首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When 3T3-L1 preadipose cells are exposed to transforming growth factor β (TGFβ), they synthesize more extracellular matrix (ECM) and resist differentiation-inducing stimuli. The mechanism by which ECM suppresses adipose cell differentiation (adipogenesis) remains unknown. Since adipogenesis is an insulin/insulin-like growth factor-1 (IGF-1)-dependent process, we investigated whether TGFβ-induced ECM inhibits insulin signaling. When preadipose cells were pretreated overnight with TGFβ, we observed a 75% decrease in insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) compared to that in control cells. Culturing 3T3-L1 preadipose cells on fibronectin, a component of the ECM induced by TGFβ, also inhibited insulin-dependent IRS-1 tyrosine phosphorylation and adipogenesis, supporting a role for ECM in mediating TGFβ's inhibitory effect on insulin signaling. Since the insulin-stimulated association of phosphoinositide (PI) 3-kinase with IRS-1 depends on IRS-1 tyrosine phosphorylation, we measured the presence of the PI 3-kinase 85 kDa regulatory subunit in anti-IRS-1 immunoprecipitates. Following insulin stimulation, PI 3-kinase-IRS-1 association was reduced by 70% in TGFβ pretreated vs. control preadipose cells. However, insulin-stimulated cellular production of PI(3,4,5)P3 was unaltered by TGFβ pretreatment. This suggests that IRS-1-associated p85-type PI 3-kinase may represent a particular subset of total cellular PI 3-kinase that is specifically inhibited by TGFβ. Reduction of insulin-stimulated association of IRS-1 with p85-type PI 3-kinase by TGFβ may be one potential mechanism through which TGFβ blocks 3T3-L1 adipose cell differentiation. J. Cell. Physiol. 175:370–378, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Spontaneously arising, TGFβ1-resistant colonies were isolated directly from the soft agarose plates of MOSER human colon carcinoma cells grown in the presence of TGFβ1 but in the absence of serum. The colonies were cloned by limiting dilution and screened in a monolayer proliferation assay for sensitivity to TGFβ1 and TGFβ2 isoforms. Cell clones selectively sensitive or resistant to these isoforms in the growth inhibition assay displayed similar differential sensitivities to TGFβ isoforms for production of the extracellular matrix proteins laminin and fibronectin, as well as for the expression of the colon cell differentiation marker carcinoembryonic antigen. Differential receptor binding profiles for TGFβ1 and TGFβ2 were observed among the clones. The isolation of cell clones selectively resistant or sensitive to TGFβ isoforms as well as the identification of differential receptor binding profiles among the clones indicate the heterogeneity of TGFβ responsiveness that exists naturally in human colon tumor cells and stress the importance of defining mechanisms underlying differential responsiveness to TGFβ isoforms. © 1995 Wiley-Liss Inc.  相似文献   

3.
Transforming growth factorβ1 (TGFβ1) elicits a multitude of cellular responses from the epithelial-derived human colon cancer Moser cells. TGFβ1 induces the expression of laminin and fibronectin, and previous studies show that the induction of fibronectin is functionally associated with the regulation of carcinoembryonic antigen (CEA) expression by TGFβ1 (Huang and Chakrabarty, 1994, J Biol Chem 269:28764–28768). In this study we constructed antisense laminin chain-specific expression vectors and determined their efficacy in blocking the expression and the induction of the large multichain laminin molecule by TGFβ1. We also determined the functional role of laminin in several TGFβ1-mediated responses: growth inhibition, downmodulation of anchorage-independent growth, and cellular invasion. Expression of either antisense laminin chain A, B1, or B2 RNA resulted in a downmodulation of endogenous laminin mRNA expression and blocked the induction of laminin protein by TGFβ1 without affecting the induction of other adhesion molecules such as fibronectin or CEA. It is concluded that antisense RNA directed to only one of the laminin chains was sufficient to disrupt the induction of the complex laminin molecule in quite a specific manner. Expression of antisense laminin RNA downregulated cellular adhesion to extracellular matrix (ECM) laminin and blocked the ability of TGFβ1 to upmodulate adhesion to ECM laminin. Expression of antisense laminin RNA, however, did not alter the downregulating effect of TGFβ1 on cellular proliferation, anchorage-independent growth, or cellular invasion, suggesting that the induction of laminin did not play a significant functional role in these TGFβ1-mediated cellular responses. It is likely that other adhesion pathways may be involved in mediating the action of TGFβ1 in this cell line. J. Cell. Physiol. 178:296–303, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

4.
The transforming growth factor-β (TGF-β) has been shown to increase in lung injury and in fibrotic states of the lung. In the current study, we sought to investigate whether TGFβ1 induced the expression of IL-1α and IL-8 in rat alveolar epithelial cells. We evaluated TGFβ1, IL-1α, and IL-8 expression by immunofluorescence in silica-injured and saline-treated control rat lungs. Antibodies to IL-1α, IL-8, and TGFβ1 showed intense staining in silica-injured lungs as compared to saline-instilled lungs. Primary isolated type II cells from silica-injured lungs showed increased expression of IL-1α as compared to saline-instilled lungs. To evaluate the effects of TGFβ1, we treated an immortalized rat type II cell-derived cell line (LM5) with 100 pg/ml of TGFβ1 in serum-free medium for 0–24 hours and analyzed the expression of IL-1α and IL-8 mRNAs and proteins using semi-quantitative RT-PCR, Northern blot analysis, Western blot analysis, and immunohistochemistry. Densitometric analysis of Northern blots showed modest constitutive expression of IL-1α gene in untreated control LM5 cells. TGFβ1 treatment resulted in an increase in IL-1α mRNA, that reached maximum levels (4-fold) by 2 hours and remained elevated for 4–16 hours, with a subsequent decline by 24 hours. Similarly, Northern blot and RT-PCR analysis demonstrated that TGFβ1 treatment resulted in maximum induction of IL-8 mRNA (6–8.5-fold) within 1–4 hours. The levels remained elevated for up to 24 hours afterwards. Western blot analysis results further confirmed the expression of both IL-1α and IL-8 proteins by LM5 cells. TGFβ1 treatment resulted in increased expression of both IL-1α and IL-8 proteins. Immunofluorescence studies demonstrated increased staining of IL-1α by TGFβ1 as compared to untreated cells. These results suggest that TGFβ1 may regulate IL-1α and IL-8 expression in alveolar epithelial cells and contribute to polymorphonuclear leukocyte recruitment and lung injury in clinical states with increased TGFβ1. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The differentiation of 3T3-L1 preadipocytes is induced by the coordinate activation of trans-acting factors in response to inducers. Depending on the time of treatment, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was effective in inhibiting 3T3-L1 preadipocyte differentiation and the expression of differentiation-dependent trans-acting factors. Based on glycerol-3-phosphate dehydrogenase activity, the differentiation of 3T3-L1 cells was decreased by 70% in cells treated with TCDD before the induction of differentiation, 25% during induction, and not at all after induction. This time-dependent inhibition of cell differentiation by TCDD was correlated with the levels of aryl hydrocarbon receptor (AhR). TCDD treatment decreased the mRNA levels of C/EBPα and PPAR-γ2 but did not affect the mRNA levels of RXRα and RARα. Furthermore, TCDD did not change the mRNA or protein levels of C/EBPβ, which is thought to play a role in inducing C/EBPα and PPARγ2 expression. These results suggest that TCDD inhibited 3T3-L1 preadipocyte differentiation through the AhR pathway, and the change of C/EBPβ mRNA and protein was not involved in reducing mRNA expression of C/EBPα and PPARγ2.  相似文献   

6.
TGFβ1 is very important in the synthesis and degradation of extracellular matrix, and also in the mediation of human lung fibroblasts proliferation, and miR‐29 plays an important role in this process. To explore the interactions of miR‐29 family members and TGFβ1, the effects of transforming growth factor TGFβ1 on the expression of miR‐29 and whether miR‐29 is involved in pro‐survival signaling pathways mediated by TGFβ1 were examined in human lung fibroblasts. Treatment of the human embryonic lung fibroblast cell line IMR90 with TGFβ1 caused a decrease in expression of miR‐29a/b/c by real‐time PCR analysis. TGFβ1 stimulation increased cell proliferation, colony formation and up‐regulated expression of COL1A1; transfecting with miR‐29a/b/c mimics reverse TGFβ1‐induced phenotype changes in IMR90 cells. Western blot analyses showed that TGFβ1 treatment unchanged total protein expression levels of PI3K or AKT, but the expression levels of p‐PI3K, p‐AKT, and COL1A1 were increased; and miR‐19a/b/c mimics interfering blocked phosphorylation of PI3K or AKT and decreased expression of COL1A1 after TGFβ1 treatment. The results indicate that TGFβ1 beta uses the PI3k‐Akt pathway in these embryonic fibroblasts and miR29 blocks this activation pathway. It indicates a novel biological function of the PI3K‐Akt pathway in IMR90. Elevated expression of miR‐29 may play an important role in the pathogenesis of diseases related to fibrogenic reactions in human lung fibroblasts. J. Cell. Biochem. 114: 1336–1342, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The limitation in successfully acquiring large populations of stem cell has impeded their application. A new method based on the dedifferentiation of adult somatic cells to generate induced multipotent stem cells would allow us to obtain a large amount of autologous stem cells for regenerative medicine. The current work was proposed to induce a sub‐population of cells with characteristics of muscle stem cells from myoblasts through conditional treatment of transforming growth factor (TGF)‐β1. Our results show that a lower concentration of TGF‐β1 is able to promote C2C12 myoblasts to express stem cell markers as well as to repress myogenic proteins, which involves a mechanism of dedifferentiation. Moreover, TGF‐β1 treatment promoted the proliferation‐arrested C2C12 myoblasts to re‐enter the S‐phase. We also investigated the multi‐differentiation potentials of the dedifferentiated cells. TGF‐β1 pre‐treated C2C12 myoblasts were implanted into mice to repair dystrophic skeletal muscle or injured bone. In addition to the C2C12 myoblasts, similar effects of TGF‐β1 were also observed in the primary myoblasts of mice. Our results suggest that TGF‐β1 is effective as a molecular trigger for the dedifferentiation of skeletal muscle myoblasts and could be used to generate a large pool of progenitor cells that collectively behave as multipotent stem cell‐like cells for regenerative medicine applications.  相似文献   

8.
Transplanting stem cells differentiated towards a cardiac lineage can regenerate cardiac muscle tissues to treat myocardial infarction. In this study, we tested the hypothesis that transforming growth factor‐β1 (TGF‐β1) induces cardiomyogenic differentiation of adipose‐ derived stromal cells (ADSCs) in vitro. Rat ADSCs were cultured with TGF‐β1 (10 ng ml?1) for 2 weeks in vitro. ADSCs cultured without TGF‐β1 served as a control. The mRNA expression of cardiac‐specific gene was induced by TGF‐β1, while the control culture did not show cardiac‐specific gene expression. Immunocytochemical analyses showed that a small fraction of ADSCs cultured with TGF‐β1 for 2 weeks stained positively for cardiac myosin heavy chain (MHC) and α‐sarcomeric actin. Flow cytometric analyses showed that the proportion of cells expressing cardiac MHC increased with TGF‐β1. However, no mesenchymal differentiation (e.g., osteogenic and adipogenic differentiation) was detected other than cardiomyogenic differentiation. These results showed that TGF‐β1 induce ADSC cardiomyogenic differentiation in vitro, which could be useful for myocardial infarction stem cell therapy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
10.
11.
12.
Excessive accumulation of a collagen‐rich extracellular matrix (ECM) by myofibroblasts is a characteristic feature of fibrosis, a pathological state leading to serious organ dysfunction. Transforming growth factor beta1 (TGFβ1) is a strong inducer of myofibroblast formation and subsequent collagen production. Currently, there are no remedies for the treatment of fibrosis. Activation of the nuclear factor kappa B (NF‐κB) pathway by phosphorylating IκB with the enzyme IκB kinase (IKK) plays a major role in the induction of fibrosis. ACHP {2‐Amino‐6‐[2‐(cyclopropylmethoxy)‐6‐hydroxyphenyl]‐4‐(4‐piperidinyl)‐3 pyridinecarbonitrile}, a selective inhibitor of IKK, prohibits the activation of the NF‐κB pathway. It is not known whether ACHP has potential anti‐fibrotic properties. Using adult human dermal and lung fibroblasts we have investigated whether ACHP has the ability to inhibit the TGFβ1‐induced transition of fibroblasts into myofibroblasts and its excessive synthesis of ECM. The presence of ACHP strongly suppressed the induction of the myofibroblast markers alpha‐smooth muscle actin (αSMA) and SM22α, as well as the deposition of the ECM components collagen type I and fibronectin. Furthermore, post‐treatment with ACHP partly reversed the expression of αSMA and collagen type I production. Finally, ACHP suppressed the expression of the three collagen‐modifying enzymes lysyl hydroxylase (PLOD1, PLOD2 and PLOD3) in dermal fibroblasts, but did not do so in lung fibroblasts. We conclude that the IKK inhibitor ACHP has potent antifibrotic properties, and that the NF‐κB pathway plays an important role in myofibroblast biology.  相似文献   

13.
Primary rat tracheal epithelial (RTE) cell cultures have previously been shown to be highly sensitive to growth inhibition by transforming growth factor-β1 (TGF-β1) when treated within 1–2 days after plating. The purpose of the present studies was to examine the effects of TGFβ1 on the growth of RTE cells as a function of time in culture. We found that the sensitivity of RTE cells to growth inhibition by TGFβ1 decreased dramatically as the cultures aged. The IC50 for inhibition of colony forming efficiency was 0.18 pM when TGFβ1 was added 24 h after cell plating. When TGFβ1 treatment was begun on day 5 of culture, the IC50 was 3–4 pM as measured by inhibition of growth (cell number) and DNA synthesis. However, when TGFβ1 was begun on day 19, the IC50 was 65 pM or > 500 pM, depending on whether inhibition of growth or DNA synthesis, respectively, was measured. TGFβ1 accelerated cell death, as measured by exfoliation of cells, and inhibited cell proliferation. The decrease in responsiveness to TGFβ1 in late cultures was shown to be dependent on culture age as well as on cell density. No evidence was found for inactivation or degradation of the added TGFβ1 by the late stage cultures. Cells subcultured from late stage primary cultures remained less responsive to TGFβ1 than subcultured cells from early cultures. Similar to its effect on proliferation, TGFβ1 down-regulated the expression of two proliferation-related genes, c-myc and transforming growth factor-α, in early but not late RTE cell cultures. On the other hand, fibronectin expression was increased by TGFβ1 by about twofold at both early and late times in culture. This indicates that the changes in TGFβ1 responsiveness with time in culture are selective, apparently affecting primarily proliferation-related events. © 1992 Wiley-Liss, Inc.  相似文献   

14.
Recent studies have suggested that platelet‐rich plasma (PRP) injections are an effective way to retard intervertebral disc degeneration, but the mechanism of action is unclear. Activated platelets release some growth factors, such as transforming growth factor‐β1 (TGF‐β1), which positively modulate the extracellular matrix of nucleus pulposus cells. The purpose of this study was to explore the mechanism underlying the PRP‐mediated inhibition of intervertebral disc degeneration. In an in vitro study, we found that the proliferation of nucleus pulposus cells was greatly enhanced with 2.5% PRP treatment. The TGF‐β1 concentration was much higher after PRP treatment. PRP administration effectively increased the collagen II, aggrecan and sox‐9 mRNA levels and decreased collagen X levels. However, Western blotting demonstrated that specifically inhibiting TGF‐β1 signalling could significantly prevent nucleus pulpous cellular expression of Smad2/3 and matrix protein. In a rabbit study, magnetic resonance imaging revealed significant recovery signal intensity in the intervertebral discs of the PRP injection group compared with the very low signal intensity in the control groups. Histologically, the PRP plus inhibitor injection group had significantly lower expression levels of Smad2/3 and collagen II than the PRP group. These results demonstrated that a high TGF‐β1 content in the platelets retarded disc degeneration in vitro and in vivo. Inhibiting the TGF‐β1/Smad2/3 pathway could prevent this recovery by inactivating Smad2/3 and down‐regulating the extracellular matrix. Therefore, the TGF‐β1/Smad2/3 pathway might play a critical role in the ability of PRP to retard intervertebral disc degeneration.  相似文献   

15.
The expression of ANK, a key player in biomineralization, is stimulated by treatment with TGFβ. The purpose of this study was to determine whether TGFβ stimulation of ANK expression during chondrogenesis was dependent upon the influx of calcium and phosphate into cells. Treatment of ATDC5 cells with TGFβ increased ANK expression during all phases of chondrogenic differentiation, particularly at day 14 (proliferation) and day 32 (mineralizing hypertrophy) of culture. Phosphate uptake studies in the presence and absence of phosphonoformic acid (PFA), a competitive inhibitor of the type III Na+/Pi channels Pit‐1 and Pit‐2, indicated that the stimulation of ANK expression by TGFβ required the influx of phosphate, specifically by the Pit‐1 transporter, at all phases of differentiation. At hypertrophy, when alkaline phosphatase is highly expressed, inhibition of its activity with levamisole also abrogated the stimulatory effect of TGFβ on ANK expression, further illustrating that Pi availability and uptake by the cells is necessary for stimulation of ANK expression in response to TGFβ. Since previous studies of endochondral ossification in the growth plate have shown that L‐type calcium channels are essential for chondrogenesis, we investigated their role in the TGFβ‐stimulated ANK response in ATDC5 cells. Treatment with nifedipine to inhibit calcium influx via the L‐type channel Cav1.2 (α1C) inhibited the TGFβ stimulated increase in ANK expression at all phases of chondrogenesis. Our findings indicate that TGFβ stimulation of ANK expression is dependent upon the influx of phosphate and calcium into ATDC5 cells at all stages of differentiation. J. Cell. Physiol. 224: 540–548, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
17.
Transforming growth factor β (TGF‐β) is a master regulator of autocrine and paracrine signaling pathways between a tumor and its microenvironment. Decreased expression of TGF‐β type II receptor (TβRII) in stromal cells is associated with increased tumor metastasis and shorter patient survival. In this study, SILAC quantitative proteomics was used to identify differentially externalized proteins in the conditioned media from the mammary fibroblasts with or without intact TβRII. Over 1000 proteins were identified and their relative differential levels were quantified. Immunoassays were used to further validate identification and quantification of the proteomic results. Differential expression was detected for various extracellular proteins, including proteases and their inhibitors, growth factors, cytokines, and extracellular matrix proteins. CXCL10, a cytokine found to be up‐regulated in the TβRII knockout mammary fibroblasts, is shown to directly stimulate breast tumor cell proliferation and migration. Overall, this study revealed hundreds of specific extracellular protein changes modulated by deletion of TβRII in mammary fibroblasts, which may play important roles in the tumor microenvironment. These results warrant further investigation into the effects of inhibiting the TGF‐β signaling pathway in fibroblasts because systemic inhibition of TGF‐β signaling pathways is being considered as a potential cancer therapy.  相似文献   

18.
19.
Transforming growth factor (TGF) β2 and fibroblast growth factor (FGF) 2 are involved in regulation of posterior capsule opacification (PCO) and other processes of epithelial–mesenchymal transition (EMT) such as cancer progression, wound healing and tissue fibrosis as well as normal embryonic development. We previously used an in vivo rodent PCO model to show the expression of tropomyosin (Tpm) 1/2 was aberrantly up‐regulated in remodelling the actin cytoskeleton during EMT. In this in vitro study, we show the Tpms family of cytoskeleton proteins are involved in regulating and stabilizing actin microfilaments (F‐actin) and are induced by TGFβ2 during EMT in lens epithelial cells (LECs). Importantly, we found TGFβ2 and FGF2 played contrasting roles. Stress fibre formation and up‐regulation of α‐smooth muscle actin (αSMA) induced by TGFβ2 could be reversed by Tpm1/2 knock‐down by siRNA. Expression of Tpm1/2 and stress fibre formation induced by TGFβ2 could be reversed by FGF2. Furthermore, FGF2 delivery to TGFβ‐treated LECs perturbed EMT by reactivating the mitogen‐activated protein kinase (MAPK)/ extracellular signal‐regulated kinase (ERK) pathway and subsequently enhanced EMT. Conversely, MEK inhibitor (PD98059) abated the FGF2‐mediated Tpm1/2 and αSMA suppression. However, we found that normal LECs which underwent EMT showed enhanced migration in response to combined TGFβ and FGF2 stimulation. These findings may help clarify the mechanism reprogramming the actin cytoskeleton during morphogenetic EMT cell proliferation and fibre regeneration in PCO. We propose that understanding the physiological link between levels of FGF2, Tpm1/2 expression and TGFβs‐driven EMT orchestration may provide clue(s) to develop therapeutic strategies to treat PCO based on Tpm1/2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号