首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A gene coding for a soluble protein with homology to the beta subunit of the nicotinic acetylcholine receptor from goldfish was isolated from a cDNA library of Haementeria ghilianii salivary glands. Comparison of the leech protein sequence with the database showed that the N terminus has high homology with the extracellular portion of acetylcholine receptor beta subunits, whilst the C terminus, highly charged, has homology to proteins which may be involved in chelating divalent cations. The leech protein was expressed in mammalian cells and the product compared to the native protein. Both proteins are glycosylated and form polymers which are disrupted by heat but not by reducing agents. A role for this protein in salivary gland secretion is suggested.  相似文献   

2.
In recent studies, we found autodegradation of collagen from the mantle muscle of the squid Todarodes pacificus and also that the 28- and 25-kDa proteins are closely related to this phenomenon [Connect. Tissue Res. 45 (2004) 109-121]. We obtained partial sequences of three internal portions of this protein, which suggested that 25-kDa protein is a partially degraded form of the 28-kDa protein. We determined the full cDNA sequence of this protein by the degenerate polymerase chain reaction (PCR) using the information of amino acid sequences. The deduced amino acid sequence corresponding to the 212-bp cDNA contained all of the amino acid identified from the 28-kDa protein. Rapid amplification of cDNA ends (RACE) and squid mantle muscle RNA allowed cloning of the full 522-bp sequence, corresponding to a protein of 174 amino acids. A database search indicated that this is a new protein that shares 27-34% identity with tropomyosins from various animals. Structural prediction suggested that it possesses heptad repeats that form coiled-coil structures. We expressed a recombinant protein encoded by the 212-bp cDNA in Escherichia coli and used it to generate a polyclonal antibody. Western blotting with this antibody showed that the 28-kDa protein is expressed in fin, tentacle, and mantle muscle, but not in liver.  相似文献   

3.
Identification of protein sequence homology by consensus template alignment   总被引:26,自引:0,他引:26  
A pattern-matching procedure is described, based on fitting templates to the sequence, which allows general structural constraints to be imposed on the patterns identified. The templates correspond to structurally conserved regions of the sequence and were initially derived from a small number of related sequences whose tertiary structures are known. The templates were then made more representative by aligning other sequences of unknown structure. Two alignments were built up containing 100 immunoglobulin variable domain sequences and 85 constant domain sequences, respectively. From each of these extended alignments, templates were generated to represent features conserved in all the sequences. These consisted mainly of patterns of hydrophobicity associated with beta-structure. For structurally conserved beta-strands with no conserved features, templates based on general secondary structure prediction principles were used to identify their possible locations. The specificity of the templates was demonstrated by their ability to identify the conserved features in known immunoglobulin and immunoglobulin-related sequences but not in other non-immunoglobulin sequences.  相似文献   

4.
The carboxyl-terminal regions of neurofilament high (NF-H) and middle (NF-M) molecular weight proteins have been suggested to be phosphorylated in vivo by a p34cdc2-like protein kinase, on the basis of the in vivo phosphorylation site motif and in vitro phosphorylation of the proteins by p34cdc2 kinase (Hisanaga, S.I., Kusubata, M., Okumura, E. and Kishimoto, T. (1991) J. Biol. Chem. 266, 21798-21803). A novel proline-directed protein kinase previously identified and purified from bovine brain has been found in this study to phosphorylate NF-H and NF-M at sites identical to those phosphorylated by HeLa cell p34cdc2 kinase. The proline-directed kinase is composed of a 33-kDa and a 25-kDa subunit. The 33-kDa kinase subunit was partially sequenced, and degenerate oligonucleotide primers corresponding to the amino acid sequence information were used to clone the subunit by polymerase chain reaction (PCR). Two overlapping PCR products comprised a complete open reading frame of 292 amino acids. The sequence contains all features of a protein kinase, suggesting that the 33-kDa peptide represents the catalytic subunit of the kinase. The 33-kDa subunit shows high and approximately equal homology to human p34cdc2 and human cdk2, with about 58 and 59% amino acid identity, respectively. These results suggest that the brain kinase represents a new category of the cdc2 family, and that some members of the cdc2 kinase family may have major functions unrelated to cell cycle control.  相似文献   

5.
6.
Morphological and biochemical evidence have suggested that the components of the neuronal cytoskeleton, microtubules and neurofilaments (NF), interact with each other. Microtubule-associated proteins (MAPs) are plausible candidates for mediating some of these interactions and have been shown to bind to neurofilaments, as well as induce the formation of a viscous complex between neurofilaments and microtubules. By binding 32P-labeled MAPs to neurofilament proteins, which were transferred electrophoretically to nitrocellulose, we determined that, of the three neurofilament subunits, only the core NF70 subunit bound MAPs. The binding to electrophoretically transferred NF70 was specific, saturable, and reversible. Binding parameters were estimated by binding 32P-labeled MAPs to purified NF70 immobilized on nitrocellulose. Approximately 1 mol of MAPs bound per 45 +/- 15 mol of NF70 with an approximate Kd approximately 2.0 +/- 0.9 X 10(-7) M (n = 8). Reassembled filaments in suspension were used to confirm the specific binding. Tubulin and NF70 apparently bind to different sites on MAPs.  相似文献   

7.
Binding of brain spectrin to the 70-kDa neurofilament subunit protein   总被引:1,自引:0,他引:1  
Brain spectrin, or fodrin, a major protein of the subaxolemmal cytoskeleton, associates specifically in in vitro assays with the 70-kDa neurofilament subunit (NF-L) and with glial filaments from pig spinal cord. As an initial approach to the identification of the fodrin-binding proteins, a crude preparation of neurofilaments was resolved by electrophoresis on SDS/polyacrylamide gels and then transferred to nitrocellulose paper, which was 'blotted' with 125I-fodrin. A significant binding of fodrin was observed on polypeptides of 70 kDa, 52 kDa and 20 kDa. These polypeptides were further purified and identified respectively as the NF-L subunit of neurofilaments, the glial fibrillary acidic protein (GFP) and the myelin basic protein. The binding of fodrin to NF-L was reversible and concentration-dependent. The ability of the pure NF-L and GFP to form filaments was used to quantify their association with fodrin. a) The binding of fodrin to reassembled NF-L was saturable with a stoichiometry of 1 mol fodrin bound/50 +/- 10 mol NF-L and an apparent dissociation constant Kd = 4.3 x 10(-7) M. b) The binding involved the N-terminal domain of the polypeptide chain derived from the [2-(2-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine] cleavage of NF-L. c) Binding occurred optimally at physiological pH (6.8-7.2) and salt concentrations (50 mM). d) Interestingly, calmodulin, a Ca2+-binding protein, which has been shown to bind to fodrin, was found to reinforce the binding of fodrin to the NF-L, at Ca2+ physiological concentrations. The binding of fodrin to pure neurofilaments was not affected by the presence of the 200-kDa (NF-H) and the 160-kDa (NF-M) subunits. The apparent dissociation constant for the binding of fodrin to NF-L in the pure NF was 1.0 x 10(-6) M with 1 mol fodrin bound/80 +/- 10 mol NF-L. Moreover, the binding of fodrin to GFP, demonstrated in blot assays, was confirmed by cosedimentation experiments. The apparent dissociation constant Kd for the fodrin binding was 2.8 x 10(-7) M and the maximum binding was 1 mol fodrin/55 +/- 10 mol GFP.  相似文献   

8.
Clearance of carcinoembryonic antigen (CEA) from the circulation is by binding to Kupffer cells in the liver. We have shown that CEA binding to Kupffer cells occurs via a peptide sequence YPELPK representing amino acids 107-112 of the CEA sequence. This peptide sequence is located in the region between the N-terminal and the first immunoglobulin like loop domain. Using native CEA and peptides containing this sequence complexed with a heterobifunctional crosslinking agent and ligand blotting with biotinylated CEA and NCA we have shown binding to an 80kD protein on the Kupffer cell surface. This binding protein may be important in the development of hepatic metastases.  相似文献   

9.
We have previously shown that several protein kinases are present in higher activity levels in multidrug resistant cell lines, such as KB-V1. We have now isolated a gene that codes for a putative protein kinase, PKY, of over 130 kDa that is expressed at higher levels in multidrug-resistant cells. RNA from KB-V1 multidrug-resistant cells was reverse-transcribed and amplified by using primers derived from consensus regions of serine–threonine kinases and amplified fragments were used to recover overlapping clones from a KB-V1 cDNA library. An open reading frame of 3648 bp of DNA sequence predicting 1215 aa, has been identified. This cDNA hybridizes to a mRNA of about 7 kb which is expressed at high levels in human heart and muscle tissue and overexpressed in drug-resistant KB-V1 and HL60/ADR cells. Because its closest homolog is the yeast serine/threonine kinase, Yak1, we have called this gene PKY. PKY is also related to the protein kinase family that includes Cdks, Gsk-3, and MAPK proline-directed protein kinases. This protein represents the first of its type known in mammals and may be involved in growth control pathways similar to those described for Yak1, as well as possibly playing a role in multidrug resistance.  相似文献   

10.
11.
Beta-carotene and canthaxanthin at concentrations of 70 or 300 microM were shown to inhibit the proliferation of cultured human squamous cells (SK-MES lung carcinoma and SCC-25 oral carcinoma) in a 5 hr cell density assay. Responses were similar for both tumor cell lines, ranging from 71-84% inhibition. In contrast, equimolar concentrations of alpha-tocopherol gave only 19-36% inhibition of SCC-25, but 50-75% inhibition of SK-MES cell density. Equimolar reduced glutathione resulted in 4-15% stimulation of SCC-25 and 22-25% inhibition of SK-MES cell proliferation. With cultured normal keratinocytes, treated final cell densities did not differ significantly from those of controls. Two additional assays measuring the metabolic generation of formazan (MTT assay) and [5-3H]thymidine incorporation were in substantial agreement with the growth inhibition pattern. Thus both continuous and cyclic cellular processes are involved in the tumor-specific response. Onset of the response to beta-carotene alone or in combination with alpha-tocopherol is signalled within 1-2 hours of treatment by the appearance of a unique 70 kD heat-shock protein.  相似文献   

12.
We have obtained several hybridoma clones producing antibodies to microtubule-associated proteins (MAPs) from bovine brain. Interaction of one of these antibodies, named RN 17, with cultured cells was studied by indirect immunofluorescence and immunoelectron microscopy. RN 17 antibody recognized both high molecular weight (HMW) MAPs, MAP 1 and MAP 2, in immunoblotting reaction with brain microtubules. In lysates of cultured cells, it bound to a protein doublet with a molecular weight of 100 kD. By immunofluorescence microscopy we showed that RN 17 antibody stained cytoplasmic fibrils, mitotic spindles and small particles in the cytoplasm of various cultured cells. The cytoplasmic fibrils were identified as both microtubules and intermediate filaments by double fluorescence microscopy and by their response to colcemid and 0.6 M KCl. This identification was confirmed by immunoelectron microscopy which also showed that the particles stained by RN 17 antibody are coated vesicles. Thus, cultured non-neural cells may contain a novel protein that binds to microtubules, intermediate filaments, and coated vesicles.  相似文献   

13.
14.
A systematic characterization of lens crystallins from five major classes of vertebrates was carried out by exclusion gel filtration, cation-exchange chromatography and N-terminal sequence determination. All crystallin fractions except that of -crystallin were found to be N-terminally blocked. -Crystallin is present in major classes of vertebrates except the bird, showing none, or decreased amounts, of this protein in chicken and duck lenses, respectively. N-Terminal sequence analysis of the purified -crystallin polypeptides showed extensive homology between different classes of vertebrates, supporting the close relatedness of this family of crystallin even from the evolutionarily distant species. Comparison of nucleotide sequences and their predicted amino acid sequences between -crystallins of carp and rat lenses and heat-shock proteins demonstrated partial sequence homology of the encoded polypeptides and striking homology at the gene level. The unexpected strong homology of complementary DNA (cDNA) lies in the regions coding for 40 N-terminal residues of carp -II, rat 2-1, and the middle segments of 23,000- and 70,000-M r heat-shock proteins. The optimal alignment of DNA sequences along these two segments shows about 50% homology. The percentage of protein sequence identity for the corresponding aligned segments is only 20%. The weak sequence homology at the protein level is also found between the invertebrate squid crystallin and rat -crystallin polypeptides. These results pointed to the possibility of unifying three major classes of vertebrate crystallins into one // superfamily and corroborated the previous supposition that the existing crystallins in the animal kingdom are probably mutually interrelated, sharing a common ancestry.  相似文献   

15.
A high molecular-weight protein from Escherichia coli sharing structural homology at the protein level with a yeast heavy-chain myosin encoded by the MYO1 gene is described. This 180 kD protein (180-HMP) can be enriched in cell fractions following the procedure normally utilized for the purification of non-muscle myosins. In Western blots this protein cross-reacts with a monoclonal antibody against yeast heavy-chain myosin. Moreover, antibodies raised against the 180 kD protein cross-react with the yeast myosin and with a myosin heavy chain from chicken. Recognition by anti-180-HMP antibodies of an overexpressed fragment of yeast myosin encoded by MYO1 allows the localization of one of the shared epitopes to a specific region around the ATP binding site of the yeast myosin heavy chain. The existence of a high molecular-weight protein with structural similarity to myosin in E. coli raises the possibility that such a protein might generate the force required for movement in processes such as nucleoid segregation and cell division.  相似文献   

16.
We have previously shown that a major granule-associated cationic protein CAP 37 (Mr = 37 kD) derived from human PMN is a monocyte-specific chemoattractant. The N-terminal amino acid sequence of this novel chemotactic protein shares significant homology with a number of inflammatory molecules with protease activity including elastase and cathepsin G. However, a critical substitution of a serine for a histidine at position 41, results in its lack of serine protease activity.  相似文献   

17.
An important task in functional genomics is to cluster homologous proteins, which may share common functions. Annotating proteins of unknown function by transferring annotations from their homologues of known annotations is one of the most efficient ways to predict protein function. In this paper, we use a modularity-based method called CD for grouping together homologous proteins. The method employs a global heuristic search strategy to find the partitioning of the weighted adjacency graph with the largest modularity. The weighted adjacency graph is constructed by the sigmodal transformation of all pairwise sequence similarities between all protein sequences in a given dataset. The method has been extensively tested on several subsets from the superfamily level of the SCOP (Structural Classification of Proteins) database, where some homologous proteins have very low sequence similarity. Compared with a widely used method MCL, we observe that the number of clusters obtained by CD is closer to the number of superfamilies in the dataset, the value of the F-measure given by CD is 10% better than MCL on average, and CD is more tolerant to noise to the sequence similarity. The experiment results indicate that CD is ideally suitable for clustering homologous proteins when sequence similarity is low.  相似文献   

18.
A 71 kiloDalton antigen from Mycobacterium tuberculosis is recognized by antibodies and by T lymphocytes during infection (Britton et al., 1986a). Partial sequence analysis indicates a relationship between this antigen and the highly conserved family of 70-kiloDalton heat shock proteins (hsp70) (Young et al., 1988). Biochemical and serological characterization of the protein confirms its membership of the hsp70 gene family, and metabolic labelling demonstrates that it is a major component of the mycobacterial response to heat stress. The role of stress proteins as antigens during infection is discussed.  相似文献   

19.
20.
During development, many embryos show electrical coupling among neurons that is spatially and temporally regulated. For example, in vertebrate embryos extensive dye coupling is seen during the period of circuit formation, suggesting that electrical connections could prefigure circuits, but it has been difficult to identify which neuronal types are coupled. We have used the leech Hirudo medicinalis to follow the development of electrical connections within the circuit that produces local bending. This circuit consists of three layers of neurons: four mechanosensory neurons (P cells), 17 identified interneurons, and approximately 24 excitatory and inhibitory motor neurons. These neurons can be identified in embryos, and we followed the spatial and temporal dynamics as specific connections developed. Injecting Neurobiotin into identified cells of the circuit revealed that electrical connections were established within this circuit in a precise manner from the beginning. Connections first appeared between motor neurons; mechanosensory neurons and interneurons started to connect at least a day later. This timing correlates with the development of behaviors, so the pattern of emerging connectivity could explain the appearance first of spontaneous behaviors (driven by a electrically coupled motor network) and then of evoked behaviors (when sensory neurons and interneurons are added to the circuit).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号