首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of 60 Hz magnetic fields of 5 μT (50 mG) or less on biological structures holding magnetite (Fe3O4) are shown to be much smaller than that from thermal agitation; hence such interactions cannot be expected to be biologically significant. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Although extremely low frequency (ELF) magnetic fields (<300 Hz) appear to exert a variety of biological effects, the magnetic field sensing/transduction mechanism(s) remains to be established. Here, using the inhibitory effects of magnetic fields on endogenous opioid peptide-mediated “analgaesic” response of the land snail. Cepaea nemoralis, we addressed the mechanism(s) of action of ELF magnetic fields. Indirect mechanisms involving both induced electric fields and direct magnetic field detection mechanisms (e.g., magnetite, parametric resonance) were evaluated. Snails were exposed to a static magnetic field (BDC=78±1 μT) and to a 60 Hz magnetic field (BAC=299±1 μT peak) with the angle between the static and 60 Hz magnetic fields varied in eight steps between 0° and 90°. At 0° and 90°, the magnetic field reduced opioid-induced analgaesia by approximately 20%, and this inhibition was increased to a maximum of 50% when the angle was between 50° and 70°. Because BAC was fixed in amplitude, direction, and frequency, any induced electric currents would be constant independent of the BAC/BDC angle. Also, an energy transduction mechanism involving magnetite should show greatest sensitivity at 90°. Therefore, the energy transduction mechanism probably does not involve induced electric currents or magnetite. Rather, our results suggest a direct magnetic field detection mechanism consistent with the parametric resonance model proposed by Lednev. © 1996 Wiley-Liss, Inc.  相似文献   

3.
We have shown that 50 Hz sinusoidal magnetic fields within the 5-10 micro Tesla (μT) rms range cause an intensity-dependent reduction in nerve growth factor (NGF) stimulation of neurite outgrowth (NO) in PC-12 cells. Here we report on the frequency dependence of this response over the 15-70 Hz range at 5 Hz intervals. Primed PC-12 cells were plated in collagen-coated, 60 mm plastic petri dishes with or without 5 ng/ml NGF and were exposed to sinusoidal magnetic fields for 22 h in a CO2 incubator at 37 °C. One 1,000-turn coil, 20 cm in diameter, generated vertically oriented magnetic fields. The dishes were stacked on the center axis of the coil to provide a range of intensities between 3.5 and 9.0 μT rms. The flux density of the ambient DC magnetic field was 37 μT vertical and 19 μT horizontal. The assay consisted of counting over 100 cells in the central portion (radius ≤0.3 cm) of each dish and scoring cells positive for NO. Sham exposure of cells treated identically with NGF demonstrated no difference in the percentage of cells with NO between exposed and magnetically shielded locations within the incubator. Analysis of variance demonstrated flux density-dependent reductions in NGF-stimulated NO over the 35-70 Hz frequency range, whereas frequencies between 15 Hz and 30 Hz produced no obvious reduction. The results also demonstrated a relative maximal sensitivity of cells at 40 Hz with a possible additional sensitivity region at or above 70 Hz. These findings suggest a biological influence of perpendicular AC/DC magnetic fields different from those identified by the ion parametric resonance model, which uses strictly parallel AC/DC fields. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Two separate, independent experiments were conducted to evaluate the effect of 60 Hz linearly polarized, sinusoidal, continuous-wave magnetic fields (MFs) on immune system performances in rats born and raised under these fields. Each experiment lasted for 6 weeks. A total of 96 animals, divided into groups of eight animals each, was exposed for 20 h/day to MFs of different intensities, i.e., sham (<0.02 μT) and 2, 20, 200, and 2000 μT. Another group of animals, which was housed in a separate room, served as cage controls (CC). These animals were exposed to ambient MFs of <0.02 μT. The following immune responses were evaluated in both experiments: total T and B cells; CD4+ and CD8+ subpopulation and natural killer (NK) cell activity in splenic lymphocytes; hydrogen peroxide (H2O2), nitrous oxide (NO), and tumor necrosis factor (TNF) production by peritoneal macrophages. Our results show that a 6 week exposure to MFs induced a significant decrease in the number of CD5+, CD4+, and CD8+ populations. These changes were even more significant in rats that were exposed to fields of 2000 μT. A lower, although significant, decrease in the CD5+ population was also observed in animals that were exposed to fields of 200 μT. Linear regression analysis demonstrated a dose effect with MF intensity. B lymphocyte (Ig+ cell) populations also showed a 12% decrease (P < .05) in the groups that were exposed to fields of 20 and 200 μT. However, these results were not significant, and no relation with MF intensities could be demonstrated. In contrast, evaluation of splenic NK cell activity revealed a 50% increase (P < .05) in animals that were exposed to fields of 2000 μT. No significant results were obtained from the evaluation of TNF activity and NO secretion in peritoneal macrophages. Phorbol 12-myristate 13-acetate (PMA)-stimulated and net H2O2 productions for a minor subpopulation of peritoneal cells showed positive dose-response correlations by linear regression analysis. Taken together, our results suggest that an in vivo exposure of rats for 6 weeks to 60 Hz MFs can induce significant immunological perturbations on effector cells of both natural and adaptive immunity in a dose-dependent fashion. © 1996 Wiley-Liss, Inc.  相似文献   

5.
We have previously reported that environmental-level magnetic fields (1.2 μT [12 milligauss], 60 Hz) block the growth inhibition of the hormone melatonin (10−9 M) on MCF-7 human breast cancer cells in vitro. We now report that the same 1.2 μT, 60 Hz magnetic fields significantly block the growth inhibitory action of pharmacological levels of tamoxifen (10−7 M). In biophysical studies we have taken advantage of Faraday's Law of Current Induction and tested whether the 1.2 μT magnetic field or the associated induced electric field is responsible for this field effect on melatonin and tamoxifen. We observe that the magnetic field component is associated with the field blocking effect on melatonin and tamoxifen function. To our knowledge the tamoxifen studies represent the first experimental evidence for an environmental-level magnetic field modification of drug interaction with human breast cancer cells. Together, these findings provide support to the theory that environmental-level magnetic fields can act to modify the action of a drug or hormone on regulation of cell proliferation. Melatonin and tamoxifen may act through different biological pathways to down-regulate cell growth, and further studies are required to identify a specific biological site of interaction for the 1.2 μT magnetic field. Bioelectromagnetics 18:555–562, 1997. Published 1997 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    6.
    We have investigated the effects of sinusoidal electromagnetic fields (EMF) on ion transport (Ca2+, Na+, K+, and H+) in several cell types (red blood cells, thymocytes, Ehrlich ascites tumor cells, and HL60 and U937 human leukemia cells). The effects on the uptake of radioactive tracers as well as on the cytosolic Ca2+ concentration ([Ca2+]i), the intracellular pH (pHi), and the transmembrane potentsial (TMP) were studied. Exposure to EMF at 50 Hz and 100–2000 μT (rms) had no significant effects on any of these parameters. Exposure to EMF of 20–1200 μT (rms) at the estimated cyclotron magnetic resonance frequencies for the respective ions had no significant effects except for a 12–32% increase of the uptake of 42K within a window at 14.5–15.5 Hz and 100–200 μT (rms), which was found in U937 and Ehrlich cells but not in the other cell types. © 1994 Wiley-Liss, Inc.  相似文献   

    7.
    We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 μT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 μT and 50.6 μT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4–30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 μT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 μT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands: 95% CI = 1.3–64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed. © 1995 Wiley-Liss, Inc.  相似文献   

    8.
    9.
    The purpose of this study was to determine if 60 Hz magnetic fields can alter the clinical progression of leukemia in an animal model. Large granular lymphocytic (LGL) leukemia cells from spleens of leukemic rats were transplanted into young male Fischer 344 rats, producing signs of leukemia in approximately 2–3 months. The animals were randomly assigned to 4 treatment groups (108/group) as follows: 1) 10 G (1.0 mT) linearly polarized 60 Hz magnetic fields, 2) sham exposed [null energized unit with residual 20 mG (2 μT) fields], 3) ambient controls [<1 mG (0.1 μT)], and 4) positive controls (a single 5 Gy whole body exposure to 60Co 4 days prior to initiation of exposure). All rats were injected intraperitoneally (ip) with 2.2 × 107 LGL leukemic cells at the initiation of exposure or sham exposure. The magnetic fields were activated for 20 h/day, 7 days/week, allowing time for animal care. The experimental fields were in addition to natural ambient magnetic fields. Eighteen rats from each treatment group were bled, killed, and evaluated at 5, 6, 7, 8, 9, and 11 weeks of exposure. Peripheral blood hematological endpoints, changes in spleen growth, and LGL cell infiltration into the spleen and liver were measured to evaluate the leukemia progression. No significant or consistent differences were detected between the magnetic field exposed groups and the ambient control group, although the clinical progress of leukemia was enhanced in the positive control animals. These data indicate that exposure to sinusoidal, linearly polarized 60 Hz, 10 G magnetic fields did not significantly alter the clinical progression of LGL leukemia. Furthermore, the data are in general agreement with previous results of a companion repeated‐bleeding study in which animals were exposed for 18 weeks. Bioelectromagnetics 20:48–56, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

    10.
    The effect of extremely low frequency and low amplitude magnetic fields on gap junctional permeability was investigated by using reconstituted connexin32 hemi channel in liposomes. Cytochrome c was loaded inside these proteoliposomes and its reduction upon addition of ascorbate in the bulk aqueous phase was adopted as the index of hemi channel permeability. The permeability rate of the hemi channels, expressed as ΔA/min, was dependent on the incubation temperature of proteoliposomes. The effect of exposures to magnetic fields at different frequencies (7, 13 and 18 Hz) and amplitudes (50, 50 and 70 μT, respectively), and at different temperatures (16, 18 and 24 °C) was studied. Only the exposure of proteoliposomes to 18-Hz (Bacpeak and Bdc=70 μT) magnetic field for 60 min at 16±0.4 °C resulted in a significant enhancement of the hemi channel permeability from ΔA/min=0.0007±0.0002 to ΔA/min=0.0010±0.0001 (P=0.030). This enhancement was not found for magnetic field exposures of liposomes kept at the higher temperatures tested. Temperature appears to influence lipid bilayer arrangement in such a way as being capable to mask possible effects induced by the magnetic field. Although the observed effect was very low, it seems to confirm the applicability of our model previously proposed for the interaction of low frequency electromagnetic fields with lipid membrane.  相似文献   

    11.
    PC-12 cells primed with nerve growth factor (NGF) were exposed to sinusoidal extremely-low-frequency (ELF) magnetic fields (MFs) selected to test the predictions of the ion parametric resonance (IPR) model under resonance conditions for a single ion (hydrogen). We examined the field effects on the neurite outgrowth (NO) induced by NGF using three different combinations of flux densities of the parallel components of the AC MF (Bac) and the static MF (Bdc). The first test examined the NO response in cells exposed to 45 Hz at a Bdc of 2.96 μT with resonant conditions for H+ according to the model. The Bac values ranged from 0.29 to 4.11 μT root-mean-square (rms). In the second test, the MF effects at off-resonance conditions (i.e., no biologically significant ion at resonance) were examined using the frequency of 45 Hz with a Bdc of 1.97 μT and covering a Bac range between 0.79 and 2.05 μT rms. In the third test, the AC frequency was changed to 30 Hz with the subsequent change in Bdc to 1.97 μT to tune for H+ as in the first test. The Bac values ranged from 0.79 to 2.05 μT rms. After a 23 h incubation and exposure to the MF in the presence of NGF (5 ng/ml), the NO was analyzed using a stereoscopic microscope. The results showed that the NGF stimulation of neurite outgrowth (NSNO) was affected by MF combinations over most of the Bac exposure range generally consistent with the predictions of the IPR model. However, for a distinct range of Bac where the IPR model predicted maximal ionic influence, the observed pattern of NSNO contrasted sharply with those predictions. The symmetry of this response suggests that values of Bac within this distinct range may trigger alternate or additional cellular mechanisms that lead to an apparent lack of response to the MF stimulus. © 1996 Wiley-Liss, Inc.  相似文献   

    12.
    The effect of magnetic fields (50 Hz, 100 μTrms sinusoidal magnetic field combined with a 55 μT geomagnetic-like field) and/or gamma rays of 60 Cobalt on the expression of the c-jun and c-fos proteins was investigated in primary rat tracheal epithelial cells and two related immortalized cell lines. Quite similar patterns and amplitudes of induction of these proteins were evidenced after either ionizing radiation or magnetic field exposure. No synergism after both treatments was observed. These findings suggest that magnetic fields explored in the present study may be considered as an insult at the cellular level. Bioelectromagnetics 19: 112–116, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

    13.
    The effects of extremely low frequency (ELF) magnetic fields on membrane F0F1‐ATPase activity have been studied. When the F0F1‐ATPase was exposed to 60 Hz magnetic fields of different magnetic intensities, 0.3 and 0.5 mT magnetic fields enhanced the hydrolysis activity, whereas 0.1 mT exposure caused no significant changes. Even if the F0F1‐ATPase was inhibited by N,N‐dicyclohexylcarbodiimide, its hydrolysis activity was enhanced by a 0.5 mT 60 Hz magnetic field. Moreover, when the chromatophores which were labeled with F‐DHPE were exposed to a 0.5 mT, 60 Hz magnetic field, it was found that the pH of the outer membrane of the chromatophore was unchanged, which suggested that the magnetic fields used in this work did not affect the activity of F0. Taken together, our results show that the effects of magnetic fields on the hydrolysis activity of the membrane F0F1‐ATPases were dependent on magnetic intensity and the threshold intensity is between 0.1 and 0.3 mT, and suggested that the F1 part of F0F1‐ATPase may be an end‐point affected by magnetic fields. Bioelectromagnetics 30:663–668, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

    14.
    The question whether very weak, low frequency magnetic fields can affect biological matter is still under debate. The theoretical possibility of such an interaction is often questioned and the site of interaction in the cell is unknown. In the present study, the influence of extremely weak 60 Hz magnetic fields on the transport of Ca2+ was studied in a biological system consisting of highly purified plasma membrane vesicles. We tested a newly proposed quantum mechanical model postulates that polarization of hydrogen nuclei can elicit a biological effect. Vesicles were exposed for half an hour at 32 °C and the calcium efflux was studied using radioactive 45Ca2+ as a tracer. A static magnetic field of 26 µT and time‐varying magnetic fields with a frequency of 60 Hz and amplitudes between 0.6 and 6.3 µT were used. The predictions of the model, proposed by Lednev, that at a frequency of 60 Hz the biological effect under investigation would significantly be altered at the amplitudes of 1.3 and 3.9 µT could not be confirmed. Bioelectromagnetics 33:535–542, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

    15.
    We recently reported that cephalic regeneration in the planarian Dugesia tigrina was significantly delayed in populations exposed continuously to combined parallel DC and AC magnetic fields. This effect was consistent with hypotheses suggesting an underlying resonance phenomenon. We report here, in a parallel series of investigations on the same model system, that the incidence of regeneration anomalies presenting as tumor-like protuberances also increases significantly (P < .001) in association with exposure to weak 60 Hz magnetic fields, with peak intensities ranging between 1.0 and 80.0 μT. These anomalies often culminate in the complete disaggregation of the organism. Similar to regeneration rate effects, the incidence of regeneration anomalies is specifically dependent upon the planaria possessing a fixed orientation with respect to the applied magnetic field vectors. However, unlike the regeneration rate effects, the AC magnetic field alone, in the absence of any measurable DC field, is capable of producing these anomalies. Moreover, the incidence of regeneration anomalies follows a clear dose-response relationship as a function of AC magnetic field intensity, with the threshold for induced electric field intensity estimated at 5 μV/m. The addition of either 51.1 or 78.4 μT DC magnetic fields, applied in parallel combination with the AC field, enhances the appearance of anomalies relative to the 60 Hz AC field alone, but only at certain AC field intensities. Thus, whereas our previous study of regeneration rate effects appeared to involve exclusively resonance interactions, the regeneration anomalies reported here appear to result primarily from Faraday induction coupling. These results together with those reported previously point to two distinct physiological effects produced in regenerating planaria by exposure to weak extremely-low-frequency (ELF) magnetic fields. They further suggest that the planarian, which has recently been identified elsewhere as an excellent system for use in teratogenic investigations involving chemical teratogens, might be used similarly in teratogenic investigations involving ELF magnetic fields. © 1996 Wiley-Liss, Inc.  相似文献   

    16.
    Several studies have indicated that weak, extremely-low-frequency (ELF; 1–100 Hz) magnetic fields affect brain electrical activity and memory processes in man and laboratory animals. Our studies sought to determine whether ELF magnetic fields could couple directly with brain tissue and affect neuronal activity in vitro. We used rat hippocampal slices to study field effects on a specific brain activity known as rhythmic slow activity (RSA), or theta rhythm, which occurs in 7–15 s bursts in the hippocampus during memory functions. RSA, which, in vivo, is a cholinergic activity, is induced in hippocampal slices by perfusion of the tissue with carbachol, a stable analog of acetylcholine. We previously demonstrated that the free radical nitric oxide (NO), synthesized in carbachol-treated hippocampal slices, lengthened and destabilized the intervals between successive RSA episodes. Here, we investigate the possibility that sinusoidal ELF magnetic fields could trigger the NO-dependent perturbation of the rate of occurrence of the RSA episodes. Carbachol-treated slices were exposed for 10 min epochs to 1 or 60 Hz magnetic fields with field intensities of 5.6, 56, or 560 μT (rms), or they were sham exposed. All exposures took place in the presence of an ambient DC field of 45 μT, with an angle of -66° from the horizontal plane. Sinusoidal 1 Hz fields at 56 and 560 μT, but not at 5.6 μT, triggered the irreversible destabilization of RSA intervals. Fields at 60 Hz resulted in similar, but not statistically significant, trends. Fields had no effects on RSA when NO synthesis was pharmacologically inhibited. However, field effects could take place when extracellular NO, diffusing from its cell of origin to the extracellular space, was chelated by hemoglobin. These results suggest that ELF magnetic fields exert a strong influence on NO systems in the brain; therefore, they could modulate the functional state of a variety of neuronal ensembles. © 1996 Wiley-Liss, Inc.  相似文献   

    17.
    The effects of magnetic fields of extremely low frequency (ELF, 21 μT r.m.s.) on cells of different Escherichia coli K12 strains and human lymphocytes were studied by the method of anomalous viscosity time dependence (AVTD). Within the frequency range of 6–24 Hz, two resonance-type frequency windows with maximal effects at 9 Hz and 16 Hz were observed in response of GE499 strain. Only one frequency window with maximum effect at 8.5 Hz was found for GE500 cells. These data along with previously obtained for two other E. coli strains, AB1157 and EMG2, indicate that frequency windows are dependent on genotype of cells exposed to ELF. Resonance-type effects of ELF were also observed in human lymphocytes in frequency windows around 8 and 58 Hz. These ELF effects differed significantly between studied donors, but were well reproducible in independent experiments with lymphocytes from the same donors. The frequency windows in response of E. coli strains and human lymphocytes to ELF significantly overlapped suggesting that the same targets may be involved in this response. We compared the frequency windows with predictions based on the ion cyclotron resonance (ICR) model and the magnetic parametric resonance model. These models predicted effects of ELF magnetic fields at the ‘cyclotron’ frequencies of some ions of biological relevance. According to the ICR model, ELF effects should be also observed at harmonics of cyclotron frequencies and, contrary, parametric resonance model predicted effects at subharmonics. While we observed coincidence of each experimental resonance frequency with predictions of one of these two models, all experimentally defined effective frequency windows were in good agreement with relatively narrow frequency ranges of both harmonics and subharmonics for natural isotopes of Na, K, Ca, Mg, and Zn ions. The experimental data support idea that both harmonics and subharmonics of several biologically important ions are involved in frequency-dependent ELF effects in cells of different types.  相似文献   

    18.
    Our recent studies have shown a significant increase in the frequency of chromosomal aberrations in human amniotic cells after exposure to a sinusoidal 50 Hz, 30 μT (rms) magnetic field. To evaluate further interactions between chromosomes and electromagnetic fields, we have analyzed the effects of intermittent exposure. Amniotic cells were exposed for 72 h to a 50 Hz, 30 μT (rms) magnetic field in a 15 s on and 15 s off fashion. Eight experiments with cells from different fetuses were performed. The results show a 4% mean frequency of aberrations among exposed cells compared to 2% in sham-exposed cells. The difference is statistically significant, with P < 0.05 both excluding and including gaps. In another series of eight experiments, the cells were exposed in the same way but with the field on for 2 s and off for 20 s. Also in these experiments a similar increase in the frequency of chromosomal aberrations was seen, but only when the analysis included gaps. Continuous exposure for 72 h to 300 μT, 50 Hz, did not increase the frequency of chromosomal aberrations. The background electromagnetic fields at different locations within the two incubators used was carefully checked and was nowhere found to exceed 120 nT. Likewise, the background level of chromosomal aberrations in cells cultured at different locations in the incubators showed no significant interculture differences. © 1994 Wiley-Liss, Inc.  相似文献   

    19.
    The effect of exposure of single rat pituitary cells to 50 Hz sine wave magnetic fields of various strengths on the intracellular free Ca2+ concentration ([Ca2+]i) was studied by using dual-emission microfluorimetry, using indo-1 as probe. A 30 min exposure of the cells to vertical 50 μT peak magnetic field triggered a long-lasting increase in [Ca2+]i from a basal value of about 185 ± 4 nM to 326 ± 41 nM (S.E.; n = 150). The vertical and horizontal components of the static magnetic field were 57 and 15 μT, respectively. The 50 Hz ambient magnetic field was always below 0.1 μT rms. The effect was observed both at 25 ± 2 °C and at 37 ± 2 °C. Responsive cells, for which [Ca2+]i rose to values above 309 nM, were identified as lactotrophs and represented 29% of the total pituitaries. [Ca2+]i increase, for the most part, was due to Ca2+ influx through voltage-dependent dihydropiridine-sensitive calcium channels inhibited by PN 200-110. However, neither Ca2+ channel blockers nor removal of Ca2+ from the external medium during exposure completely prevented the field-induced [Ca2+]i increase. Additional experiments using an MTT colorimetric assay showed that alteration of Ca2+ homeostasis of lactotrophs was associated with impairment of some mitochondrial processes. © Wiley-Liss, Inc.  相似文献   

    20.
    To explore possible biochemical mechanisms whereby electromagnetic fields of around 0.1 mT might affect immune cells or developing cancer cells, we studied intracellular calcium signaling in the model system Jurkat E6-1 human T-leukemia cells during and following exposure to a 60 Hz magnetic field. Cells were labeled with the intracellular calcium-sensitive fluorescent dye Fluo-3, stimulated with a monoclonal antibody against the cell surface structure CD3 (associated with ligand-stimulated T-cell activation), and analyzed on a FACScan flow-cytometer for increases in intensity of emissions in the range of 515–545 nm. Cells were exposed during or before calcium signal-stimulation to 0.15 mTrms 60 Hz magnetic field. The total DC magnetic field of 78.2 μT was aligned 17.5° off the vertical axis. Experiments used both cells cultured at optimal conditions at 37 °C and cells grown under suboptimal conditions of 24 °C, lowered external calcium, or lowered anti-CD3 concentration. These experiments demonstrate that intracellular signaling in Jurkat E6-1 was not affected by a 60 Hz magnetic field when culture and calcium signal-stimulation were optimal or suboptimal. These results do not exclude field-induced calcium-related effects further down the calcium signaling pathway, such as on calmodulin or other calcium-sensitive enzymes. Bioelectromagnetics 18:439–445, 1997. © 1997 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号