首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple in situ model of alamethicin-permeabilized isolated rat liver mitochondria was used to investigate the channeling of NADH between mitochondrial malate dehydrogenase (MDH) and NADH:ubiquinone oxidoreductase (complex I). Alamethicin-induced pores in the mitochondrial inner membrane allow effective transport of low molecular mass components such as NAD+/NADH but not soluble proteins. Permeabilized mitochondria demonstrate high rates of respiration in the presence of malate/glutamate and NAD+ due to coupled reaction between MDH and complex I. In the presence of pyruvate and lactate dehydrogenase, an extramitochondrial competitive NADH utilizing system, respiration of permeabilized mitochondria with malate/glutamate and NAD+ was completely abolished. These data are in agreement with the free diffusion of NADH and do not support the suggestion of direct channeling of NADH from MDH to complex I.  相似文献   

2.
The binding of porcine heart mitochondrial malate dehydrogenase and beta-hydroxyacyl-CoA dehydrogenase to bovine heart NADH:ubiquinone oxidoreductase (complex I), but not that of bovine heart alpha-ketoglutarate dehydrogenase complex, is virtually abolished by 0.1 mM NADH. The malate dehydrogenase and beta-hydroxyacyl-CoA enzymes compete in part for the same binding site(s) on complex I as do the malate dehydrogenase and alpha-ketoglutarate dehydrogenase complex enzymes. Associations between mitochondrial malate dehydrogenase and bovine serum albumin were observed. Subtle convection artifacts in short-time centrifugation tests of enzyme association with the Beckman Airfuge are described. Substrate channeling of NADH from both the mitochondrial and cytoplasmic malate dehydrogenase isozymes to complex I and reduction of ubiquinone-1 were shown to occur in vitro by transient enzyme-enzyme complex formation. Excess apoenzyme causes little inhibition of the substrate channeling reaction with both malate dehydrogenase isozymes in spite of tighter equilibrium binding than the holoenzyme to complex I. This substrate channeling could, in principle, provide a dynamic microcompartmentation of mitochondrial NADH.  相似文献   

3.
Because the mitochondrial inner membrane is impermeable to pyridine nucleotides, transport of reducing equivalents between the mitochondrial matrix and the cytoplasm relies on shuttle mechanisms, including the malate-aspartate shuttle and the glycerol-3-phosphate shuttle. These shuttles are needed for reducing equivalents generated by metabolic reactions in the cytosol to be oxidized via aerobic metabolism. Two isoenzymes of malate dehydrogenase (MDH) operate as components of the malate-aspartate shuttle, in which a reducing equivalent is transported via malate, which when oxidized to oxaloacetate, transfers an electron pair to reduce NAD to NADH. Several competing mechanisms have been proposed for the MDH-catalyzed reaction. This study aims to identify the pH-dependent kinetic mechanism for cytoplasmic MDH (cMDH) catalyzed oxidation/reduction of MAL/OAA. Experiments were conducted assaying the forward and reverse directions with products initially present, varying pH between 6.5 and 9.0. By fitting time-course data to various mechanisms, it is determined that an ordered bi-bi mechanism with coenzyme binding first followed by the binding of substrate is able to explain the kinetic data. The proposed mechanism is similar to, but not identical to, the mechanism recently determined for the mitochondrial isoform, mMDH. cMDH and mMDH mechanisms are also shown to both be reduced versions of a common, more complex mechanism that can explain the kinetic data for both isoforms. Comparing the simulated activity (ratio of initial velocity to the enzyme concentration) under physiological conditions, the mitochondrial MDH (mMDH) activity is predicted to be higher than cMDH activity under mitochondrial matrix conditions while the cMDH activity is higher than mMDH activity under cytoplasmic conditions, suggesting that the functions of the isoforms are kinetically tuned to their individual physiological roles.  相似文献   

4.
Complex I binds several mitochondrial NAD-coupled dehydrogenases   总被引:5,自引:0,他引:5  
NADH:ubiquinone reductase (complex I) of the mitochondrial inner membrane respiratory chain binds a number of mitochondrial matrix NAD-linked dehydrogenases. These include pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, mitochondrial malate dehydrogenase, and beta-hydroxyacyl-CoA dehydrogenase. No binding was detected between complex I and cytosolic malate dehydrogenase, glutamate dehydrogenase, NAD-isocitrate dehydrogenase, lipoamide dehydrogenase, citrate synthase, or fumarase. The dehydrogenases that bound to complex I did not bind to a preparation of complex II and III, nor did they bind to liposomes. The binding of pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and mitochondrial malate dehydrogenase to complex I is a saturable process. Based upon the amount of binding observed in these in vitro studies, there is enough inner membrane present in the mitochondria to bind the dehydrogenases in the matrix space. The possible metabolic significance of these interactions is discussed.  相似文献   

5.
1. A biochemical comparison was made among cytoplasmic malate dehydrogenase allozymic variants from Drosophila melanogaster. Experiments were carried out on enzyme extracted from six different genotypes: three homozygotes and their respective heterozygotes. 2. The allozyme forms (MDH A, MDH B, MDH C) were indistinguishable in terms of NAD and L-malate optima, while they are distinguishable in terms of NADH and OAA saturation conditions. Activities were inhibited at concentrations greater than 0.36 and 0.40 mM NADH for BB and AA, CC, respectively, while in relation to OAA inhibition was observed at concentrations higher than 3 or 6 mM for the AA, CC and BB, respectively. 3. differences among genotypes were also observed in thermal stability: Km values for OAA, L-malate, NADH and NAD: and pG optima. 4. A simple method is presented for the separation of the cytoplasmic from the mitochondrial malate dehydrogenase.  相似文献   

6.
NADH is central to the functioning of mitochondrial respiration. It is produced by enzymes in, or associated with, the tricarboxylic acid cycle in the matrix, and it is oxidized by two respiratory chain enzymes in the inner membrane, the rotenone-sensitive complex I and the rotenone-insensitive internal NADH dehydrogenase (NDin). A simplified kinetic model for NADH turnover in the matrix of plant mitochondria is presented. Only the two main NADH-producing enzymes, NAD-malate dehydrogenase [EC 1.1.1.37] (MDH) and NAD-malic enzyme [EC 1.1.1.39] (ME), are considered. This model reproduces the complex behaviour of malate oxidation by isolated mitochondria in response to additions of ADP (state 3/state 4), NAD+ and/or rotenone, as well as to changes in pH. It is found that MDH always operates at or close to equilibrium. Changes in the activity of complex I, NDin, or ME are predicted to cause clear changes in the pattern of malate oxidation. In general, the model predicts high sensitivity to changes in the ME activity. In contrast, MDH activity can be reduced 100-fold without detectable changes in malate oxidation. It is demonstrated that it is not the high activity, but the equilibrium properties of MDH that are important for the redox-buffering function of MDH in the mitochondrial matrix. Binding of NAD+ and NADH in the matrix reduces the concentrations of free NAD+ and NADH, depending on the concentration of binding sites and the binding strength. On the basis of the modelling results it is estimated that a significant proportion of the mitochondrial NAD is bound.  相似文献   

7.
The structure of the tricarboxylic acid cycle enzyme malate dehydrogenase is highly conserved in various organisms. To test the extent of functional conservation, the rat mitochondrial enzyme and the enzyme from Escherichia coli were expressed in a strain of Saccharomyces cerevisiae containing a disruption of the chromosomal MDH1 gene encoding yeast mitochondrial malate dehydrogenase. The authentic precursor form of the rat enzyme, expressed using a yeast promoter and a multicopy plasmid, was found to be efficiently targeted to yeast mitochondria and processed to a mature active form in vivo. Mitochondrial levels of the polypeptide and malate dehydrogenase activity were found to be similar to those for MDH1 in wild-type yeast cells. Efficient expression of the E. coli mdh gene was obtained with multicopy plasmids carrying gene fusions encoding either a mature form of the procaryotic enzyme or a precursor form with the amino terminal mitochondrial targeting sequence from yeast MDH1. Very low levels of mitochondrial import and processing of the precursor form were obtained in vivo and activity could be demonstrated for only the expressed precursor fusion protein. Results of in vitro import experiments suggest that the percursor form of the E. coli protein associates with yeast mitochondria but is not efficiently internalized. Respiratory rates measured for isolated yeast mitochondria containing the mammalian or procaryotic enzyme were, respectively, 83 and 62% of normal, suggesting efficient delivery of NADH to the respiratory chain. However, expression of the heterologous enzymes did not result in full complementation of growth phenotypes associated with disruption of the yeast MDH1 gene.  相似文献   

8.
《BBA》2022,1863(3):148532
The mitochondrial respiratory chain (RC) enables many metabolic processes by regenerating both mitochondrial and cytosolic NAD+ and ATP. The oxidation by the RC of the NADH metabolically produced in the cytosol involves redox shuttles as the malate-aspartate shuttle (MAS) and is of paramount importance for cell fate. However, the specific metabolic regulations allowing mitochondrial respiration to prioritize NADH oxidation in response to high NADH/NAD+ redox stress have not been elucidated. The recent discovery that complex I (NADH dehydrogenase), and not complex II (Succinate dehydrogenase), can assemble with other respiratory chain complexes to form functional entities called respirasomes, led to the assumption that this supramolecular organization would favour NADH oxidation. Unexpectedly, characterization of heart and liver mitochondria demonstrates that the RC systematically favours electrons provided by the ‘respirasome free’ complex II. Our results demonstrate that the preferential succinate driven respiration is tightly controlled by OAA levels, and that OAA feedback inhibition of complex II rewires RC fuelling increasing NADH oxidation capacity. This new regulatory mechanism synergistically increases RC's NADH oxidative capacity and rewires MDH2 driven anaplerosis of the TCA, preventing malate production from succinate to favour oxidation of cytosolic malate. This regulatory mechanism synergistically adjusts RC and TCA fuelling in response to extramitochondrial malate produced by the MAS.  相似文献   

9.
Summary  Rubroskyrin, a modified bisanthraquinone pigment from an yellow rice moldPenicillium islandicum Sopp, was examined for its redox-interaction with the mitochondrial respiratory chain by using rat liver submitochondrial particles (SMP) and was compared with luteoskyrin and rugulosin. Rubroskyrin showed a redox interaction with the NAD-linked respiratory chain of SMP, promoting NADH oxidase in the presence of rotenone, a specific inhibitor to coupling site I of the respiratory chain. Rubroskyrin-mediated NADH oxidase was not inhibited by antimycin A and cyanide, inhibitors to coupling sites II and III, respectively, indicating a generation of an electron transport shunt from a rotenone-insensitive site of NADH dehydrogenase (complex I) to dissolved oxygen. An electrontransport shunt to cytochromec oxidase from complex I was also observed in the experiment with cytochromec and antimycin A. Rubroskyrin did not interact with succinate-linked respiratory chain. Such enzymatic redox response which generates electron transport shunt was not detected for luteoskyrin and rugulosin in the present study.  相似文献   

10.
The simultaneous oxidation of malate and of glycine was investigated in pea (Pisum sativum) leaf mitochondria. Adding malate to state 4 glycine oxidation did not inhibit, and under some conditions stimulated, glycine oxidation. State 4 oxygen uptake with glycine is restricted because of the control exerted by the membrane potential but reoxidation of NADH by oxaloacetate reduction can still occur. Thus, malate addition stimulates glycine metabolism by producing oxaloacetate. The malate dehydrogenase (EC 1.1.1.37) enzyme fraction remote from glycine decarboxylase (EC 2.1.2.10) oxidizes malate whereas that closely associated with it produces malate, i.e. they function in opposite directions. It is shown that these opposing directions of malate dehydrogenase activity occur within the same mitochondrial matrix compartment and not in different mitochondrial populations. It is concluded that metabolic domains containing different complements of mitochondrial enzymes exist within the one mitochondrial matrix without physical barriers separating them. The differential spatial organization within the matrix may account for the previously reported limited access of some enzymes to the respiratory electron transport chain. The implications for leaf mitochondrial metabolism are discussed.  相似文献   

11.
A number of fluorescence studies, both of trp residues and bound NADH, have been reported for porcine malate dehydrogenase (MDH). The large number of trp residues (six) complicates the interpretation of some studies. To circumvent this we have performed studies with a two-tryptophan (per subunit) MDH from Bradyrhizobium japonicum 3I1B-143 bacteroids. We have performed phase/modulation fluorescence lifetime measurements, as a function of temperature and added quencher KI, in order to resolved the 1.2-ns (blue) and 6.5-ns (red) contributions from the two classes of trp residues. Anisotropy decay studies have also been performed. The binding of NADH dynamically quenches the fluorescence of both trp residues, but, unlike mammalian cytoplasmic and mitochondrial MDH, there is not a large enhancement in fluorescence of bound NADH upon forming a ternary complex with either tartronic acid or D-malate.  相似文献   

12.
The mitochondrial membrane potential measured in isolated rat kidney mitochondria and in digitonin-permeabilized MDCK type II cells pre-energized with succinate, glutamate, and/or malate was reduced by micromolar diclofenac dose-dependently. However, ATP biosynthesis from glutamate/malate was significantly more compromised compared to that from succinate. Inhibition of the malate-aspartate shuttle by diclofenac with a resultant decrease in the ability of mitochondria to generate NAD(P)H was demonstrated. Diclofenac however had no effect on the activities of NADH dehydrogenase, glutamate dehydrogenase, and malate dehydrogenase. In conclusion, decreased NAD(P)H production due to an inhibition of the entry of malate and glutamate via the malate-aspartate shuttle explained the more pronounced decreased rate of ATP biosynthesis from glutamate and malate by diclofenac. This drug, therefore affects the bioavailability of two major respiratory complex I substrates which would normally contribute substantially to supplying the reducing equivalents for mitochondrial electron transport for generation of ATP in the renal cell.  相似文献   

13.
The nucleotide sequence corresponding to codons for the 17-amino acid residues in the presumed targeting presequence for yeast mitochondrial malate dehydrogenase was removed by oligonucleotide-directed mutagenesis of the isolated gene (MDH1). Integrative transformation was used to insert the "leaderless" gene (mdhl-) into the MDH1 chromosomal locus of a strain containing a disrupted MDH1 gene. Expression of the mature form of malate dehydrogenase as a primary translation product was verified by demonstrating that the mature form is synthesized in mdhl- cells at the same rate as the precursor form in MDH1 cells in the presence of carbonyl cyanide m-chlorophenylhydrazone and by comparison of in vitro translation products of RNAs from mdhl- and MDH1 cells. Expression of mdhl- restores total cellular malate dehydrogenase activity to levels comparable to those in wild type cells and reverses the phenotype associated with strains containing MDH1 disruptions by restoring wild type rates of growth in media containing acetate as a carbon source. Immunochemical analyses and enzyme assays show comparable levels of malate dehydrogenase in the matrix fractions from mitochondria isolated from mdhl- and MDH1 cells and give no evidence for accumulation of the mature enzyme in the cytosol of mdhl- cells. These results indicate that the presequence for malate dehydrogenase is not essential for efficient mitochondrial localization or function in yeast.  相似文献   

14.
A catalytic component of the bovine mitochondrial NADH:ubiquinone oxidoreductase complex (Complex I) is a soluble NADH dehydrogenase iron-sulfur flavoprotein (FP). FP is composed of three subunits of Mr 51,000, 24,000, and 9,000, and contains FMN and two iron-sulfur clusters. Previous studies by others with the use of various chemical probes had suggested that, except for an access for NADH to the 51-kDa subunit, the FP polypeptides are buried within Complex I and shielded from the medium. In the present study, monospecific antibodies were raised to each of the three FP subunits, and used in conjunction with Complex I, submitochondrial particles (SMP), mitoplasts, and intact mitochondria as sources of antigens. Results of enzyme-linked immunosorbent assays and 125I-protein A labeling experiments indicated that epitopes from the 51-, 24-, and 9-kDa subunits of FP are exposed to the medium in Complex I and SMP, but not in mitoplasts and mitochondria. Appropriate enzymatic assays showed that none of the antibodies inhibited the NADH dehydrogenase activity of isolated FP or the NADH oxidase activity of SMP. These results have been discussed in relation to the structure of Neurospora Complex I deduced from membrane crystals of the isolated enzyme complex by Leonard et al. [K. Leonard, H. Haiker, and H. Weiss (1987) J. Mol. Biol. 194, 277-286].  相似文献   

15.
The mechanistic implications of the kinetic behaviour of a fusion protein of mitochondrial malate dehydrogenase and citrate synthase have been reanalysed in view of predictions based on experimentally determined kinetic parameter values for the dehydrogenase and synthase activities of the protein. The results show that the time-course of citrate formation from malate in the coupled reaction catalysed by the fusion protein can be most satisfactorily accounted for in terms of a free-diffusion mechanism when consideration is taken to the inhibitory effects of NADH and oxaloacetate on the malate dehydrogenase activity. The effect of aspartate aminotransferase on the coupled reaction is likewise fully consistent with that expected for a free-diffusion mechanism. It is concluded that no tenable kinetic evidence is available to support the proposal that the fusion protein catalyses citrate formation from malate by a mechanism involving channelling of the intermediate oxaloacetate.  相似文献   

16.
Summary Plasma membranes were isolated and purified from 14-day-old maize roots (Zea mays L.) by two-phase partitioning at a 6.5% polymer concentration, and compared to isolated mitochondria, microsomes, and soluble fraction. Marker enzyme analysis demonstrated that the plasma membranes were devoid of cytoplasmic, mitochondrial, tonoplast, and endoplasmic-reticulum contaminations. Isolated plasma membranes exhibited malate dehydrogenase activity, catalyzing NADH-dependent reduction of oxaloacetate as well as NAD+-dependent malate oxidation. Malate dehydrogenase activity was resistant to osmotic shock, freeze-thaw treatment, and salt washing and stimulated by solubilization with Triton X-100, indicating that the enzyme is tightly bound to the plasma membrane. Malate dehydrogenase activity was highly specific to NAD+ and NADH. The enzyme exhibited a high degree of latency in both right-side-out (80%) and inside-out (70%) vesicle preparations. Kinetic and regulatory properties with ATP and Pi, as well as pH dependence of plasma-membrane-bound malate dehydrogenase were different from mitochondrial and soluble malate dehydrogenases. Starch gel electrophoresis revealed a characteristic isozyme form present in the plasma membrane isolate, but not present in the soluble, mitochondrial, and microsomal fractions. The results presented show that purified plasma membranes isolated from maize roots contain a tightly associated malate dehydrogenase, having properties different from mitochondrial and soluble malate dehydrogenases.Abbreviations FCR ferricyanide reductase - MDH malate dehydrogenase  相似文献   

17.
Kinetic studies of Morris 7777 hepatoma mitochondrial NAD(P) malic enzyme were consistent with an ordered mechanism where NAD adds to the enzyme before malate and dissociation of NADH from the enzyme is rate-limiting. In addition to its active site, malate apparently also associates with a lower affinity with an activator site. The activator fumarate competes with malate at the activator site and facilitates dissociation of NADH from the enzyme. The ratio of NAD(P) malic enzyme to malate dehydrogenase activity in the hepatoma mitochondrial extract was found to be too low, even in the presence of known inhibitors of malate dehydrogenase, to account for the known ability of NAD(P) malic enzyme to intercept exogenous malate from malate dehydrogenase in intact tumor mitochondria (Moreadith, R.W., and Lehninger, A.L. (1984) J. Biol. Chem. 259, 6215-6221). However, NAD(P) malic enzyme may be able to intercept exogenous malate because according to the present results, it can associate with the pyruvate dehydrogenase complex, which could localize NAD(P) malic enzyme in the vicinity of the inner mitochondrial membrane. The activity levels of some key metabolic enzymes were found to be different in Morris 7777 mitochondria than in liver or mitochondria of other rapidly dividing tumors. These results are discussed in terms of differences among tumors in their ability to utilize malate, glutamate, and citrate as respiratory fuels.  相似文献   

18.
A correlation is shown to exist between malate dehydrogenase (MDH), lactate dehydrogenase (LDH) and glycerol-3-phosphate dehydrogenase (glycerol-3-PDH activity values, lactate/pyruvate and malate/oxaloacetate coefficients, MDH and LDH isozyme spectra and kinetic properties of LDH isozymes in soluble fractions of cytoplasm from intact rabbit m. soleus (red), m. gastrocnemius (mixed) and m. quadratus lumborum (white). In denervated soleus and gastrocnemius the cytoplasmic MDH/LDH, mitochondrial MDH/LDH, MDH mitochondrial/MDH cytoplasmic activity ratios, concentrations of substrates and isozyme spectra of MDH and LDH tend to equalize. The obtained results indicate the importance of isozyme composition and total activity ratios of the dehydrogenases for regulation of pyruvate and NADH metabolic pathways.  相似文献   

19.
Malate dehydrogenase (MDH) catalyzes the readily reversible reaction of oxaloacetate ; malate using either NADH or NADPH as a reductant. In plants, the enzyme is important in providing malate for C 4 metabolism, pH balance, stomatal and pulvinal movement, respiration, β-oxidation of fatty acids, and legume root nodule functioning. Due to its diverse roles the enzyme occurs as numerous isozymes in various organelles. While antibodies have been produced and cDNAs characterized for plant mitochondrial, glyoxysomal, and chloroplast forms of MDH, little is known of other forms. Here we report the cloning and characterization of cDNAs encoding five different forms of alfalfa MDH, including a plant cytosolic MDH (cMDH) and a unique novel nodule-enhanced MDH (neMDH). Phylogenetic analyses show that neMDH is related to mitochondrial and glyoxysomal MDHs, but diverge from these forms early in land plant evolution. Four of the five forms could effectively complement an E. coli Mdh mutant. RNA and protein blots show that neMDH is most highly expressed in effective root nodules. Immunoprecipitation experiments show that antibodies produced to cMDH and neMDH are immunologically distinct and that the neMDH form comprises the major form of total MDH activity and protein in root nodules. Kinetic analysis showed that neMDH has a turnover rate and specificity constant that can account for the extraordinarily high synthesis of malate in nodules.   相似文献   

20.
During aerobic growth of Escherichia coli, nicotinamide adenine dinucleotide (NADH) can initiate electron transport at either of two sites: Complex I (NDH-1 or NADH: ubiquinone oxidoreductase) or a single-subunit NADH dehydrogenase (NDH-2). We report evidence for the specific coupling of malate dehydrogenase to Complex I. Membrane vesicles prepared from wild type cultures retain malate dehydrogenase and are capable of proton translocation driven by the addition of malate+NAD. This activity was inhibited by capsaicin, an inhibitor specific to Complex I, and it proceeded with deamino-NAD, a substrate utilized by Complex I, but not by NDH-2. The concentration of free NADH produced by membrane vesicles supplemented with malate+NAD was estimated to be 1 μM, while the rate of proton translocation due to Complex I was consistent with a some what higher concentration, suggesting a direct transfer mechanism. This interpretation was supported by competition assays in which inactive mutant forms of malate dehydrogenase were able to inhibit Complex I activity. These two lines of evidence indicate that the direct transfer of NADH from malate dehydrogenase to Complex I can occur in the E. coli system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号