首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The disposition of hydroxychloroquine enantiomers has been investigated in nine patients with rheumatoid arthritis following administration of a single dose of the racemate. Blood concentrations of (?)-(R)-hydroxychloroquine exceed those of (+)-(S)-hydroxychloroquine following both an oral and intravenous dose of the racemate. Maximum blood concentrations of (?)-(R)-hydroxychloroquine were higher than (+)-(S) -hydroxychloroquine after oral dosing (121 ± 56 and 99 ± 42 ng/ml, respectively, P = 0.009). The time to maximum concentration and the absorption half-life, calculated using deconvolution techniques, were similar for both enantiomers. The fractions of the dose of each enantiomer absorbed were similar, 0.74 and 0.77 for (?)-(R)- and (+)-(S)-hydroxychloroquine, respectively (P = 0.77). The data suggest that absorption of hydroxychloroquine is not enantioselective. The stereoselective disposition of hydroxychloroquine appears to be due to enantioselective metabolism and renal clearance, rather than stereoselectivity in absorption and distribution. © 1994 Wiley-Liss, Inc.  相似文献   

2.
After i.v. and oral administration of nimodipine the concentration-time profiles of the drug and its enantiomers were studied in seven patients with subarachnoid hemorrhage. Concentrations of nimodipine, (+)-(R)-, and (-)-(S)-nimodipine were analyzed using a new stereoselective high-performance liquid chromatographic method. During the first 3 h after oral administration the concentrations of (+)-(R)- and (-)-(S)-nimodipine were significantly different, the (-)-(S)-enantiomer being found in much lesser concentrations compared to the (+)-(R)-enantiomer. The results indicate that if uptake from the gastrointestinal system is equal for the two enantiomers, then (-)-(S)-nimodipine is metabolized at a much faster rate compared to (+)-(R)-nimodipine after oral administration of the drug in patients with subarachnoid bleeding. After i.v. administration; no significant differences between the concentrations of the (-)-(S) and the (+)-(R) isomers were demonstrated.  相似文献   

3.
Nine patients taking oral doses of 10 mg/12 h rac-pindolol as part of their treatment for hypertension in pregnancy were recruited for the study. Maternal and fetal gestational age ranged from 20-38 years and 28-41 weeks, respectively. Blood was collected from the umbilical cord vein and from the mother from zero to 12 h after drug administration. Urine was collected for 12 h after rac-pindolol administration at the following intervals: 0-3, 3-6, 6-9, and 9-12 h. Plasma and urine concentrations of the pindolol enantiomers were determined by HPLC using a Chiralpak AD chiral column and fluorescence detection. The data were fitted to a one-compartment model and differences between (+)-R and (-)-S enantiomers were compared by the paired t-test (P < 0.05). Mean results are reported. The disposition of pindolol in maternal plasma was stereoselective, with higher AUC(SS)0-12 (84.34 vs. 95.69 ng.h/ml) and Cl(R) values (9.16 vs. 10.85 L/h) and lower Vd/f (251.38 vs. 225.17 L) and Cl/f (62.48 vs. 55.74 L/h) for the (+)-R pindolol. The transplacental distribution of pindolol was not stereoselective. Cord, plasma, and presumably fetal, concentrations of the pindolol enantiomers were 56% of the maternal plasma concentrations up to 6 h after the last dose.  相似文献   

4.
Hydroxychloroquine (HCQ) stereoselective distribution was investigated in rabbits after 20 mg/kg po of racemic-HCQ (rac-HCQ) and 20 mg/kg po of each enantiomer, 97% pure (?)-(R)-HCQ and 99% pure (+)-(S)-HCQ. Concentrations were 4 to 6 times higher in whole blood than in plasma. Melanin did not affect plasma and whole blood levels since concentrations did not differ between pigmented and nonpigmented animals. After single and multiple doses of the separate enantiomers, only 5–10% of the antipode could be measured, in blood or plasma. Therefore, there was no significant interconversion from one enantiomer into the other. Following rac-HCQ, plasma (+)-(S)-levels always surpassed (?)-(R)-ones while in whole blood, (?)-(R)-HCQ concentrations were always the highest. When the enantiomers were administered separately, blood concentrations achieved after (?)-(R)-HCQ were higher, especially after multiple doses. These observations suggest that (?)-(R)-HCQ is preferentially concentrated by cellular components of blood. This enantioselective distribution of HCQ could be secondary to a stereoselective protein binding to plasma proteins, although a more specific binding of (?)-(R)-HCQ to blood cells cannot be ruled out. Since in whole blood (?)-(R)-HCQ is retained in cellular components, metabolism would favour the more available (+)-(S)-enantiomer. © 1994 Wiley-Liss, Inc.  相似文献   

5.
The intravenous (0.5 mg/kg) and oral (5 mg/kg) dose kinetics of verapamil were studied in 6 dogs during steady-state oral verapamil dosing (5 mg/kg every 8 h for 3 days). Racemic verapamil and norverapamil, a metabolite of verapamil, were quantitated in plasma by HPLC-fluorescence detection. The verapamil peaks eluting off the column were collected and rechromatographed on an Ultron-OVM column, which resolved the two verapamil enantiomers. After intravenous administration, the systemic clearance and apparent volume of distribution of (?)-(S)-verapamil were nearly twice that of the (+)-(R)-isomer. There was no difference in the elimination half-lives between the two isomers. After oral administration, the oral clearance of (?)-(S)-verapamil was 20 times that of the (+)-(R)-isomer. The apparent bioavailability of (+)-(R)-verapamil was over 14 times that of (?)-(S)-verapamil. The plasma protein binding of the (+)-(R)-isomer was slightly higher by 5% than (?)-(S)-verapamil; however, this effect was not enough to account for the difference between the apparent volume of distribution of the enantiomers, indicating that the tissue binding of (?)-(S)-verapamil was greater than that of the (+)-(R)-isomer. This data on the disposition of the enantiomers of verapamil in the dog is similar to that reported for man and demonstrates that the dog may be an appropriate animal model for man in future studies on the disposition of the enantiomers of verapamil. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Autologous bone marrow cell transplantation (BMCs-Tx) is a promising novel option for treatment of cardiovascular disease. We analysed in a randomized controlled study the influence of the intracoronary autologous freshly isolated BMCs-Tx on the mobilization of bone marrow-derived circulating progenitor cells (BM-CPCs) in patients with acute myocardial infarction (AMI). Sixty-two patients with AMI were randomized to either freshly isolated BMCs-Tx or to a control group without cell therapy. Peripheral blood (PB) concentrations of CD34/45(+) - and CD133/45(+)-circulating progenitor cells were measured by flow cytometry in 42 AMI patients with cell therapy as well as in 20 AMI patients without cell therapy as a control group on days 1, 3, 5, 7, 8 and 3, 6 as well as 12 months after AMI. Global ejection fraction (EF) and the size of infarct area were determined by left ventriculography. We observed in patients with freshly isolated BMCs-Tx at 3 and 12 months follow up a significant reduction of infarct size and increase of global EF as well as infarct wall movement velocity. The mobilization of CD34/45(+) and CD133/45(+) BM-CPCs significantly increased with a peak on day 7 as compared to baseline after AMI in both groups (CD34/45(+): P < 0.001, CD133/45(+): P < 0.001). Moreover, this significant mobilization of BM-CPCs existed 3, 6 and 12 months after cell therapy compared to day 1 after AMI. In control group, there were no significant differences of CD34/45(+) and CD133/45(+) BM-CPCs mobilization between day 1 and 3, 6 and 12 months after AMI. Intracoronary transplantation of autologous freshly isolated BMCs by use of point of care system in patients with AMI may enhance and prolong the mobilization of CD34/45(+) and CD133/45(+) BM-CPCs in PB and this might increase the regenerative potency after AMI.  相似文献   

7.
Miura M  Uno T  Tateishi T  Suzuki T 《Chirality》2007,19(3):223-227
Fexofenadine, a substrate of P-glycoprotein and an organic anion transporter polypeptide, is commonly used to assess P-glycoprotein activity in vivo. The purpose of this study was to elucidate the pharmacokinetics of each fexofenadine enantiomer. After a single oral dose of racemic fexofenadine (60 mg), the plasma and urine concentrations of fexofenadine enantiomers were measured over the course of 24 h in six healthy subjects. The mean plasma concentration of R(+)-fexofenadine was higher than that of S(-)-fexofenadine. The area under the plasma concentration-time curve (AUC(0-infinity)) and the maximum plasma concentration (C(max)) of R(+)-fexofenadine were significantly greater than those of the S(-)-enantiomer (P = 0.0018 and 0.0028, respectively). The R/S ratios of AUC and C(max) of fexofenadine were 1.75 and 1.63, respectively. The oral clearance and renal clearance of S(-)-fexofenadine were significantly greater than that of R(+)-fexofenadine (P = 0.0074 and 0.0036). On the other hand, the stereoselective metabolism of fexofenadine using recombinant CYP3A4 was investigated; however, fexofenadine enantiomers were not metabolized by CYP3A4. Fexofenadine is transported by both P-glycoprotein and OATP and is not metabolized by intestinal CYP3A. Our findings suggest that the affinity of P-glycoprotein for S(-)-fexofenadine is greater than its affinity for the R(+)-enantiomer. Thus, P-glycoprotein is likely to have chiral discriminatory abilities.  相似文献   

8.
In this work, the capability of two polymeric drug delivery systems (DDS) containing racemic ibuprofen (IBU) for controlled release of IBU in different media was studied carrying out assays in-vitro. To quantitatively monitor the release of R(-)- and S(+)-IBU, a fast, sensitive and inexpensive capillary electrophoresis (CE) method was developed. To do this, different chiral selectors, temperatures, buffer compositions and pHs were tested. This new CE method uses bare silica columns together with a buffer containing 6% Dextrin in a 150 mM sodium tetraborate buffer at pH 9. Baseline separations of R(-)- and S(+)-IBU were achieved in less than 5 min at 20 degrees C. By using this method, both enantiomers can be determined at concentrations as low as 1 microg/ml, allowing the detection of enantiomeric percentages of 0.5% of R(-)-IBU in the presence of 99.5% of the optical antipode. Moreover, the method shows a high reproducibility for the same day and different days. The usefulness of this method to quantitatively monitor the release of R(-)- and S(+)-IBU from two different polymeric DDS is demonstrated. It is shown that the release rate of IBU depends on the spacer of the side residue used in the polymeric device. Also, it is demonstrated that the release of both enantiomers is enzymatically activated in rat plasma.  相似文献   

9.
The effects of (+) and (-) enantiomers of Bay K 8644, a Ca2+ channel agonist, on the mechanical and electrical properties of frog skeletal muscle fibers were investigated. In the concentration range of 10(-6) to 10(-5) M, both (+) and (-) enantiomers of Bay K 8644 significantly increased the maximum amplitudes of twitch responses. Both (+) and (-) enantiomers of Bay K 8644, at higher concentrations such as 10(-4) M, greatly depressed the amplitudes of twitches. Potentiating and depressing effects of (-) enantiomer of Bay K 8644 on twitch responses were significantly greater than those of the (+) enantiomer. At all concentrations used, both (+) and (-) enantiomers of Bay K 8644 significantly decreased the area under the tetanic force x time curve. In intracellular recordings, it was found that the depressing effects of both (+) and (-)-Bay K 8644 on tetanic contractions and twitch responses were due to the inhibition of action potentials. The inhibitory effect of (-) enantiomer of Bay K 8644 on action potentials also was significantly greater than that of the (+) enantiomer. In conclusion, present results suggest that, in contrast with cardiac muscle fibers, (+) and (-) enantiomers of Bay K 8644 have similar inhibitory effects on the electrical and mechanical properties of frog skeletal muscle fibers.  相似文献   

10.
The enantioselective high-performance liquid chromatography (HPLC) of three racemic 3-hydroxybenzodiazepines, oxazepam (Oxa), lorazepam (Lor), and temazepam (Tem), is a difficult operation because of the spontaneous chiral inversion in polar solvent. To solve this problem, we have developed an HPLC method based on a chiral Cyclobond I-2000 RSP column, maintained at 12 degrees C, and a reversed mobile phase (acetonitrile in 1% triethylamine acetate buffer, TEAA) at a flow rate of 0.4 ml/min. Peaks were detected by a photodiode-array detector at 230 nm for quantification and by an optical rotation detector for identification of (+) and (-) enantiomers. The results showed that peak resolutions of Oxa, Lor, and Tem enantiomers, analyzed under the same conditions, were 3.2, 2.0, and 1.8, respectively. For the determination of Oxa enantiomers in plasma of rabbits, extraction with diethyl ether at pH 1.5, a polar organic mobile phase, and a Cyclobond I-2000 SP column were used. Other analytical conditions were the same as previously described. Blood samples were immediately cooled at 4 degrees C and centrifuged at 0 degrees C for the collection of plasma. The results showed a difference in plasma S(+)- and R(-)-oxazepam concentrations in rabbits. No racemization of S(+)- or R(-)-Oxa enantiomers, added alone to blank plasma, was observed after extraction and enantioselective HPLC analysis.  相似文献   

11.
rac-Bupivacaine HCl was infused intravenously to constant arterial blood drug concentrations in sheep using a regimen of 4 mg/min for 15 min followed by 1 mg/min to 24 h. At 24 h, arterial blood was sampled, the animal was killed with a bolus of KCl solution, then rapidly dissected and samples were obtained from heart, brain, lung, kidney, liver, muscle, fat, gut, and rumen. Tissue:blood distribution coefficients for (+)-(R)-bupivacaine exceeded those of (?)-(S)-bupivacaine (P < 0.05) for heart, brain, lung, fat, gut, and rumen by an overall mean of 43%. Blood:plasma distribution coefficients of (?)-(S)-bupivacaine exceeded those of (+)-(R)-bupivacaine by a mean of 29% and this offset the tissue:blood distribution coefficients so that the previously significant enantioselective differences disappeared. It is concluded that although enantioselectivity of bupivacame distribution is shown by the measured tissue:blood distribution coefficients, it is not shown when tissue:plasma water distribution coefficients are calculated, suggesting that there is no intrinsic difference between the bupivacaine enantiomers in tissue affinity. Sheep given fatal intravenous bolus doses of rac-bupivacaine had significantly greater concentrations of (+)-(R)-bupivacaine than (?)-(S)-bupivacaine in brain (P = 0.028) and ventricle (P = 0.036); these could augment the greater myocardial toxicity of this enantiomer found in vitro. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Metabolism of disopyramide (DP) enantiomers has been investigated in primary cultures of adult human hepatocytes. Results were compared with in vivo data obtained from a previous pharmacokinetic study (Le Corre et al. Drug Metab. Dispos. 16:858-864 1988). Metabolism of DP enantiomers as a function of incubation time showed constant velocity over time. The intracellular/extracellular distribution of both DP and mono-N-desisopropyldisopyramide did not appear to be stereoselective. Metabolism of DP enantiomers as a function of substrate concentration followed a first order kinetics. The average fractions of (-)-(R)-DP and (+)-(S)-DP metabolized in vitro (4.7 +/- 2.7 and 7.1 +/- 4.2%, respectively, n = 4) were about 5-fold lower than the fractions metabolized in vivo (26.0 +/- 6.0 and 40.2 +/- 8.8%, respectively, n = 6). The stereoselective index [(+)-(S)/(-)-(R)] of the N-dealkylation pathway obtained in vitro (1.51 +/- 0.11, n = 4) was very close to the one obtained in vivo (1.55 +/- 0.10, n = 6). These results highlight the interest of hepatocyte cultures in the evaluation of drug metabolism and especially in the assessment of stereoselectivity.  相似文献   

13.
Enantioselective separations on chiral stationary phases with or without derivatization were developed and compared for the HPLC analysis of (+)-(R)- and (-)-(S)-metoprolol acidic metabolite in human plasma and urine. The enantiomers were analysed in plasma and urine without derivatization on a Chiralcel OD-R column, and in urine after derivatization using methanol in acidic medium on a Chiralcel OD-H column. The quantitation limits were 17 ng of each enantiomer/ml plasma and 0.5 microgram of each enantiomer/ml urine using both methods. The confident limits show that the methods are compatible with pharmacokinetic investigations of the enantioselective metabolism of metoprolol. The methods were employed in a metabolism study of racemic metoprolol administered to a patient phenotyped as an extensive metabolizer of debrisoquine. The enantiomeric ratio (+)-(R)/(-)-(S)-acid metabolite was 1.1 for plasma and 1.2 for urine. Clearances were 0.41 and 0.25 l/h/kg, respectively, for the (+)-(R)- and (-)-(S)-enantiomers. The correlation coefficients between the urine concentrations of the acid metabolite enantiomers obtained by the two methods were >0.99. The two methods demonstrated interchangeable application to pharmacokinetics.  相似文献   

14.
The present experiments used methylcholines to examine the stereoselectivity of choline transport into rat synaptosomes. R(+)-alpha-methylcholine and S(+)-beta-methylcholine were significantly better inhibitors of the high-affinity choline transport system than were their enantiomers. Although both enantiomers of alpha- and of beta-methylcholine inhibited [3H]choline transport, only R(+)-alpha-methylcholine and S(+)-beta-methylcholine could be transported by the high-affinity choline uptake mechanism. Therefore, we conclude that the chiral requirements for recognition of and for transport by the high-affinity transporter are clearly different. In addition to high-affinity choline transport, Na(+)-independent low-affinity transport was measured. This process transported R(+)-alpha-methylcholine, but not S(-)-alpha-methylcholine; however, it showed no stereoselectivity for the enantiomers of beta-methylcholine. Thus, high- and low-affinity choline transport mechanisms exhibit distinct differences in their substrate selectivities. We suggest that the stereoselective properties of choline transport might present a unique opportunity to study choline uptake and metabolism.  相似文献   

15.
The activities of the enantiomers of BM-5 were examined to measure muscarinic cholinergic selectivity in the central nervous system. Autoradiographic studies assessed the ability of each enantiomer to inhibit the binding of [3H]-(R)-quinuclidinyl benzilate ([3H]-(R)-QNB) to muscarinic receptors in the rat brain. (+)-(R)-BM-5 inhibited [3H]-(R)-QNB binding to rat brain sections at concentrations below 1.0 microM, while 100-fold higher concentrations of (-)-(S)-BM-5 were required for comparable levels of inhibition. Analysis of the autoradiograms indicated that both stereoisomers had a similar distribution of high affinity binding sites. Each enantiomer displayed higher affinity for muscarinic receptors in the superior colliculi and lower affinity for receptors in the cerebral cortex and hippocampus. (+)-(R)-BM-5 and oxotremorine inhibited adenylyl cyclase activity in the cerebral cortex with efficacies comparable to that for acetylcholine. (+)-(R)-BM-5 was 26-fold more potent than (-)-(S)-BM-5 in inhibiting adenylyl cyclase. Oxotremorine-M and carbamylcholine stimulated phosphoinositide turnover in the cerebral cortex. Oxotremorine had lower activity and (+)-(R)-BM-5 was essentially inactive at comparable concentrations. The difference in activity of the two enantiomers indicates a remarkable stereochemical selectivity for muscarinic receptors. The stereoselectivity index is comparable for both the autoradiographic assays (48) and measures of adenylyl cyclase activity (26) in the cerebral cortex.  相似文献   

16.
The prochiral anthelmintic drug albendazole was administered orally to sheep and rats. Blood samples were taken at standardized intervals during the time course of the plasma kinetics: 18 h in rats and 48 h in sheep. The enantiomeric ratio of the sulfoxide metabolite was determined by means of HPLC on a chiral stationary phase, the chiral selector of which was a N-3,5-dinitrobenzoyl derivative of (S)-tyrosine. Two enantiomers were detected in both animal species but their ratios were inverted in rat vs. sheep. The evolution of the ratio is turned from a racemate at 15 min to 60(-):40(+) at 12 h in rats, while it moved from 23(-):77(+) at 3 h to 4(-):96(+) at 36 h after administration in sheep.  相似文献   

17.
Flurbiprofen (FL) is a chiral 2-arylpropionate used clinically as the racemate (rac-FL). This study was undertaken to investigate the influence of sustained release formulation on the pharmacokinetics of flurbiprofen enantiomers (-) -R-FL and (+)-S-FL. Therefore, a stereoselective high-performance liquid chromatographic (HPLC) method was developed and validated for the rapid, quantitative determination of (-)-R-FL and (+)-S-FL in rat plasma. Flurbiprofen-loaded poly(D,L-lactide-co-glycolide) nanoparticles (rac-FL-PLGA) were prepared by in emulsion-solvent evaporation technique. Optimum conditions for rac-FL-PLGA nanoparticle preparation were considered, and the in vitro release of rac-FL, R-FL, and S-FL were followed up to 48 h in phosphate buffer (pH 7.4). The three tested formulations revealed approximately zero-order release of either (-)-R-FL or S-FL up to 24 h with r >/= 0.97.Surprisingly, there was no significant difference between t(50%) of the three formulations (21.6 +/- 1.1 h). The stereoselective disposition of the sustained release rac-FL deliverv system was investigated in rats. There was a rapid release of R-FL, S-FL, or rac-FL followed by a slower one and C(max) values were observed after 2.5 +/- 2.5, 8.3 +/- 3.4 and 8.86 +/- 3.6 h of (-)-R-FL, (+)-S-FL, and rac-FL, respectively, after nanoparticle administration. PLGA nanoparticles increased the mean retention time (MRT) of S-FL by 2.7-fold, from 6.8 to 16.3 h, compared to rac-FL. Although the dose of rac-FL-PLGA nanoparticles was only 2.5 times higher than that of the drug in the suspension, the mean (+)-S-FL concentration after 12 h was 3.4 times higher in the case of nanoparticles than after the free form, 10.35 +/- 1.6 and 3.04 +/- 1.1 mg/l, respectively. The area under the concentration-time curve (AUC) values of (+)-S-FL and rac-FL were about 2.5-fold higher after the nanoparticles compared to suspension, while the AUC of the (-)-R-FL was about 3.5 times higher. This difference may indicate that the two enantiomers have different absorption kinetics. The present study provides evidence that the sorption of racemic flurbiprofen to PLGA nanoparticles was successful in maintaining (at least up to 12 h) elevated plasma drug concentrations of (+)-S-FL in rats. Chirality 16:119-125, 2004.  相似文献   

18.
The results of a previous pharmacokinetic study of disopyramide (DP) enantiomers in humans suggested that DP and/or mono-N-desisopropyldisopyramide (MND) may show stereoselective extrarenal elimination. Thus, the present study investigates the biliary elimination of DP and MND enantiomers in three patients who had undergone cholecystectomy for cholelithiasis. DP and MND enantiomers displayed biliary elimination. In both subjects, this elimination pathway showed the same characteristics: (1) biliary elimination of DP and MND was stereoselective, (2) the stereoselectivity was opposite to that observed for the metabolic and renal elimination pathways, i.e., the elimination of the (-)-(R)-enantiomer was higher than that of the (+)-(S)-enantiomer, and (3) biliary elimination of MND was higher than that of DP, for both enantiomers. Estimates of the relative contribution of the biliary clearance in the total clearance of DP and MND indicated that this elimination pathway was secondary, especially for DP. The biliary clearance (expressed as % of total clearance) was 1.9 to 4.0% for (-)-(R)-DP, 1.2 to 1.7% for (+)-(S)-DP, 7.8 to 22.9% for (-)-(R)-MND, and 5.2 to 10.5% for (+)-(S)-MND.  相似文献   

19.
Zhu CJ  Zhang JT 《Chirality》2003,15(5):448-455
To identify which cytochrome P450 (CYP) isoform(s) are responsible for the metabolism of clausenamide (CLA) enantiomers in rats, effects of various CYP isoform inducers and inhibitors on the formation of CLA metabolites were investigated in liver microsomes. In incubations with rat liver microsomes, CLA enantiomers were mainly converted to 4-hydroxy, 5-hydroxy, and 7-hydroxy-metabolites. 4-OH-CLA was the major metabolite of (+)-3R, 4S, 5S, 6R-CLA [(+)-CLA], while 7-OH-CLA was the major one of (-)-3S, 4R, 5R, 6S-CLA [(-)-CLA]. In induction studies, enzymatic parameters were used to assess the role of different CYP forms in CLA hydroxylation reactions. A marked increase in the rate of metabolism of CLA enantiomers was observed in microsomes of dexamethasone treated rats, V(max)/K(m) values for 4-OH-(+)-CLA, 7-OH-, 5-OH-, and 4-OH-(-)-CLA were 5.3, 6.5, 3.0, and 5.9 times higher than those in control microsomes, respectively. Rifampicin treatment caused corresponding 1.7-, 2.6-, 3.1-, and 2.8-fold increases. Dex and Rif also increased in the amount of (+)-5- and (+)-7-OH-CLA that were not detectable in the control group. These results suggested that inducible CYP3A1 was involved in the hydroxylation of CLA enantiomers. In inhibition studies, ketoconazone (6.25 microM) completely inhibited the production of main metabolites of (-)-CLA (100%) and (+)-CLA (97%). Triacetyloleandomycin (12.5 microM) strongly inhibited the corresponding metabolites by 34-85%. These findings also indicated that institutive CYP3A2 shared a major role in the hydroxylation of CLA enantiomers with CYP3A1 in untreated rats. Together, the data suggested that CYP3A was the predominant isoform responsible for the metabolism of CLA enantiomers.  相似文献   

20.
BAY-K-8644 in low concentrations is known to stimulate, and in higher concentrations, to depress calcium-dependent ACTH secretion from mouse clonal (tumor) pituitary corticotrophs, AtT-20/D16-16 (AtT-20). In the present study, voltage-dependent inward calcium currents in these cells were potentiated by low concentrations of this compound and depressed by higher concentrations consistent with its actions on ACTH secretion. A similar relationship was demonstrated for a different but related compound, CGP 28,392. Each of BAY-K-8644's enantiomers, BAY-R(-)5417 and BAY-R(+)4407, had opposing effects upon these inward calcium currents and ACTH secretion. The (+)isomer antagonized both inward calcium currents and ACTH secretion. In contrast, the (-)enantiomer was responsible for the stimulatory effects of BAY-K-8644. Nevertheless, some antagonistic properties were noted with high concentrations of this latter enantiomer. The stimulation of ACTH secretion in AtT-20 cells by low concentrations of BAY-K-8644 can be attributed to a potentiation of voltage-activated calcium currents by one of its enantiomers, BAY-R-(-)5417. In contrast, the depression of secretion that occurs at higher concentrations is likely to be the result of the reduction of these currents by the other enantiomer (BAY-R(+)4407).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号