quadrant. The results indicate that the first quartet is required for normal development, as removal of all four micromeres prevented dorsoventral axis formation. In most cases, when either one or two adjacent first quartet micromeres were removed from one side of the embryo, the cell quadrant on the opposite side, with its macromere centered under the greatest number of the remaining animal micromeres, ultimately became the D quadrant. Twins containing duplicated dorsoventral axes were generated by removal of two opposing first quartet micromeres. Thus, any cell quadrant can become the D quadrant, and the dorsoventral axis is established after the eight-cell stage. While it is not yet clear exactly when key inductive interactions take place that establish the D quadrant in C. lacteus, contacts between the progeny of animal micromeres and vegetal macromeres are established during the interval between the fifth and sixth round of cleavage divisions (i.e., 32- to 64-cell stages). These findings argue that this mechanism of cell and axis determination has been conserved among equal-cleaving spiralians.  相似文献   

2.
In annelids, molluscs, echiurans and sipunculids the establishment of the dorsal-ventral axis of the embryo is associated with D quadrant specification during embryogenesis. This specification occurs in two ways in these phyla. One mechanism specifies the D quadrant via the shunting of a set of cytoplasmic determinants located at the vegetal pole of the egg to one blastomere of the four cell stage embryo. In this case, at the first two cleavages of embryogenesis there is an unequal distribution of cytoplasm, generating one macromere which is larger than the others at the four cell stage. The D quadrant can also be specified by a contact mediated inductive interaction between one of the macromeres at the vegetal pole with micromeres at the animal pole of the embryo. This mechanism operates at a later stage of development than the cytoplasmic localization mechanism and is associated with a pattern of cleavage in which the first two cleavages are equal. An analysis of the phylogenetic relationships within these phyla indicates that the taxa which determine the D quadrant at an early cleavage stage by cytoplasmic localization tend to be derived and lack a larval stage or have larvae with adult characters. Those taxa where the D quadrant is specified by induction include the ancestral groups although some derived groups also use this mechanism. The pulmonate mollusc Lymnaea uses an inductive mechanism for specifying the D quadrant. In these embryos each of the four vegetal macromeres has the potential of becoming the D macromere; however under normal circumstances one of the two vegetal crossfurrow macromeres almost invariably becomes the D quadrant. Experiments are described here in which the size of one of the blastomeres of the four cell stage Lymnaea embryo is increased; this macromere invariably becomes the D quadrant. These experiments suggest that developmental change in relative blastomere size during the first two cleavages in spiralian embryos that normally cleave equally may have provided a route that has led to the establishment of the cytoplasmic localization mechanism of D quadrant formation.  相似文献   

3.
Evolutionary Modifications of the Spiralian Developmental Program   总被引:2,自引:1,他引:1  
SYNOPSIS. The Spiralia, an assemblage of phyla united by theirstereotypic pattern of early embryonic cell divisions (spiralcleavage), is an interesting group in which to investigate theevolution of development. This paper examines modificationsof developmental mechanisms within the Spiralia with emphasison the basallybranching forms. Although demonstrating a notabledegree of evolutionary conservation, the equal quartet cleavagepattern, which appears to be the ancestral condition, nonethelessexhibits modifications within the various spiralian groups,such as unequal cleavage, changes in cell size and rate of division,formation of two rather than four quadrants (duet spiral cleavage),and in extreme cases the loss of any trace of the spiral pattern.While the cell lineages of spiralians are remarkably conserved,one can discern evolutionary changes, for example in the cellsthat give rise to mesodenn. Studies of blastomere specificationin many spiralian groups and analyses of axis determinationindicate that embryos with equal versus unequal cleavage typicallyuse different determinative mechanisms to establish cell fatesand the dorsoventral axis. These properties are establishedearly in species exhibiting unequal cleavage. While previousexperiments suggested that equal cleavage was associated withlate specification, there is now evidence of precocious specificationof quadrant fates in some equal-cleaving species, such as thenemerteans and the polyclad turbellarians  相似文献   

4.
SUMMARY Molecular and morphological comparisons indicate that the Echinodermata and Hemichordata represent closely related sister‐phyla within the Deuterostomia. Much less is known about the development of the hemichordates compared to other deuterostomes. For the first time, cell lineage analyses have been carried out for an indirect‐developing representative of the enteropneust hemichordates, Pty‐ chodera flava. Single blastomeres were iontophoretically labeled with DiI at the 2‐ through 16‐cell stages, and their fates followed through development to the tornaria larval stage. The early cleavage pattern of P. flava is similar to that of the direct‐developing hemichordate, Saccoglossus kowalevskii, as well as that displayed by indirect‐developing echinoids. The 16‐celled embryo contains eight animal “mesomeres,” four slightly larger “macromeres,” and four somewhat smaller vegetal “micromeres.” The first cleavage plane was not found to bear one specific relationship relative to the larval dorsoventral axis. Although individual blastomeres generate discrete clones of cells, the appearance and exact locations of these clones are variable with respect to the embryonic dorsoventral and bilateral axes. The eight animal mesomeres generate anterior (animal) ectoderm of the larva, which includes the apical organ; however, contributions to the apical organ were found to be variable as only a subset of the animal blastomeres end up contributing to its formation and this varies from embryo to embryo. The macromeres generate posterior larval ectoderm, and the vegetal micromeres form all the internal, endomesodermal tissues. These blastomere contributions are similar to those found during development of the only other hemichordate studied, the direct‐developing enteropneust, S. kowalevskii. Finally, isolated blastomeres prepared at either the two‐ or the four‐cell stage are capable of forming normal‐appearing, miniature tornaria larvae. These findings indicate that the fates of these cells and embryonic dorsoventral axial properties are not committed at these early stages of development. Comparisons with the developmental programs of other deuterostome phyla allow one to speculate on the conservation of some key developmental events/mechanisms and propose basal character states shared by the ancestor of echinoderms and hemichordates.  相似文献   

5.
Like most polychaete annelids, Capitella teleta (formerly Capitella sp. I) exhibits a highly stereotypic program of early development known as spiral cleavage. Animals with spiral cleavage have diverse body plans, and homologous embryonic cells can be readily identified among distantly related animals. Spiralian embryos are particularly amenable to studies of fate-mapping, and larval fates of identified cells are conserved among diverse taxa. One cell of particular importance in spiralian development is 2d, or the primary somatoblast, which generates ectoderm of the body posterior to the prototroch. We are interested in the evolution of the primary somatoblast, and thus far, the 2d sublineage has only been analyzed in a few species. In Capitella teleta, 2d generates ectoderm of the segmented trunk and post-segmental pygidium. In this study, development of the 2d lineage was characterized in detail through intracellular injections of DiI, and time-lapse as well as confocal microscopy to analyze cleavage patterns and the fates of larval cells. Analysis of cleavage patterns reveals that the first bilateral division in the 2d sublineage occurs with the division of 2d112, the same 2d daughter cell that first divides bilaterally in the polychaete Platynereis dumerilii. Larval fates of blastomeres 2d1, 2d2, 2d11, 2d12, 2d112, 2d1121, and 2d1122 were determined. All cells show stereotypic descendant clones that are consistent with segregation within sublineages. In the first few divisions of the 2d sublineage, larval-specific structures (neurotroch and telotroch) and pygidial ectoderm are segregated from segmental ectoderm and ventral nerve cord. The daughters of the first bilateral division, 2d1121 and 2d1122, generate the right and left halves of the segmental ectoderm and ventral nerve cord respectively, although the clones are consistently asymmetric across the dorsal midline. The pattern of cleavage divisions and the fates of the 2d daughters in Capitella teleta are compared to those in other spiralians with special attention to annelids.  相似文献   

6.
Nielsen, C. 2010. Some aspects of spiralian development. —Acta Zoologica (Stockholm) 91 : 20–28 Spiralian development is not only a characteristic early cleavage pattern, with shifting orientations of the cleavage planes, but also highly conserved cell lineages, where the origin of several organs can be traced back to identifiable cells in the lineage. These patterns are well documented in annelids, molluscs, nemertines, and platyhelminths and are considered ancestral of a bilaterian clade including these phyla. Spiral cleavage has not been documented in ecdysozoans, and no trace of the spiral development pattern is seen in phoronids and brachiopods. Origin of the spatial organization in spiralian embryos is puzzling, but much of the information appears to be encoded in the developing oocyte. Fertilization and “pseudofertilization” apparently provides the information defining the secondary, anterior‐posterior body axis in many species. The central nervous system consists of three components: an apical organ, derived from the apical blastomeres 1a111‐1d111, which degenerates before or at metamorphosis; the cerebral ganglia derived from other blastomeres of the first micromere quartet and retained in the adult as a preoral part of the brain; and the originally circumblastoporal nerve cord, which has become differentiated into a perioral part of the brain, the paired or secondarily fused ventral nerve cords, and a small perianal nerve ring.  相似文献   

7.
The trochophora concept and the literature on cleavage patterns and differentiation of ectodermal structures in annelids ("polychaetes") and molluscs are reviewed. The early development shows some variation within both phyla, and the cephalopods have a highly modified development. Nevertheless, there are conspicuous similarities between the early development of the two phyla, related to the highly conserved spiral cleavage pattern. Apical and cerebral ganglia have almost identical origin in the two phyla, and the cell-lineage of the prototroch is identical, except for minor variations between species. The cell-lineage of the metatrochs is almost unknown, but the telotroch of annelids and the "telotroch" of the gastropod Patella originate from the 2d-cell, as does the gastrotroch in the few species which have been studied. The segmented annelid body, i.e. the region behind the peristome, develops through addition of new ectoderm from a ring of 2d-cells just in front of the telotroch. This whole region is thus derived from 2d-cells. Conversely, the mollusc body is covered by descendants of cells from both the C and D quadrants and a growth zone is not apparent. This supports the notion that the molluscs are not segmented like the annelids, and that the repeated structures seen in polyplacophorans and monoplacophorans do not represent a segmentation homologous to that of the annelids.  相似文献   

8.
 Embryos acquire axial properties (e.g., the animal-vegetal, dorsoventral and bilateral axes) at various times over the course of their normal developmental programs. In the spiral-cleaving nemertean, Cerebratulus lacteus, lineage tracing studies have shown that the dorsoventral axis is set up prior to the first cleavage division; however, blastomeres isolated at the two-cell stage will regulate to form apparently perfect, miniature pilidium larvae. We have examined the nature of axial specification in this organism by determining whether partial embryos retain the original embryonic/larval axial properties of the intact embryo, or whether new axial relationships are generated as a consequence of the regulatory process. Single blastomeres in two-cell stage embryos were injected with lineage tracer, and were then bisected along the second cleavage plane at the four-cell stage. Thus, the relationship between the plane of the first cleavage division and various developmental axes could be followed throughout development in the ”half-embryos”. While some embryo fragments appear to retain their original animal-vegetal and dorsoventral axes, many fragments generate novel axial properties. These results indicate that axial properties set up and used during normal development in C. lacteus can be completely reorganized during the course of regulation. While certain embryonic axes, such as the animal-vegetal and dorsoventral axes, appear to be set up prior to first cleavage, these axes and associated cell fates are not irreversibly fixed until later stages of development in normal intact embryos. In C. lacteus, the process whereby these properties are ultimately determined is apparently controlled by complex sets of cell-cell interactions. Received: 11 October 1996 / Accepted: 21 February 1997  相似文献   

9.
Spiralian development is shared by several protostome phyla and characterized by regularities in early cleavage, fate map, and larva. Experimental evidence from multiple spiralian species implicates cells in the D quadrant lineage as the organizer of future axial development of the embryo. However, the mechanisms by which the D quadrant is specified differ between species with equal and unequal spiral cleavage. Equally cleaving mollusc embryos establish the D quadrant via cell-cell interactions between the micromeres and macromeres at the 24- to 36-cell stage. In unequally cleaving embryos, the D quadrant is established at the 4-cell stage via asymmetries in the first 2 cell divisions. We have begun to explore the molecular mechanisms of D quadrant patterning in spiralians. Previously, we showed that, in the unequally cleaving embryo of the mollusc Ilyanassa obsoleta, the MAPK pathway is activated and functionally required in 3D and also in the micromeres known to require a signal from 3D. Here, we examine the role of MAPK signaling in 4 spiralians with equal cleavage. In 3 equally cleaving molluscs, the chiton Chaetopleura, the limpet Tectura, and the snail Lymnaea, the MAPK pathway is activated in the 3D cell but not in the overlying micromeres. In the equally cleaving embryo of the polychaete annelid Hydroides, MAPK activation was not detected in the 3D macromere but was observed in one of its daughter cells, 4d. In addition, inhibiting Tectura MAPK activation disrupts differentiation of 3D and cells induced by it, supporting a functional role for MAPK in axis specification in equally cleaving spiralians. Thus, MAPK signaling may have a conserved role in the D quadrant organizer cell 3D in molluscs. However, there have been at least 2 evolutionary changes in the activation of the MAPK pathway during spiralian evolution. MAPK function in the Ilyanassa micromeres is a recent cooption and, since the divergence of annelids and molluscs, there has been a shift in onset of MAPK activation between 3D and 4d. We propose that this latter shift correlates with a change in the timing of specification of the secondary embryonic axis.  相似文献   

10.
In this study we reinvestigate the early development of the freshwater mussel Dreissena polymorpha, previously studied by Meisenheimer (1901). The data include video time-lapse recordings of living embryos and bisbenzimide stains of fixed embryos as well as morphometry on fixed, serially-sectioned embryos. We present the cell lineage and cell cycle durations up to the first indication of symmetrization within this embryo. We show that early cell cycles last approximately 1h. A dramatic extension of cell cycle duration and a concomitant asynchrony among the various cell lines was observed starting at the fifth cleavage. Short cell cycles, like those of early blastomeres, were a constant property of the largest descendants of the 2d-cell line only. In contrast to Meisenheimer's observations and our experiences with other spiralian embryos, the cleavage pattern proved to follow multiple alternatives. The embryonic quadrants A-D were arranged in either a clockwise or counter-clockwise fashion and the chirality of the third cleavage was either dextral or sinistral irrespective of the arrangement of the quadrants. As a consequence, four different blastomere configurations were encountered and the dorsoventral axis could take four different angles with respect to the plane of first cleavage. The dorsal side was most easily recognized by the position of the 2d-micromere at the 16-cell stage. The fact that all of such embryos could develop into normal, uniform larvae is interpreted as the result of cell-cell interactions in morphogenetic regulation.  相似文献   

11.
Annelids and arthropods have long been considered each other's closest relatives, as evidenced by similarities in their segmented body plans. An alternative view, more recently advocated by investigators who have examined partial 18S ribosomal RNA data, proposes that annelids, molluscs, and certain other minor phyla with trochophore larva stages share a more recent common ancestor with one another than any do with arthropods. The two hypotheses are mutually exclusive in explaining spiralian relationships. Cladistic analysis of morphological data does not reveal phylogentic relationships among major spiralian taxa but does suggest monophyly for both the annelids and molluscs. Distance and maximum-likelihood analyses of 18S rRNA gene sequences from major spiralian taxa suggest a sister relationship between annelids and molluscs and provide a clear resolution within the major groups of the spiralians. The parsimonious tree based on molecular data, however, indicates a sister relationship of the Annelida and Bivalvia, and an earlier divergence of the Gastropoda than the Annelida–Bivalvia clade. To test further hypotheses on the phylogenetic relationships among annelids, molluscs, and arthropods, and the ingroup relationships within the major spiralian taxa, we combine the molecular and morphological data sets and subject the combined data matrix to parsimony analysis. The resulting tree suggests that the molluscs and annelids form a monophyletic lineage and unites the molluscan taxa to a monophyletic group. Therefore, the result supports the Eutrochozoa hypothesis and the monophyly of molluscs, and indicates early acquisition of segmented body plans in arthropods. Received: 25 September 1995 / Accepted: 15 March 1996  相似文献   

12.
Summary As in many spiralian embryos with unequal cleavage, cleavage inPlatynereis follows an invariant pattern. Preceding each cleavage the cytoplasm is reorganized, allowing the spiral cleavage mode to produce cells with different cytoplasmic composition. The fertilized egg undergoes a dramatic ooplasmic segregation after the completion of the cortical reaction. As a consequence, a plug of clear cytoplasm becomes located at the animal pole. Once the four quadrants of the embryo have been established, the cleavage sequence of the D quadrant differs clearly from that of the other three quadrants. The results presented here suggest that differential distribution of the clear cytoplasm governs this sequence. The first quartet of micromeres, which will form the ectoderm and the cerebral ganglia of the head, is clearly bilaterally symmetrical from the onset of the third cleavage. Dorsoventral polarity and bilateral symmetry in the ectoderm of the trunk is expressed most markedly by the dorsal location of the large 2d cell, whose rapid proliferation is bilaterally symmetrical with respect to the median plane. As a result of this proliferation it comes to fill most of the posttrochal region (ectoderm, three pairs of anlagen for the setal sacs, and the ventral plate which forms the nerve cord). The other micromeres contribute only a minor portion of the ventral ectoderm and are involved in the formation of the stomodaeum. The mesentoblast, 4d, i.e. the stem cell of the primary mesoderm, forms at the sixth cleavage, also in a position on the dorsal mid-line. The daughter cells, which arise from 4d by strictly bilaterally symmetrical cleavage, form the mesodermal germ bands, which lie beneath the ectoderm. The trochoblasts are formed by asynchronously cleaving founder cells, but further cleavages in these cells are synchronous. This suggests that cell-cell interaction is involved in the development of this alleged mosaic embryo.  相似文献   

13.
In the direct-developing sea urchin Heliocidaris erythrogramma the first cleavage division bisects the dorsoventral axis of the developing embryo along a frontal plane. In the two-celled embryo one of the blastomeres, the ventral cell (V), gives rise to all pigmented mesenchyme, as well as to the vestibule of the echinus rudiment. Upon isolation, however, the dorsal blastomere (D) displays some regulation, and is able to form a small number of pigmented mesenchyme cells and even a vestibule. We have examined the spatial and temporal determination of cell fates along the dorsoventral axis during subsequent development. We demonstrate that the dorsoventral axis is resident within both cells of the two-celled embryo, but only the ventral pole of this axis has a rigidly fixed identity this early in development. The polarity of this axis remains the same in half-embryos developing from isolated ventral (V) blastomeres, but it can flip 180° in half-embryos developing from isolated dorsal (D) blastomeres. We find that cell fates are progressively determined along the dorsoventral axis up to the time of gastrulation. The ability of dorsal half-embryos to differentiate ventral cell fates diminishes as they are isolated at progressively later stages of development. These results suggest that the determination of cell fates along the dorsoventral axis in H. erythrogramma is regulated via inductive interactions organized by cells within the ventral half of the embryo.  相似文献   

14.
Summary Spirally cleaving embryos in which the first two cleavages generate four equal-sized blastomeres remain radially symmetrical along their animal-vegetal axis until the interval between third and fourth quartet formation. At this time animal micromeres and vegetal macromeres contact each other as they elongate and occlude the central, fluid-filled cleavage cavity. The overlying micromeres focus their contacts onto one of the four macromeres, the presumptive 3D macromere, as it elongates to a central position within the embryo. We tested the hypothesis that this animal-vegetal interaction was causally involved in the determination of the symmetry properties in both the animal and vegetal hemispheres by reversibly inhibiting animal-vegetal contact at the 24 cell stage with cytochalasin-B. Embryos remained hollow throughout the treatment period and animal-vegetal interaction did not occur. After treatment, blastomere elongation occurred but no D quadrant macromere appeared and the vegetal hemisphere remained radialized. On the basis of cleavage and ciliation patterns of first quartet derivatives, treated embryos remained fully or partially radialized, showing a strong tendancy to develop as ventral quadrants. These results show that the quadrants of this equal-cleaving spiralian are not definitively determined until after the 24 cell stage and that animal-vegetal interaction is required for D quadrant determination. The mechanisms of symmetrization in the animal and vegetal hemispheres of equal-cleaving spiralians is also discussed.  相似文献   

15.
The third cleavage plane in typical Xenopus embryos is horizontal. However, there are numbers of cases in which the third cleavage plane slants and yet the embryo develops normally. Pairs of animal-dorsal (AD) blastomeres of eight-cell stage Xenopus embryos with horizontal or oblique third cleavage plane were marked by intracellular injection of fluorescein dextran amine in order to locate their progeny. In neurulae, progeny of AD blastomeres was found mainly along the dorsal midline forming longitudinal clonal bands along the midline in the neural plate and the mesoderm underneath. AD blastomeres with oblique third cleavage plane further yielded the ventral endo-mesoderm in the head. On the other hand, they formed narrower clonal bands in the anterior ectoderm compared with AD blastomeres with horizontal third cleavage plane. Thus the fates of animal-dorsal brastomeres of eight-cell stage Xenopus embryos vary according to the specific patterns of the third cleavage plane. This indicates that the third cleavage in the Xenopus embryo does not affect the normal fate of each region of the embryo presumed at the eight-cell stage.  相似文献   

16.
Barbara C. Boyer 《Hydrobiologia》1995,305(1-3):217-222
In spiralian embryos determination of the axes of bilateral symmetry is associated with D quadrant specification. This can occur late through equal cleavage and cell interactions (conditional specification) or by the four-cell stage through unequal cleavage and cytoplasmic localization (autonomous specification). Freeman & Lundelius (1992) suggest that in spiralian coelomates the former method is ancestral and the latter derived, with evolutionary pressure to shorten metamorphosis resulting in early D quadrant determination through unequal cleavage and appearance of adult features in the larvae. Because of the key phylogenetic position of the turbellarian platyhelminthes, understanding the method of axis specification in this group is important in evaluating the hypothesis. Polyclad development, with equal quartet spiral cleavage, is believed to represent the most primitive condition among living turbellarians and has been examined experimentally in Hoploplana inquilina. Blastomere deletions at the two and four-cell stage produce larvae that are abnormal in morphology and symmetry, indicating that early development is not regulative, and also establish that the embryo does not have an invariant cell lineage. Deletions of micromeres and macromeres at the eight-cell stage indicate that cell interactions are involved in dorso-ventral axis determination, with cross-furrow macromeres playing a more significant role than non-cross-furrow cells. The results support the idea that conditional specification is the primitive developmental mode that characterized the common ancestor of the turbellarians and spiralian coelomates. Evolutionary trends in development in polyclads and other turbellarian orders are discussed.  相似文献   

17.
Summary After in vitro fertilization of naked eggs of the polyclad turbellarian, Hoploplana inquilina, both cell separation experiments and deletions of specific blastomeres are possible. With these techniques one can analyze the developmental potential of isolated blastomeres and determine if the embryonic axes have been established at the four-cell stage in this primitive, equally-cleaving spiralian embryo. Two-cell separation experiments with development of both halves resulted in pairs of larvae 1) neither of which had an eye (29%), 2) both of which had one eye (19%), and 3) one of which was eyeless and the other was one-eyed (43%). Deletion of one blastomere at the four-cell stage resulted in 68% one-eyed, 28% two-eyed and 3% eyeless larvae. The one-eyed larvae were asymmetric with respect to eye position with more having right than left eyes. Abnormal or missing ventrolateral lobes occurred with deletion of any of the macromeres at four cells but were significantly more common when A or C rather than B or D was deleted. The experiments support the hypothesis that eye development is a consequence of cytoplasmic localization of both a specific eye precursor and an inducer which segregate independently of cleavage planes, and indicate that the embryonic axes have been determined at the four-cell stage.  相似文献   

18.
Cell-deletion experiments were carried out on the embryo of the polyclad turbellarian Hoploplana inquilina to examine further the nature of development in primitive spiralians. The polyclads are of particular interest because they provide a link between the regulative development of acoels and the determinative development of annelids and molluscs. Single blastomeres were deleted at the two- and four-cell stages by puncture through the eggshell membrane with tungsten needles. All deletions resulted in abnormal larvae with consistent characteristics representing half or three-quarter Müller's larvae. The number of larval eyes was a particularly useful character in revealing mosaicism. This study establishes the polyclad embryo as determinative, but with important cell interactions also occurring during early development, and provides evidence that mosaicism became associated with spiral cleavage in the quartet form during the evolution of the Turbellaria.  相似文献   

19.
Summary Blastomeres of two-cell, four-cell, and eight-cell embryos of Hydractinia echinata were injected with horseradish-peroxidase (HRP) or fluorescein isothiocyanate (FITC)-dextran. The fate of the descendants of the injected blastomeres was followed until the planula larva had developed. The results obtained after HRP or FITC-dextran injection were essentially the same. Blastomeres are equivalent up to the four-cell stage, i.e. half-blastomeres produce half of the ectoderm of the planula larva and quarter-blastomeres give rise to one quarter of the larval ectoderm. During normal embryogenesis, the larval anterior-posterior axis corresponds to the animal-vegetal axis of the zygote. Thus, the labelled areas of larvae consisting of the progeny of injected half or quarter blastomeres normally stretch along the larval anterior-posterior axis. Normally, material giving rise to anterior or posterior larval parts, respectively, is separated at the third cleavage. Irrespective of the type of experiment, the progeny of injected blastomeres always contributed to endoderm formation, i.e. in larvae resulting from injected embryos the endoderm was more or less uniformly labelled. Application of vital stains locally to the exterior of zygotes and following these markers through first and second cleavage, produced evidence that in the vast majority of cases, the second cleavage is meridional. Offprint requests to: A. Schlawny  相似文献   

20.
The littorinimorph gastropod Crepidula fornicata shows a spiralian cleavage pattern and has been the subject of studies in experimental embryology, cell lineage, and the organization of the larval nervous system. To investigate the contribution of early blastomeres to the veliger larva, we used intracellular cell lineage tracers in combination with high-resolution confocal imaging. This study corroborates many features derived from other spiralian fate maps (such as the origins of the hindgut and mesoderm from the 4d mesentoblast), but also yields new findings, particularly with respect to the origins of internal structures, such as the nervous system and musculature that have never been described in detail. The ectomesoderm in C. fornicata is mainly formed by micromeres of the 3rd quartet (principally 3a and 3b), which presumably represents a plesiomorphic condition for molluscs. The larval central nervous system is mainly formed by the micromeres of the 1st and 2nd quartet, of which 1a, 1c, and 1d form the anterior apical ganglion and nerve tracks to the foot and velum, and 2b and 2d form the visceral loop and the mantle cell. Our study shows that both first and second velar ciliary bands are generated by the same cells that form the prototroch in other spiralians and apparently bear no homology to the metatroch found in annelids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号