首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Bowman et al. used epidemiologic data to test a model in which subjects were classified as being "in-resonance" or "not-in-resonance" for 60-Hz magnetic-field exposures depending on single static magnetic-field measurements at the centers of their bedrooms. A second paper by Swanson concluded that a single static magnetic-field measurement is insufficient to meaningfully characterize a residential environment. The main objective of this study was to investigate exposure-related questions raised by these two papers in two U.S. data sets, one containing single spot measurements of static magnetic fields at two locations in homes located in eight states, and the other repeated spot measurements (seven times during the course of one year) of the static magnetic fields at the centers of bedrooms and family rooms and on the surfaces of beds in 51 single-family homes in two metropolitan areas. Using Bowman's criterion, bedrooms were first classified as being in-resonance or not-in-resonance based on the average of repeated measurements of the static magnetic field measured on the bed where the presumed important exposure actually occurred. Bedrooms were then classified a second time using single spot measurements taken at the centers of bedrooms, centers of family rooms, or on the surfaces of beds, as would be done in the typical epidemiologic study. The kappa statistics characterizing the degree of concordance between the first (on-bed averages) and second (spot measurements) methods of assessing resonance status were 0.44, 0.33, and 0.67, respectively. This level of misclassification could significantly affect the results of studies involving the determination of resonance status.  相似文献   

3.
Residential magnetic and electric fields   总被引:1,自引:0,他引:1  
A magnetic flux density (MFD) and electric-field (E-field) data-acquisition system was built for characterizing extremely low-frequency fields in residences. Every 2 min during 24-h periods, MFD and E-field measurements were made in 43 homes in King, Pierce, and Snohomish counties of Washington State. The total electrical energy used in each residence during the 24-h measurement period was also recorded, and maps were drawn to scale of the distribution wiring within 43 m (140 ft) of these homes. Finally, on a separate date, field measurements were made in each home during an epidemiological interview. The results of this study can be summarized as follows: 1) 24-h-average MFD measured at two separate points in the family room were correlated, as were a 24-h-average bedroom measurement and the mean of the two family-room measurements. 2) The 24-h-average family-room MFD and E-field measurements were uncorrelated. 3) The 24-h-average total harmonic distortions of family-room MFD and E-fields were less than about 24% and 7%, respectively. 4) Residential MFD exhibited a definite 24-h (diurnal) cycle. 5) The 24-h-average and interviewer-measured MFD were correlated. 6) Residential 24-h-average MFD were correlated with the wiring code developed by Wertheimer and Leeper. 7) An improved prediction of 24-h-average residential MFD was obtained using the total number of service drops, the distance to neighboring transmission lines, and the number of primary phase conductors.  相似文献   

4.
Physiological processes in organisms can be influenced by extremely low-frequency (ELF) electromagnetic energy. Biological effect studies have great importance; as well as measurement studies since they provide information on the real exposure situations. In this study, the leakage magnetic fields around a transformer were measured in an apartment building in Küçükçekmece, Istanbul, and the measurement results were evaluated with respect to the international exposure standards. The transformer station was on the bottom floor of a three-floor building. It was found that people living and working in the building were exposed to ELF magnetic fields higher than the threshold magnetic field value of the International Agency for Research on Cancer (IARC). Many people living in this building reported health complaints such as immunological problems of their children. There were child-workers working in the textile factories located in the building. Safe distances or areas for these people should be recommended. Protective measures could be implemented to minimize these exposures. Further residential exposure studies are needed to demonstrate the exposure levels of ELF magnetic fields. Precautions should, therefore, be taken either to reduce leakage or minimize the exposed fields. Shielding techniques should be used to minimize the leakage magnetic fields in such cases.  相似文献   

5.
Study of the health effects of magnetic fields often depends on identifying determinants and hence indicators of personal exposure. This study identified determinants of children's exposure to magnetic fields and constructed a prediction model for them. For 632 children participating in a case-control study of childhood leukemia, we made direct measures of exposure over 48 h using a portable device, together with observations on candidate determinants. A child's age and sex, the proportion of time spent in the home, and their parents' education or income were very weak predictors of (logged) mean 48 h magnetic field (R(2) < 1%). More important were province (R(2) = 8.0%) and type of residence (R(2) = 11.3%). Low temperatures at the time of measurement were associated with high fields (about 20% increase for each 10 degrees C below 14, R(2) = 4.9%). Several visible attributes of wiring around residences predicted exposure, mostly captured in the Wertheimer-Leeper wire code (R(2) = 13.5%). Stationary 24 h measurement in the bedroom (R(2) = 63.3%) and spot measurements outside the house (R(2) = 40.7%) predicted personal exposures best. Adding other minor predictors increased only slightly variance explained by 24 h stationary (R(2) = 66.2%) and spot (R(2) = 46.8%) measurements. Without spot or stationary measurements, the best model was much less powerful (R(2) = 29.0%). We conclude that spot measurements outside the residence provide a moderately effective basis for estimating exposure for children living there, but do not perform as well as 24 h stationary measurements in the child's bedroom. Although several other easily-observed variables were associated with personal exposure, they were weak determinants, either individually or in combination.  相似文献   

6.
Considerable interest has developed during the past ten years regarding the hypothesis that living organisms may respond to temporal variability in ELF magnetic fields to which they are exposed. Consequently, methods to measure various aspects of temporal variability are of interest. In this paper, five measures of temporal variability were examined: Arithmetic means (D(mean)) and rms values (D(rms)) of the first differences (i.e., absolute value of the difference between consecutive measurements) of magnetic field recordings; "standardized" forms of D(rms), denoted RCMS, obtained by dividing D(rms) by the standard deviations of the magnetic field data; and mean (F(mean)) and rms (F(rms)) values of fractional first differences. Theoretical investigations showed that D(mean) and D(rms) are virtually unaffected by long-term systematic trends (changes) in exposure. These measures thus provide rather specific measures of short-term temporal variability. This was also true to a lesser extent for F(mean) and F(rms). In contrast, the RCMS metric was affected by both short-term and long-term exposure variabilities. The metrics were also investigated using a data set consisting of twice-repeated two-calendar-day recordings of bedroom magnetic fields and personal exposures of 203 women residing in the western portion of Washington State. The predominant source of short-term temporal variability in magnetic field exposures arose from the movement of subjects through spatially varying magnetic fields. Spearman correlations between TWA bedroom magnetic fields or TWA personal exposures and five measures of temporal variability were relatively low. Weak to moderate levels of correlation were observed between temporal variability measured during two different sessions separated in time by 3 or 6 months. We conclude that first difference and fractional difference metrics provide specific and fairly independent measures of short-term temporal variability. The RCMS metric does not provide an easily interpreted measure of short-term or long-term temporal variability. This last result raises uncertainties about the interpretation of published studies that use the RCMS metric.  相似文献   

7.
A system is described that uses an oscillating magnetic field to produce power-frequency electric fields with strengths in excess of those produced in an animal or human standing under a high-voltage electric-power transmission line. In contrast to other types of exposure systems capable of generating fields of this size, no electrodes are placed in the conducting growth media: the possibility of electrode contamination of the exposed suspension is thereby eliminated. Electric fields in the range 0.02–3.5 V/m can be produced in a cell culture with total harmonic distortions less than 1.5%. The magnetic field used to produce electric fields for exposure is largely confined within a closed ferromagnetic circuit, and experimental and control cells are exposed to leakage magnetic flux densities less than 5 μT. The temperatures of the experimental and control cell suspensions are held fixed within ±0.1°C by a water bath. Special chambers were developed to hold cell cultures during exposure and sham exposure. Chinese hamster ovary (CHO) cells incubated in these chambers grew for at least 48 h and had population doubling times of 16–17 h, approximately the same as for CHO cells grown under standard cell-culture conditions.  相似文献   

8.
We conducted a pilot study to assess magnetic field levels in electric compared to gasoline‐powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline‐powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline‐powered vehicle and at least one electric vehicle, enabling intra‐model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40–1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline‐powered cars (P < 0.0001). Using the data from a previous exposure assessment of residential exposure in eight geographic regions in the United States as a basis for comparison (N = 218), the broadband magnetic fields in electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross‐section of electric‐type vehicles. Bioelectromagnetics 34:156–161, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
A small, lightweight meter has been developed for magnetic-field measurements, particularly those needed for exposure-assessment purposes. This meter, known as the AMEX-3D, continuously measures all three axes of magnetic-flux density and electronically combines the data into a single estimate of cumulative exposure to the root-mean-square (rms) resultant flux density. The AMEX-3D weighs about 120 g, measures 2.7 cm x 5.1 cm x 10.2 cm, and is battery powered. Two panel-mounted jacks are provided for measuring battery voltage and for reading cumulative exposure data from the unit. The instrument has, within 3 dB, a flat response to magnetic flux densities at all frequencies in its 30-1,000 Hz bandwidth. A detailed analysis of error sources in the AMEX-3D leads to an estimate of +/- 20% as the accuracy of the instrument over its dynamic range, which extends from 0.02 to 15 microT. The AMEX-3D was tested in the field by asking electric-utility distribution linemen to wear AMEX-3D and EMDEX meters simultaneously while working. Agreement between the two measures of exposure was excellent.  相似文献   

10.
To improve the assessment of magnetic field exposures for occupational health studies, the Multiwave® System III (MW3) was developed to capture personal exposures to the three‐dimensional magnetic field vector B (t) in the 0–3000 Hz band. To process hundreds of full‐shift MW3 measurements from epidemiologic studies, new computer programs were developed to calculate the magnetic field's physical properties and its interaction with biological systems through various mechanisms (magnetic induction, radical pair interactions, ion resonance, etc.). For automated calculations in the frequency domain, the software uses new algorithms that remove artifacts in the magnetic field's Fourier transform due to electronic noise and the person's motion through perturbations in the geomagnetic field from steel objects. These algorithms correctly removed the Fourier transform artifacts in 92% of samples and have improved the accuracy of frequency‐dependent metrics by as much as 3300%. The output of the MwBatch software is a matrix of 41 exposure metrics calculated for each 2/15 s sample combined with 8 summary metrics for the person's full‐period exposure, giving 294 summary‐exposure metrics for each person monitored. In addition, the MwVisualizer software graphically explores the magnetic field's vector trace, its component waveforms, and the metrics over time. The output was validated against spreadsheet calculations with pilot data. This software successfully analyzed full‐shift MW3 monitoring with 507 electric utility workers, comprising over 1 million vector waveforms. The software's output can be used to test hypotheses about magnetic field biology and disease with biophysical models and also assess compliance with exposure limits. Bioelectromagnetics 31:391–405, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
12.
We measured magnetic fields and two sources of contact current in 36 homes in Pittsfield, MA. The first source, V(P-W), is the voltage due to current in the grounding wire, which extends from the service panel neutral to the water service line. This voltage can cause contact current to flow upon simultaneous contact with a metallic part of the water system, such as the faucet, and the frame of an appliance, which is connected to the panel neutral through the equipment-grounding conductor. The second is V(W-E), the voltage between the water pipe and earth, attributable to ground currents in the water system and magnetic induction from nearby power lines. In homes with conductive water systems and drains, V(W-E) can produce a voltage between the faucet and drain, which may produce contact current into an individual contacting the faucet while immersed in a bathtub. V(P-W) was not strongly correlated to the magnetic field (both log transformed) (r = 0.28; P < 0.1). On the other hand, V(W-E) was correlated to the residential magnetic field (both log transformed) (r = 0.54; P < 0.001), with the highest voltages occurring in homes near high voltage transmission lines, most likely due to magnetic induction on the grounding system. This correlation, combined with both frequent exposure opportunity for bathing children and substantial dose to bone marrow resulting from contact, lead us to suggest that contact current due to V(W-E) could explain the association between high residential magnetic fields and childhood leukemia.  相似文献   

13.
To explore the feasibility of performing an epidemiologic study of female breast cancer and magnetic field (MF) exposures, we chose to study garment workers, who reportedly have some of the highest MF exposures. We collected personal exposure (PE, n = 48) and survey measurements (n = 77) near commercial sewing machines at three garment facilities and conducted a pilot interview among 25 garment workers asking about exposure duration, activities, and machine characteristics. MF levels were higher for older machines with alternating current (AC) than newer machines with direct current (DC) motors. MF levels were comparable for both idling and sewing activities. Most interviewed workers could describe duration of exposure and machine type (automatic/manual), but not other machine characteristics. Measurements were lower than previously reported for garment workers but were higher than exposures to most women. A historical exposure assessment can be conducted by linking duration of exposure with reconstructed exposure measurements but may be limited by the accuracy of work history data.  相似文献   

14.
Two types of dosimeters for measuring human exposure to 60 Hz magnetic fields were compared. Fifty adults wore the single-axis, wrist model AMEX (average magnetic field exposure system) and the triple axis, hip-pocket or pouch model AMEX-3D meters for 2 days. Ninety-six percent of the tests were accomplished without apparent dosimeter failure. The average root mean square magnetic flux density measurements with the AMEX3D (mean = 0.10 μT, S.D. = 0.07, range = 0.03 ? 0.31) were significantly higher than with the AMEX meter (mean = 0.07 μT, S.D. 0.05, range = 0.02 ? 0.27 μT) (t test, P < 0.01). There was substantial correlation between the AMEX and the AMEX-3D measurements (Pearson's correlation coefficient = 0.65, P < 0.01) but poor concordance (Intraclass correlation coefficient = ? 0.25). These results suggest that there is a wide variation in exposure to extremely low frequency magnetic fields in the population. Magnetic field measurements with the AMEX-3D are nearly always higher than with the AMEX dosimeters. Caution is advised when comparing magnetic field measurements made with different types of dosimeters. © 1994 Wiley-Liss, Inc.  相似文献   

15.
We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 μT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 μT and 50.6 μT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4–30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 μT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 μT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands: 95% CI = 1.3–64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed. © 1995 Wiley-Liss, Inc.  相似文献   

16.
A model has been developed that permits assessment of residential exposure to 60-Hz magnetic fields emitted by appliances. It is based on volume- and time-averaging of magnetic-dipole fields. The model enables the contribution of appliances in the total residential exposure to be compared with that of other sources in any residence under study. Calculations based on measurements reported in the literature on 98 appliances revealed that appliances are not a significant source of whole-body exposure, but that they may be the dominant source of exposure of the body's extremities.  相似文献   

17.
18.
The facility consists of a 12 × 11.5 × 2.4 m high room containing six sets of exposure apparatus and the other equipment necessary to maintain a pathogen-free system. The apparatus sets produced 5 mT (rms), 0.5 mT, or a sham exposure. The apparatus was arranged in the room to minimize the fringing field of the 5 mT set at the sham position. Each set was 3.85 × 1.80 × 0.66 m in outside dimension, containing 24 cages in the magnetically homogeneous region. The apparatus was designed using Harvey's figure-eight-configuration and generated a horizontal sinusoidal alternating field. In order to save electric power, the coil of the apparatus constituted a 50 Hz LC resonance circuit with a condensor bank to which electric power was supplied to compensate losses. Magnetic flux density was kept constant by controlling the coil current. Although mild steel was used in the skeleton of the building, the fringing flux at the sham was as low as 0.1 to 1 μT. Stainless steel was used for ventilating ducts, racks for the cages, cage covers, feeder baskets, and watering nozzles. The homogeneity of the field was measured to be ± 10% in the animal residence area, and food and water consumption was found to be unaffected by the field. At 5 mT, the coil current was 370 A, and the hollow coil was cooled by a stream of 20°C water to prevent both heat and dew on the coil surface. Vibration and acoustic noise was prevented by fiber reinforced plastic framework of the coil. High harmonic distortion was not observed at the output terminal of the coil driver. The facility has operated without trouble for 2 years. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Jiang ML  Han TZ  Yang DW  Chen MX 《生理学报》2003,55(6):705-710
研究观察了孕期磁共振磁场照射对子代大鼠海马突触超微结构的影响。SD孕鼠妊娠第12-18d给予0.35T核磁共振(magnetic resonance imaging,MRI)磁场照射。测量1、2和5月龄雌性仔鼠海马CAl区和齿状回的突触结构参数,用立体计量学方法进行定量测定。结果显示,磁场照射可引起2月龄子代大鼠海马CAl区突触间隙增宽.齿状回突触活性区长度变短、突触界面曲率和活性区面密度减小;5月龄子代大鼠CAl区突触间隙增宽,突触后致密物变薄,突触界面曲率减小,齿状回突触间隙增宽。结果提示,妊娠期接受MRI磁场照射可引起海马突触超微结构的改变。对这些结构变化与行为损害之间的关系进行了讨论。  相似文献   

20.
Buildings with indoor transformer stations may serve as a basis for improved epidemiological studies on the health effects of extremely low-frequency magnetic fields (ELF MFs). Previous studies have shown that ELF MF exposure can be adequately assessed based on the fact that MF levels are high in apartments directly above transformers. In this paper, we describe the creation of a registry of Finnish residential buildings with built-in transformer stations and discuss its usability in epidemiological studies. Information obtained from electric utilities and building blueprints were used to identify 677 buildings in which an apartment was located above or adjacent to a transformer station. All apartments in these buildings were classified into exposure categories based on their location in relation to the transformer. Residential histories of these buildings were obtained from the Population Register Centre. Out of the 287,668 individuals who have resided in the buildings, 9,126 of them have resided in an apartment located directly above a transformer station. All information was collected without contacting residents, thus avoiding selection bias. The registry can be linked with data from high-quality nationwide registries to confirm or challenge the reported associations of ELF MF exposure and diseases such as cancer, miscarriage, and Alzheimer's disease. Bioelectromagnetics. 2020;41:34–40 © 2019 Bioelectromagnetics Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号