首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although obesity is more prevalent in Hispanics than non-Hispanic whites in the United States, little is known about the genetic etiology of the related traits in this population. To identify genetic loci influencing obesity in non-Mexican Hispanics, we performed a genome-wide linkage scan in 1,390 subjects from 100 Caribbean Hispanic families on six obesity-related quantitative traits: body mass index (BMI), body weight, waist circumference, waist-to-hip ratio, abdominal and average triceps skinfold thickness after adjusting for significant demographic and lifestyle factors. We then carried out an association analysis of the linkage peaks and the FTO gene in an independent community-based Hispanic subcohort (N = 652, 64% Caribbean Hispanics) from the Northern Manhattan Study. Evidence of linkage was strongest on 1q43 with multipoint LOD score of 2.45 (p = 0.0004) for body weight. Suggestive linkage evidence of LOD > 2.0 was also identified on 1q43 for BMI (LOD = 2.03), 14q32 for abdominal skinfold thickness (LOD = 2.17), 16p12 for BMI (LOD = 2.27) and weight (LOD = 2.26), and 16q23–24 for average triceps skinfold thickness (LOD = 2.32). In the association analysis of 6,440 single nucleotide polymorphisms (SNPs) under 1-LOD unit down regions of our linkage peaks on chromosome 1q43 and 16p12 as well as in the FTO gene, we found that two SNPs (rs6665519 and rs669231) on 1q43 and one FTO SNP (rs12447427) were significantly associated with BMI or body weight after adjustment for multiple testing. Our results suggest that in addition to FTO, multiple genetic loci, particularly those on 1q43 region, may contribute to the variations in obesity-related quantitative traits in Caribbean Hispanics.  相似文献   

2.
Objective: To explore a quantitative trait locus (QTL) on human chromosome 1q affecting BMI, adiposity, and fat‐free mass phenotypes in the Quebec Family Study cohort. Research Methods and Procedures: Non‐parametric sibpair and variance component linkage analyses and family‐based association studies were performed with a dense set of chromosome 1q43 microsatellites and single‐nucleotide polymorphism markers in 885 adult individuals. Results: Linkage was observed between marker D1S184 and BMI (p = 0.0004) and with body fat mass or percentage body fat (p ≤ 0.0003), but no linkage was detected with fat‐free mass. Furthermore, significant linkages (p < 0.0001) were achieved with subsamples of sibpairs at both ends of phenotype distributions. Association studies with quantitative transmission disequilibrium tests refined the linkage to a region overlapping the regulator of G‐protein signaling 7 (RGS7) gene and extending to immediate upstream gene loci. Discussion: The present study indicates that the QTL on chromosome 1q43 specifically affects total adiposity and provides a genetic mapping framework for the dissection of this adiposity locus.  相似文献   

3.
Zhao LJ  Xiao P  Liu YJ  Xiong DH  Shen H  Recker RR  Deng HW 《Human genetics》2007,121(1):145-148
To identify quantitative trait loci (QTLs) that contribute to obesity, we performed a large-scale whole genome linkage scan (WGS) involving 4,102 individuals from 434 Caucasian families. The most pronounced linkage evidence was found at the genomic region 20p11-12 for fat mass (LOD = 3.31) and percentage fat mass (PFM) (LOD = 2.92). We also identified several regions showing suggestive linkage signals (threshold LOD = 1.9) for obesity phenotypes, including 5q35, 8q13, 10p12, and 17q11.  相似文献   

4.
Objectives: To investigate possible obesity candidate genes in regions of porcine quantitative trait loci (QTL) for fat deposition and obesity‐related phenotypes. Research Methods and Procedures: Chromosome mapping and QTL analyses of obesity candidate genes were performed using DNA panels from a reference pig family. Statistical association analyses of these genes were performed for fat deposition phenotypes in several other commercial pig populations. Results: Eight candidate genes were mapped to QTL regions of pig chromosomes in this study. These candidate genes also served as anchor loci to determine homologous human chromosomal locations of pig fat deposition QTL. Preliminary analyses of relationships among polymorphisms of individual candidate genes and a variety of phenotypic measurements in a large number of pigs were performed. On the basis of available data, gene‐gene interactions were also studied. Discussion: Comparative analysis of obesity‐related genes in the pig is not only important for development of marker‐assisted selection on growth and fat deposition traits in the pig but also provides for an understanding of their genetic roles in the development of human obesity.  相似文献   

5.
Leptin (LEP) and the uncoupling proteins 2 and 3 (UCP2/UCP3) are key molecules involved in the regulation of food intake and energy expenditure. However, their contribution to variation of obesity phenotypes in the general population remains controversial. The present study is to investigate whether chromosomal regions 7q and 11q, which contain LEP and UCP2/UCP3, respectively, can be excluded for linkage with obesity phenotypes. The obesity phenotypes include body mass index (BMI), fat mass, and percentage fat mass (PFM), with the latter two measured by dual-energy X-ray absorptiometry. We conducted exclusion linkage analyses using a variance component approach in a sample of 1816 individuals coming from 79 extended Caucasian pedigrees. In this study, we were able to exclude chromosomal region 7q containing LEP as having an effect on fat mass and PFM at effect sizes of 5% or greater, and on BMI at effect sizes of 10% or greater. We were able to exclude chromosomal region 11q containing UCP2/UCP3 as having an effect on fat mass and PFM at effect sizes of 10% or greater, and on BMI at effect sizes of 5% or greater. Our results suggest that the LEP and UCP2/UCP3 genes are unlikely to have a substantial effect on variation in obesity phenotypes in this particular US Caucasian population.  相似文献   

6.
Objective: In the present study, we undertook a two‐step fine mapping of a 20‐megabase region around a quantitative trait locus previously reported on chromosome 15q26 for abdominal subcutaneous fat (ASF) in an extended sample of 707 subjects from 202 families from the Quebec Family Study. Research Methods and Procedure: First, 19 microsatellites (in addition to the 7 markers initially available on 15q24‐q26; total = 26) were genotyped and tested for linkage with abdominal total fat, abdominal visceral fat, and ASF assessed by computed tomography and with fat mass (FM) using variance component‐based approach on age‐ and sex‐adjusted phenotypes. Second, 16 single nucleotide polymorphisms (SNPs) were genotyped and tested for association using family‐based association tests. Results: After the fine mapping, the peak logarithm of odds ratio (LOD) score (marker D15S1004) increased from 2.79 to 3.26 for ASF and from 3.52 to 4.48 for FM, whereas for abdominal total fat, the peak linkage (marker D15S996) decreased from 2.22 to 1.53. No evidence of linkage was found for abdominal visceral fat. Overall, for genotyped SNPs, three variants located in the putative MCTP2 gene were significantly associated with FM and the three abdominal fat phenotypes (p ≤ 0.05). The major allele and genotype of rs1424695 were associated with higher adiposity values (p < 0.004). The same trend was found for the two other polymorphisms (p < 0.05). None of the other SNPs was associated with adiposity phenotypes. The linkage for FM became non‐significant (LOD = 0.84) after adjustment for the MCTP2 polymorphisms, whereas the one for ASF remained unchanged. Discussion: These results suggest that the MCTP2 gene, located on chromosome 15q26, influences adiposity. Other studies will be needed to investigate the function of the MCTP2 gene and its role in obesity.  相似文献   

7.
Regional fat distribution is related to higher risks of cardiovascular morbidity and mortality, independent of general obesity. In particular, a centralized pattern of fat deposition, characterized by greater abdominal stores relative to extremity stores, is associated with a higher propensity to metabolic complications. Motivated by these considerations, we have initiated a systematic investigation of several measures of regional fat distribution aimed at the identification of possible major gene effects. Two measures approximate the size of subcutaneous fat stores: the sum of six skinfold thicknesses (SF6 = abdominal + suprailiac + subscapular + calf + triceps-+ biceps), and the sum of three trunk skinfold thicknesses (TSF3 = abdominal + suprailiac + subscapular). Both of these phenotypes are highly correlated with total fat mass, 0. 83 and 0.78 for SF6 and TSF3, respectively. The trunk to extremity ratio [TER = TSF3 / (calf + triceps + biceps)] is perhaps the most important of these phenotypes insofar as it is an index of centralized obesity; it is modestly correlated with fat mass (r = 0.18). Each of these phenotypes was adjusted for total fat mass by regression prior to analysis so that we could examine genetic effects on these measures of regional fat distribution without the confounding influence of the determinants of fat mass itself. Segregation analysis of SF6 and TSF3 controlled for total fat mass suggests the presence of a major effect underlying the observed phenotypic distribution; however, tests on the transmission probabilities did not substantiate the segregation of a Mendelian gene. Despite the sexual dimorphism in the expression of the TER, the distribution of age-, generation-, sex-, and fat mass-adjusted TER was not significantly heterogeneous comparing males to females. Consistent evidence of a recessive major gene determinant was obtained, accounting for 37% of the phenotypic variance with the frequency of the gene leading to high values of the TER being 0.35. This finding suggests that further studies to investigate the role of specific candidate genes are warranted.  相似文献   

8.
Insulin resistance and hyperinsulinemia are strong correlates of obesity and type 2 diabetes, but little is known about their genetic determinants. Using data on nondiabetics from Mexican American families and a multipoint linkage approach, we scanned the genome and identified a major locus near marker D6S403 for fasting "true" insulin levels (LOD score 4.1, empirical P<.0001), which do not crossreact with insulin precursors. Insulin resistance, as assessed by the homeostasis model using fasting glucose and specific insulin (FSI) values, was also strongly linked (LOD score 3.5, empirical P<.0001) with this region. Two other regions across the genome were found to be suggestively linked to FSI: a location on chromosome 2q, near marker D2S141, and another location on chromosome 6q, near marker D6S264. Since several insulin-resistance syndrome (IRS)-related phenotypes were mapped independently to the regions on chromosome 6q, we conducted bivariate multipoint linkage analyses to map the correlated IRS phenotypes. These analyses implicated the same chromosomal region near marker D6S403 (6q22-q23) as harboring a major gene with strong pleiotropic effects on obesity and on lipid measures, including leptin concentrations (e.g., LOD(eq) for traits-specific insulin and leptin was 4.7). A positional candidate gene for insulin resistance in this chromosomal region is the plasma cell-membrane glycoprotein PC-1 (6q22-q23). The genetic location on chromosome 6q, near marker D6S264 (6q25.2-q26), was also identified by the bivariate analysis as exerting significant pleiotropic influences on IRS-related phenotypes (e.g., LOD(eq) for traits-specific insulin and leptin was 4.1). This chromosomal region harbors positional candidate genes, such as the insulin-like growth factor 2 receptor (IGF2R, 6q26) and acetyl-CoA acetyltransferase 2 (ACAT2, 6q25.3-q26). In sum, we found substantial evidence for susceptibility loci on chromosome 6q that influence insulin concentrations and other IRS-related phenotypes in Mexican Americans.  相似文献   

9.
Objective: To identify the genetic determinants of obesity using univariate and bivariate models in a genome scan. Research Methods and Procedures: We evaluated the genetic and environmental effects and performed a genome‐wide linkage analysis of obesity‐related traits in 478 subjects from 105 Mexican‐American nuclear families ascertained through a proband with documented coronary artery disease. The available obesity traits include BMI, body surface area (BSA), waist‐to‐hip ratio (WHR), and trunk fat mass as percentage of body weight. Heritability estimates and multipoint linkage analysis were performed using a variance components procedure implemented in SOLAR software. Results: The heritability estimates were 0.62 for BMI, 0.73 for BSA, 0.40 for WHR, and 0.38 for trunk fat mass as percentage of body weight. Using a bivariate genetic model, we observed significant genetic correlations between BMI and other obesity‐related traits (all p < 0.01). Evidence for univariate linkage was observed at 252 to approximately 267 cM on chromosome 2 for three obesity‐related traits (except for WHR) and at 163 to approximately 167 cM on chromosome 5 for BMI and BSA, with the maximum logarithm of the odds ratio score of 3.12 (empirical p value, 0.002) for BSA on chromosome 2. Use of the bivariate linkage model yielded an additional peak (logarithm of the odds ratio = 3.25, empirical p value, 0.002) at 25 cM on chromosome 7 for the pair of BMI and BSA. Discussion: The evidence for linkage on chromosomes 2q36‐37 and 5q36 is supported both by univariate and bivariate analysis, and an additional linkage peak at 7p15 was identified by the bivariate model. This suggests that use of the bivariate model provides additional information to identify linkage of genes responsible for obesity‐related traits.  相似文献   

10.
The total body fat mass and serum concentration of total cholesterol, HDL cholesterol, and triglyceride (TG) differ between standard diet-fed female inbred mouse strains MRL/MpJ (MRL) and SJL/J (SJL) by 38-120% (P < 0.01). To investigate genetic regulation of obesity and serum lipid levels, we performed a genome-wide linkage analysis in 621 MRLx SJL F2 female mice. Fat mass was affected by two significant loci, D11Mit36 [43.7 cM, logarithm of the odds ratio (LOD) 11.2] and D16Mit51 (50.3 cM, LOD 3.9), and one suggestive locus at D7Mit44 (50 cM, LOD 2.4). TG levels were affected by two novel loci at D1Mit43 (76 cM, LOD 3.8) and D12Mit201 (26 cM, LOD 4.1), and two suggestive loci on chromosomes 5 and 17. HDL and cholesterol concentrations were influenced by significant loci on chromosomes 1, 3, 5, 7, and 17 that were in the regions identified earlier for other strains of mice, except for a suggestive locus on chromosome 14 that was specific to the MRL x SJL cross. In summary, linkage analysis in MRL x SJL F2 mice disclosed novel loci affecting TG, HDL, and fat mass, a measure of obesity. Knowledge of the genes in these quantitative trait loci will enhance our understanding of obesity and lipid metabolism.  相似文献   

11.
Obesity is an increasingly serious health problem in the world. Body mass index (BMI), percentage fat mass, and body fat mass are important indices of obesity. For a sample of pedigrees that contains >10,000 relative pairs (including 1,249 sib pairs) that are useful for linkage analyses, we performed a whole-genome linkage scan, using 380 microsatellite markers to identify genomic regions that may contain quantitative-trait loci (QTLs) for obesity. Each pedigree was ascertained through a proband who has extremely low bone mass, which translates into a low BMI. A major QTL for BMI was identified on 2q14 near the marker D2S347 with a LOD score of 4.04 in two-point analysis and a maximum LOD score (MLS) of 4.44 in multipoint analysis. The genomic region near 2q14 also achieved an MLS >2.0 for percentage of fat mass and body fat mass. For the putative QTL on 2q14, as much as 28.2% of BMI variation (after adjustment for age and sex) may be attributable to this locus. In addition, several other genomic regions that may contain obesity-related QTLs are suggested. For example, 1p36 near the marker D1S468 may contain a QTL for BMI variation, with a LOD score of 2.75 in two-point analysis and an MLS of 2.09 in multipoint analysis. The genomic regions identified in this and earlier reports are compared for further exploration in extension studies that use larger samples and/or denser markers for confirmation and fine-mapping studies, to eventually identify major functional genes involved in obesity.  相似文献   

12.
PÉRUSSE, LOUIS, YVON C. CHAGNON, JOHN WEISNAGEL, AND CLAUDE BOUCHARD. The human obesity gene map: the 1998 update. Obes Res. 1999;7:111–129. An update of the human obesity gene map incorporating published results up to the end of October 1998 is presented. Evidence from the human obesity cases caused by single gene mutations; other Mendelian disorders exhibiting obesity as a clinical feature; quantitative trait loci uncovered in human genome-wide scans and in crossbreeding experiments with mouse, rat, and pig models; association and case-control studies with candidate genes; and linkage studies with genes and other markers is reviewed. The most noticeable changes from the 1997 update is the number of obesity cases due to single gene mutations that increased from three cases due to mutations in two genes to 25 cases due to 12 mutations in seven genes. A look at the obesity gene map depicted in Figure 1 reveals that putative loci affecting obesity-related phenotypes are found on all but chromosome Y of the human chromosomes. Some chromosomes show at least three putative loci related to obesity on both arms (1, 2, 3, 6, 7, 8, 9, 11, 17, 19, 20, and X) and several on one chromosome arm only (4q, 5q, 10q, 12q, 13q, 15q, 16p, and 22q). The number of genes and other markers that have been associated or linked with human obesity phenotypes is increasing very rapidly and now approaches 27.  相似文献   

13.
Obesity is a multigenic trait that has a substantial genetic component. Animal models confirm a role for gene-gene interactions, and human studies suggest that as much as one-third of the heritable variance may be due to nonadditive gene effects. To evaluate potential epistatic interactions among five regions, on chromosomes 7, 10, and 20, that have previously been linked to obesity phenotypes, we conducted pairwise correlation analyses based on alleles shared identical by descent (IBD) for independent obese affected sibling pairs (ASPs), and we determined family-specific nonparametric linkage (NPL) scores in 244 families. The correlation analyses were also conducted separately, by race, through use of race-specific allele frequencies. Conditional analyses for a qualitative trait (body mass index [BMI] >/=27) and hierarchical models for quantitative traits were used to further refine evidence of gene interaction. Both the ASP-specific IBD-sharing probability and the family-specific NPL score revealed that there were strong positive correlations between 10q (88-97 cM) and 20q (65-83 cM), through single-point and multipoint analyses with three obesity thresholds (BMI >/=27, >/=30, and >/=35) across African American and European American samples. Conditional analyses for BMI >/=27 found that the LOD score at 20q rises from 1.53 in the baseline analysis to 2.80 (empirical P=.012) when families were weighted by evidence for linkage at 10q (D10S1646) through use of zero-one weights (weight(0-1)) and to 3.32 (empirical P<.001) when proportional weights (weight(prop)) were used. For percentage fat mass, variance-component analysis based on a two-locus epistatic model yielded significant evidence for interaction between 20q (75 cM) and the chromosome 10 centromere (LOD = 1.74; P=.024), compared with a two-locus additive model (LOD = 0.90). The results from multiple methods and correlated phenotypes are consistent in suggesting that epistatic interactions between loci in these regions play a role in extreme human obesity.  相似文献   

14.
A single-gene rodent mutation (diabetes) and a quantitative trait locus (dietary obese 1) mapped to the mid portion of mouse chromosome 4 have been related to obesity and/or insulin levels. Synteny relationships place their putative human homologs on 1p31 and 1p35-p31, respectively. In 137 sibships of adult brothers and sisters from the Québec Family Study, genetic linkages between seven microsatellite markers from 1p32-p22 and various obesity- and diabetes-related quantitative phenotypes were examined using single locus sibpair linkage analysis. Suggestive linkages were observed between markers D1S476 and body mass index (p>=Q.Q5), fat mass (p=0.02), the sum of six skinfolds (p=0.02), the insulin area after an oral glucose tolerance test (p=0.02), and between the neighboring marker D1S200 and body mass index (p>=0.03), and fat mass (p=0.009). Suggestive linkages were also observed between the more telomeric markers D1S193 and body mass index (p=0.03), and between the neighboring marker DIS 197 and fasting insulin level (p=0.05). No linkage was observed with the trunk to extremity skinfolds ratio. These linkages suggest that human homologs of the mouse diabetes or dietary obese 1 and/or other genes in this interval on chromosome 1 play a role in the regulation of body mass, body composition, and insulin levels, but not of subcutaneous fat distribution.  相似文献   

15.
Male college students (N = 381) residing in several districts of Eastern India, classified into two groups, urban (N = 193) and rural (N = 188), were studied by anthropometric measurements of skinfold thicknesses in several sites of the body to determine their body fat content. The mean value of percentage of body fat was found to be significantly higher (P < 0.001) in the urban group of students (12.07 ± 3.04) than in the rurals (11.04 ± 2.63). The mean values of skinfold thicknesses of the biceps, triceps, and subscapular regions were also found to be higher in urbans (P < 0.01), but no such significant differences in mean values of supra-iliac and abdominal skinfolds were found between the two groups of students. Most of the subjects of both the groups had a greater thickness of the abdominal skinfold compared to thickness of the biceps, triceps, and suprailiac skinfolds. It was found that the college students of Eastern India were leaner than the youths of North America, Europe, Japan, and Northern India.  相似文献   

16.
An update of the human obesity gene map up to October 1996 is presented. Evidence from Mendelian disorders exhibiting obesity as a clinical feature, single-gene mutation rodent models, quantitative trait loci uncovered in crossbreeding experiments with mouse, rat, and pig models, association and case-control studies with candidate genes, and linkage studies with genes and other markers is reviewed. All chromosomal locations of the animal loci are converted into human genome locations based on syntenic relationships between the genomes. A complete listing of all these loci reveals that only 4 of the 24 human chromosomes are not yet represented, i.e., 9, 18, 21, and Y. Several chromosome arms are characterized by the presence of several putative loci. The following arms include at least three such loci: 1p, 1q, 3p, 4q, 6p, 7q, 8p, 8q, 11p, 11q, 15q, 20q, and Xq. Studies with negative association and linkage results are also reviewed.  相似文献   

17.
On the basis of accumulating evidence that obesity has a substantial genetic component, a genomewide search for linkages of DNA markers to percent body fat is ongoing in Pima Indians, a population with a very high prevalence of obesity. An initial screen of the genome (>600 markers in 874 individuals) has been completed using highly polymorphic markers (mean heterozygosity = .67). Reported here are the sib-pair linkage results for percent body fat (277 siblings), the best available indicator of overall obesity. Single-marker linkages to percent body fat were evaluated by sib-pair analysis for quantitative traits. From these analyses, the best evidence of genes influencing body fat came from markers at chromosome 11q21-q22 and 3p24.2-p22 (P = .001; LOD = 2.0). Regions flanking these markers were further investigated by multipoint linkage. The evidence for linkage at 11q21-q22 increased to P = .0002 (LOD = 2.8), peaking between markers D11S2000 and D11S2366. Evidence for linkage at 3p24.2-p22 did not change. No association was detected for any marker in the region. Although several genes are known in the 11q21-q22 region, none have been implicated as candidate genes for obesity.  相似文献   

18.
Metabolic abnormalities of the insulin resistance syndrome (IRS) have been shown to aggregate in families and to exhibit trait-pair correlations, suggesting a common genetic component. A broad region on chromosome 7q has been implicated in several studies to contain loci that cosegregate with IRS-related traits. However, it is not clear whether such loci have any common genetic (pleiotropic) influences on the correlated traits. Also, it is not clear whether the chromosomal regions contain more than one locus influencing the IRS-related phenotypes. In this study we present evidence for linkage of five IRS-related traits [body mass index (BMI), waist circumference (WC), In split proinsulin (LSPI), In triglycerides (LTG), and high-density lipoprotein cholesterol (HDLC)] to a region at 7q11.23. Subsequently, to gain further insight into the genetic component(s) mapping to this region, we explored whether linkage of these traits is due to pleiotropic effects using a bivariate linkage analytical technique, which has been shown to localize susceptibility regions with precision. Four hundred forty individuals from 27 Mexican American families living in Texas were genotyped for 19 highly polymorphic markers on chromosome 7. Multipoint variance component linkage analysis was used to identify genetic location(s) influencing IRS-related traits of obesity (BMI and WC), dyslipidemia (LTG and HDLC), and insulin levels (LSPI); the analysis identified a broad chromosomal region spanning approximately 24 cM. To gain more precision in localization, we used a bivariate linkage approach for each trait pair. These analyses suggest localization of most of these bivariate traits to an approximately 6-cM region near marker D7S653 [7q11.23, 103-109 cM; a maximum bivariate LOD of 4.51 was found for the trait pair HDLC and LSPI (the LODeq score is 3.94)]. We observed evidence of pleiotropic effects in this region on obesity and insulin-related trait pairs.  相似文献   

19.
The pattern of fat distribution in lean and obese young Indian women was studied using seven girths and ten skinfold thicknesses. Though the lean and obese subjects differed significantly with respect to their body weight and total body fat content, body girths indicated that the proportion of fat distributed between the extremities and over the trunk region was essentially similar. By comparing skinfold thicknesses, it was observed that the fat women were merely an exaggeration of the fat profile pattern of the lean women. Although the pattern of subcutaneous fat distribution was similar in lean and obese subjects, the rate of fat deposition differed on different parts of the body with increase in total adiposity.  相似文献   

20.
In the United States, the metabolic syndrome (MetS) constitutes a major public health problem with over 47 million persons meeting clinical criteria for MetS. Numerous studies have suggested genetic susceptibility to MetS. The goals of this study were (i) to identify susceptibility loci for MetS in well-characterized families with type 2 diabetes (T2D) in four ethnic groups and (ii) to determine whether evidence for linkage varies across the four groups. The GENNID study (Genetics of NIDDM) is a multicenter study established by the American Diabetes Association in 1993 and comprises a comprehensive, well-characterized resource of T2D families from four ethnic groups (whites, Mexican Americans, African Americans, and Japanese Americans). Principal component factor analysis (PCFA) was used to define quantitative phenotypes of the MetS. Variance components linkage analysis was conducted using microsatellite markers from a 10-cM genome-wide linkage scan, separately in each of the four ethnic groups. Three quantitative MetS factors were identified by PCFA and used as phenotypes for MetS: (i) a weight/waist factor, (ii) a blood pressure factor, and (iii) a lipid factor. Evidence for linkage to each of these factors was observed. For each ethnic group, our results suggest that several regions harbor susceptibility genes for the MetS. The strongest evidence for linkage for MetS phenotypes was observed on chromosome 2 (2q12.1-2q13) in the white sample and on chromosome 3 (3q26.1-3q29) in the Mexican-American sample. In conclusion, the results suggest that several regions harbor MetS susceptibility genes and that heterogeneity may exist across groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号