首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous cold-set gels from mixtures of agarose and sodium gellan have been characterised structurally and mechanically using optical and electron microscopy, turbidity measurements, differential scanning calorimetry, mechanical spectroscopy and compression testing. Consistent with expectations for charged–uncharged polymer combinations at low ionic strength there is no liquid–liquid demixing in sols prior to gelation, and although transmission electron microscopy reveals heterogeneities in gel microstructures at the higher polymer concentrations, these are small in extent, and are unlikely to arise from normal segregative demixing. Overall, ‘molecularly’ interpenetrating networks (IPNs) are indicated, in which the gellan and agarose architectures pass through one another on a distance scale comparable to their pore sizes. At concentrations greater than 2% w/w gellan, where gellan is the first gelling species, and when the agarose concentration is greater than 0.5% w/w, the composite modulus falls below that expected for the agarose alone. At 0.5% w/w agarose, on the other hand, modulus contributions from the components are much closer to additive. These findings are reflected in the results of large deformation compression testing where breaking stresses show similar trends.  相似文献   

2.
The electrophoretic mobilities of double-stranded (ds) DNAs and ds RNAs of various lenths, L, were measured in gels of 0.4–1.8% (w/v) agarose at a voltage gradient of 1.0 V/cm. Differences in the electrophoresis of ds DNA and ds RNA are presented and discussed. A general expression is derived that describes the electrophoretic mobility, M, of either type of ds nucleic acid as a function of the gel concentration and the nucleic acid length: M = M1(L/L0)?x ? M2, where M1 and L0 are constants, and x and M2 depend on the agarose gel concentration. The results obtained by fitting our data with this equation are consistent with the mobilities of nucleic acids in a wide range of gel concentrations, including free electrophoresis in solution and electrophoresis in gles of high agarose concentration in which nuleic acids are expected to reptate through the gel matrix. Finally, various methods of plotting agarose gel electrophoresis data are discussed.  相似文献   

3.
Steady-state and pulsed NMR techniques have been used to investigate molecular motion in sols and gels of agarose. In passing through the sol–gel transition, the molecular mobility of water molecules is reduced only by a small amount, whereas motion of the polymer chains is greatly attenuated. The results are discused in terms of the network theory of gelation, with references to the role of water in the process and the nature of the “junction zones” between polymer chains. T2 and line-width measurements are dominated by exchange broadening. The effects of exchange rate and differences in relaxation time between the exchanging sites are discussed. The temperature hysteresis behavior of agarose gels has been investigated and the effects of “ageing” correlated with changes in nuclear relaxation times. The synergistic increase in gel strength obtained on adding locust bean gum (LBG) to agarose has been investigated. The results indicate that LBG does not form double-helix junctions and may decrease rates of gelation by steric effects. At high agarose concentration, the LBG remains mainly in solution in interstitial water, but at low agarose concentration, it is suggested that the LBG can link gel aggregates together into a self-supporting structure, producing a synergistic increase in gel strength. Comparisons have been made between the nature of the agarose–LBG interaction and agarose–cellulose interactions in biological systems.  相似文献   

4.
Clark  L.J.  Whalley  W.R.  Leigh  R.A.  Dexter  A.R.  Barraclough  P.B. 《Plant and Soil》1999,207(1):37-43
Agar and agarose gels were evaluated as systems to mechanically impede roots of rice (Oryza sativa L.). Two-layer gels were used so that seedlings established in a layer of weak gel (0.35% weight/volume) and then grew downwards to encounter a treatment gel of up to 5.0% (w/v). Agarose gels were stronger than agar gels of the same concentration, reaching a maximum penetrometer resistance of 1.2 MPa at a concentration of 5.0%, compared to 0.3 MPa with agar. The 5.0% agar gel stimulated elongation of the seminal axis by 40% in seedlings of variety TN1 (compared with elongation in the 0.2% gel), but decreased it by 15% in the variety Lac 23. Although increasing agarose concentration decreased seminal axis elongation in both varieties, the seminal axis did not reach the lower layer of treatment gel when the concentration of the treatment gel was greater than 2.0%. The decreased root elongation was therefore a non-mechanical inhibition. In experiments conducted using a different batch of agarose, these inhibitory effects were not seen and strong agarose gels stimulated seminal axis elongation. It was concluded that the agar and agarose gel systems studied were unsuitable for studying the effect of mechanical impedance on the elongation of rice roots and that great care should be taken in interpreting the results of experiments using gels as a growth medium. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.

Hydrogels can be used to protect some labile active principles, as polyphenol-rich substances, that can be added to foods to prepare functional ones. Rheological properties of gels formed through the addition of calcium chloride to gellan solutions were studied. It can be concluded that preparation variables and not only formulation ones are determinant in rheological properties of the resulting gels, as they are not in an equilibrium state but they are continuously evolving during hours to stronger gels corresponding to a denser network. It could be related to the fact that local non-gelled domains are formed surrounded by a shell of gel where Ca2+ ions take some time to arrive. A minimum Ca2+/gellan ratio (CG) is required to reach the gel point (GP), determined as the CG where the ratio loss modulus/elastic modulus (G”/G’) collapse for all frequencies. Calcium-induced external gelation of oil-in-water (O/W) emulsions where a curcumin-in-oil solution is the disperse phase and a watery solution of gellan is the continuous phase was used to prepare beads were curcumin is entrapped in order to prevent its degradation. Smaller droplet-sized emulsions were obtained with higher gellan concentrations, since a higher viscosity of the continuous phase allowed to reach the critical Capillary number CaC at lower radius of droplets. An encapsulation yield around 90% was reached for gellan concentrations of 1% w/v, and the resulting encapsulated curcumin presented around 6 times slower light degradation than free curcumin-in-oil solutions.

  相似文献   

6.
Human tracheobronchial mucin isolated from cystic fibrosis patients (CF HTBM) was purified using a combination of gel filtration and density gradient centrifugation. The resulting mucin was fractionated to reduce polydispersity and to facilitate studies of the molecular weight dependence of mucin viscoelasticity in concentrated solution. The viscoelastic properties of CF HTBM were examined in distilled water, 0.1M salt solutions and chaotropic solvents. In controlled strain experiments (strain ≥ 5%) with increasing mucin concentration, a crossover from sol to gel behavior is observed. The gel strength, as measured by the magnitude of the storage modulus at comparable mucin concentrations, is greatest for distilled water, intermediate for 0.1M NaCl, and lowest far 6M GdnHCl. In distilled water, high molecular weight mucin undergoes a sol-gel transition at ~ 12 mg/mL, and shows evidence of a plateau modulus at higher concentrations. The storage and loss moduli of concentrated high molecular weight fractions in 6M GdnHCl exhibit a power law dependence on frequency typical of weak gels near the sol–gel transition at 20 mg/mL. Similar rheology is observed in 0.1M NaCl and 0.091M NaCl/3 mM CaCl2, but with evidence for additional weak associations at low frequency. The power law exponent in these systems is 0.70 ± 0.02, in good agreement with prediction for networks formed by a percolation mechanism. Low molecular weight fractions in these solvents exhibit a fluid-like viscoelastic response. However, low molecular weight mucin in distilled water shows a strain-dependent increase in elasticity at low frequency indicative of weak intermolecular associations. Comparison of the rheological behavior of CF HTBM with our earlier studies of ovine submaxillary mucin lends support to the idea that carbohydrate side-chain interactions are important in the gelation mechanism of mucins. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
Summary The effective diffusion coefficient of oxygen, IDe, was determined in different gel support materials (calcium alginate, -carrageenan, gellan gum, agar and agarose) which are generally used for immobilization of cells. The method used was based upon fitting Crank's model on the experimental data. The model describes the solute diffusion from a well-stirred solution into gel beads which are initially free of solute. The effect of the gel concentration on IDe of oxygen in the gel was investigated. The results showed a decreasing IDe for both agar and agarose at increasing gel concentration. In case of calcium alginate and gellan gum, a maximum in IDe at the intermediate gel concentration was observed. It is hypothesized that this phenomenon is due to a changing gelpore structure at increasing gel concentrations. The IDe of oxygen in calcium alginate, -carrageenan and gellan gum varied from 1.5*10–9 to 2.1*10–9 m2s–1 in the gel concentration range of 0.5 to 5% (w/v).  相似文献   

8.
“Process whey protein” was prepared by heating bovine milk whey protein isolate solution at neutral pH under salt-free conditions. The process whey protein solution, being clear, was heated at various pHs (2.0 to 11.0) and NaCl concentrations (0 to 200 mM), and the turbidity and gel properties of the products were then examined. For comparison, the properties of the whey protein isolate treated under the same conditions were measured. The whey protein isolate formed a transparent gel or sol below pH 3 and above pH 7 at low NaCl concentration after heating, but the process whey protein formed transparent gels and sols over a wider range of pH and NaCl concentrations than those of the whey protein isolate. More elastic, firmer, and denser gels were obtained from the process whey protein than from the whey protein isolate. The process whey protein provides a novel food material with useful properties.  相似文献   

9.
Thermal denaturation and circular dichroism (CD) properties of poly(L -lysine)–DNA complexes vary greatly when these complexes are prepared differently, that is, whether by NaCl-gradient dialysis starting from 2.0 M NaCl or by direct mixing at low salt. These differing properties were investigated in more detail by examining complexes, made by direct mixing in the presence of various concentrations of NaCl, both before and after the NaCl was dialyzed out of the complex solution. The precipitation curves of DNA due to polylysine binding indicate that such binding is noncooperative at zero salt; from 0.1 up to 1.0 M NaCl they exhibit varying degrees of cooperatively. Starting from zero salt, as the NaCl concentration used for complex formation is increased, both the CD and the melting properties of the complexes are shifted from those of directly mixed at zero salt to those of reconstitution: in the CD spectra there is a gradual shift from a B → C transition to a B → ψ transition; thermal denaturation results show a gradual increase in the melting temperatures of both free DNA (tm) and polylysine-bound DNA (tm). The progressive shift from B → C to B → ψ suggests a close relationship between these two transitions. Large aggregates of the complexes do not warrant the appearance of ψ-type CD spectra: ψ-spectra have been obtained in the supernatants of polylysine–DNA complexes made and measured at 1.0 M NaCl while slightly perturbed CD spectra in B → C transition have been observed in turbid solutions of fully covered complexes made at very low salt. If the complexes are made at intermediate salts and dialyzed to a very low salt, although up to 60% of the DNA is still bound by polylysine, the CD spectra of the complexes are shifted back to the B-type CD characteristic of pure DNA.  相似文献   

10.
Summary A buffer system consisting of 50 mM Tris-HCl-TRIZMA base plus 10 mM EDTA was used to rapidly dissolve gellan gels used for maintaining transformed carrot root cultures. The optimum conditions of pH 7.5 in the presence of 10 mM EDTA for dissolving gellan were first worked out on a model test system containing 0.4% gellan, 0.025% MgSO4·7H2O, and blue dye. The conditions were then tested on gellan gels (0.2% gellan plus nutrients) containing carrot roots. This gel dissolution system was rapid (18 to 20 min), did not require heating, and could also be efficiently performed at 4 °C. Furthermore, the buffer system used for gel dissolution is a standard one used for plant cell fractionation studies.  相似文献   

11.
Summary Maturation of somatic embryos of Pinus strobus L. was evaluated on media containing various types (agars and gellan gum), brands and concentrations of gelling agents in the presence of 80 μM ABA and 0.09 M sucrose. The media were characterized with respect to gel strength, water potential and water availability. Embryogenic tissue and somatic embryos cultured on medium with various concentrations of gellan gum were used to determine their water potential (Ψ). Regardless of the type of gelling agent used, gel strength increased with gelling agent concentration and was critical to the maturation response. High gel strength was associated with reduced water availability from the medium to the cultures. The water potential of gelled maturation medium remained constant between 0.4 and 1.0% gellan gum. It is concluded that the embryogenic tissue was exposed to varying amounts of water at the onset of and during the culture period, and that the amount of water in the culture environment in turn influenced the maturation response. Cotyledonary somatic embryos derived from gellan gum medium of high gel strength had a lower Ψ than somatic embryos matured on medium of lower gel strength. Once somatic embryos developed to the cotyledonary stage on the maturation medium, they were transferred to the germination medium. The germination frequency and the number of morphologically normal germinants were higher for somatic embryos matured on medium of high gel strength. Raising the concentration of the gelling agent in the maturation medium may be an alternative to the use of solutes to restrict water available to the embryogenic cultures.  相似文献   

12.
Water holding capacity and microstructure of gellan gels   总被引:4,自引:0,他引:4  
This project studied the water holding capacity of gellan gels as affected by gel composition and microstructure. When not subjected to external forces such as centrifugal force, gellan gel properties including water holding capacity and texture properties were stable at room temperatures. The water losses from gellan gels after four months storage at 4°C were only 1–2%, independent of calcium concentrations. The freeze–thaw stability of gellan gels was poor. Water holding capacity of gellan gels, when subjected to centrifugal forces, was dependent on calcium concentrations, and was related to the texture properties. Two discrete pore-size distributions in gel matrix on the order of 0.1 and 1 μ were observed with scanning electronic microscopy. Large pores were formed with thick strings while the small ones were formed by a thin web structure. Defects in the large pore structure were observed at high calcium concentrations. The small pores may be responsible for the water holding capacity during storage, while large pore structures provide the strength of gels.  相似文献   

13.
Purine polyribonucleotides poly(A), poly(G), and poly(I) associate reversibly with agarose gels at high NaCl molarities over the pH range 6–10, at 20°?40°C. Pyrimidine polyribonucleotides poly (C) and poly(U) could not be immobilized in agarose gels under the above conditions. However, poly(C) could be immobilized in agarose without precipitation between pH 3.2 and 4.0. Association of poly(G) and poly(I) with agarose appears to decrease progressively with deprotonation of their purine residues, and both polymers interact with the gel very weakly above pH 10 regardless of NaCl concentration. The binding to agarose of these polymers at pH 7.5 is also strongly influenced by temperature in the range 20°?40°C. The association of single-stranded poly(A) is only shifted toward higher NaCl molarities by increased pH; its binding is also little affected by temperature in the above range. At NaCl molarities effecting the saturating retention in agarose and at neutral pH, the immobilization of several polynucleotides could be prevented by urea in a concentration-dependent manner. The corresponding profiles of urea molarity appear to disclose a number of hydrophobic interactions between polynucleotides and agarose, some of which could be relatively strong, especially in the case of poly(A).  相似文献   

14.
Changes in gellan polymer morphology during the sol-gel transition were directly visualized by transmission electron microscopy and a model incorporating these changes and existing physical data is proposed. Our observations suggest that the most thermodynamically stable conformations of gellan polymers in solution, in the absence of added cations, are the double helix and double-helical duplexes. We have demonstrated two forms of lateral aggregation of gellan helices in the presence of Ca(2+) and K(+) ions. One type forms junction zones that lead to network formation and gelation, while the second type leads to the formation of isolated fibers of aggregated helices and inhibition of gelation. The proposed model of gellan gelation is based on these observations where thermoreversibility, gel strength, and endothermic transitions of gellan gels can be explained.  相似文献   

15.
The free solution electrophoretic mobility of DNA differs significantly in different buffers, suggesting that DNA-buffer interactions are present in certain buffer systems. Here, capillary and gel electrophoresis data are combined to show that the Tris ions in Tris-acetate-EDTA (TAE) buffers are associated with the DNA helix to approximately the same extent as sodium ions. The borate ions in Tris-borate-EDTA (TBE) buffers interact with DNA to form highly charged DNA-borate complexes, which are stable both in free solution and in polyacrylamide gels. DNA-borate complexes are not observed in agarose gels, because of the competition of the agarose gel fibers for the borate residues. The resulting agarose-borate complexes increase the negative charge of the agarose gel fibers, leading to an increased electroendosmotic flow of the solvent in agarose-TBE gels. The combined results indicate that the buffers in which DNA is studied cannot automatically be assumed to be innocuous.  相似文献   

16.
Circular DNAs have been shown to migrate in an unusual manner during field inversion gel electrophoresis (FIGE) and orthogonal field alternating gel electrophoresis (OFAGE). We studied the effect of varying pulse time and agarose concentration on the electrophoretic mobility of supercoiled (ccc) DNAs ranging from 2 kbp to 16 kbp during FIGE and contoured homogeneous electric fields (CHEF). Both supercoiled and linear molecules display a minimum mobility as a function of pulse time in a CHEF apparatus. Linear and cccDNAs of the same size are differently affected by pulse time. Pulse-time dependence was observed for cccDNAs in both systems. Pulse-time dependence in FIGE is very small at a 1.0% agarose concentration, but is pronounced in 0.8% or 1.2% gels.  相似文献   

17.
The partitioning of bovine serum albumin (BSA) in a polyethylene glycol 3350 (8% w/w)–dextran 37 500 (6% w/w)–0.05 M phosphate aqueous two-phase was investigated at different pHs, at varying concentrations of sodium chloride at 20°C. The effect of NaCl concentration on the partition coefficient of BSA was studied for the PEG–dx systems with initial pH values of 4.2, 5.0, 7.0, 9.0, and 9.8. The NaCl concentrations in the phase systems with constant pH value were 0.06, 0.1, 0.2, 0.3, and 0.34 M. It was observed that the BSA partition coefficient decreased at concentrations smaller than 0.2 M NaCl and increased at concentrations greater than 0.2 M NaCl for all systems with initial pHs of 4.2, 5.0, 7.0, 9.0, and 9.8. It was also seen that the partition coefficient of BSA decreased as the pH of the aqueous two-phase systems increased at any NaCl salt concentration studied.  相似文献   

18.
The exothermic and endothermic peaks in cooling and heating curves of differential scanning calorimetry (DSC) for gellan gum gels without and with potassium chloride and sodium chloride were analyzed. The gelling and melting temperatures shifted to higher temperatures with increasing gellan and salt concentration in the concentration range of gellan from 0.3 to 2.0% (w/w). The exothermic and endothermic enthalpy increased with increasing gellan and salt concentrations. Cooling DSC curves showed one exothermic peak for samples with salts and at low gellan concentration. Heating DSC curves showed many peaks for all samples except 0.3% (w/w) gellan gum gels. The sol-gel transition of samples was examined numerically by using a zipper model approach. The introduction of cations increases the number of junction zones or zippers and decreases the rotational freedom of parallel links. This makes the structure of junction zones more heat resistant, and increases the elastic modulus of the gel.  相似文献   

19.
The effect of immersion into salt solutions on rheological properties of gellan gels was investigated. The storage Young's modulus of gellan gels increased with time during the immersion into salt solutions. The increase of the storage Young's modulus can not be explained solely by change in the concentration of gellan. The ellipticity at 202 nm decreased by the immersion, suggesting the formation and aggregation of gellan helices. It was considered that during immersion cations penetrated into gellan gels to induce the formation and aggregation of gellan helices in gels, resulting in reinforcement of the gel network.  相似文献   

20.
The transient electric birefringence of low electroendosmosis (LE) agarose gels oriented by pulsed unidirectional electric fields was described in detail in Part I [J. Stellwagen and N. C. Stellwagen (1994), Biopolymers, Vol. 34, p. 187]. Here, the birefringence of LE agarose gels in rapidly reversing electric fields, similar in amplitude and duration to those used for field inversion gel electrophoresis, is reported. Symmetric reversing electric fields cause the sign of the birefringence of LE agarose gels, and hence the direction of orientation of the agarose fibers, to Oscillate in phase with the applied electric field. Because of long-lasting memory effects, the alternating sign of the birefringence appears to be due to metastable changes in gel structure induced by the electric field. If the reversing field pulses are equal in amplitude but different in duration, the orientation behavior depends critically on the applied voltage. If E < 7 V/cm, the amplitude of the birefringence gradually decreases with increasing pulse number and becomes unmeasurably small. However, if E > 7 V/cm, the amplitude of the birefringence increase more than 10-fold after ~ 20 pulses have been applied to the gel, suggesting that a cooperative change in gel structure has occurred. Because there is no concomitant change birefringence must be due to an increase in the number of agarose fibers and /or fiber bundles orienting in the lectric field, which in turn indicates a cooperatice breakdown of the noncovalent “junction zones” that corss-link the fibers in to the fgel matrix. The sign of the birefringence of LE agarose gels is always positive after extensive junction zone breakdown, indicating that the agarose fibers and fiber bundles preferentially orient parallel to the lectric field when they are freed from the constraints of the gel matrix. Three other gel-forming polymers, high electroendosmosis (HEEO) agarose (a more highly changed agarose), β-carrageenan (a stereoisomer of agarose), and polyacrylamide (a chemically corss-linked polymer) were alos studied in unidirectional and rapidly reversing electric fields. The birefringence of HEEO agarose backbone chain. The β-carrageenan gels exhibit variable orientation behavior in reversing electric fields, suggesting that its internal gel structure is not as tightly interconnected as that of agaroise gels. Both HEEO agarose and β-carrageenan gels exhibit a large increase in the amplitude of the birefringence with increasing pulse number when asymmetric reversing pulses > 7 V/cm are applied to the gels, suggesting that junction zone breakdown in a common feature of polysaccharide gels. Chemically cross-linked polyacrylamide gels exhibit very small birefringence signals, indicating that very little orientation occurs in pulsed lectric fields. The sign of the birefringence is independent of the polarity of the lectric field, as expected from the Kerr law, and normal orientation behavior is observed in reversing electric fields. Hence, the anomalous change in sign of the birefringence observed for agarose gels in reversing electric fields must be due to the metastable junction zones in the agarose gel matrix, which allow gel fiber rearrangements to occur. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号