首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the stereoselective pharmacokinetics of doxazosin enantiomers and their pharmacokinetic interaction were studied in rats. Enantiomer concentrations in plasma were measured using chiral high‐pressure liquid chromatography (HPLC) with fluorescence detection after oral or intravenous administration of (–)‐(R)‐doxazosin 3.0 mg/kg, (+)‐(S)‐doxazosin 3.0 mg/kg, and rac‐doxazosin 6.0 mg/kg. AUC values of (+)‐(S)‐doxazosin were always larger than those of (–)‐(R)‐doxazosin, regardless of oral or intravenous administration. The maximum plasma concentration (Cmax) value of (–)‐(R)‐doxazosin after oral administration was significantly higher when given alone (110.5 ± 46.4 ng/mL) versus in racemate (53.2 ± 19.7 ng/mL), whereas the Cmax value of (+)‐(S)‐doxazosin did not change significantly. The area under the curve (AUC) and Cmax values for (+)‐(S)‐doxazosin after intravenous administration were significantly lower, and its Cl value significantly higher, when given alone versus in racemate. We speculate that (–)‐(R)‐doxazosin increases (+)‐(S)‐doxazosin exposure probably by inhibiting the elimination of (+)‐(S)‐doxazosin, and the enantiomers may be competitively absorbed from the gastrointestinal tract. In conclusion, doxazosin pharmacokinetics are substantially stereospecific and enantiomer–enantiomer interaction occurs after rac‐administration. Chirality 27:738–744, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
The disposition of hydroxychloroquine enantiomers has been investigated in nine patients with rheumatoid arthritis following administration of a single dose of the racemate. Blood concentrations of (?)-(R)-hydroxychloroquine exceed those of (+)-(S)-hydroxychloroquine following both an oral and intravenous dose of the racemate. Maximum blood concentrations of (?)-(R)-hydroxychloroquine were higher than (+)-(S) -hydroxychloroquine after oral dosing (121 ± 56 and 99 ± 42 ng/ml, respectively, P = 0.009). The time to maximum concentration and the absorption half-life, calculated using deconvolution techniques, were similar for both enantiomers. The fractions of the dose of each enantiomer absorbed were similar, 0.74 and 0.77 for (?)-(R)- and (+)-(S)-hydroxychloroquine, respectively (P = 0.77). The data suggest that absorption of hydroxychloroquine is not enantioselective. The stereoselective disposition of hydroxychloroquine appears to be due to enantioselective metabolism and renal clearance, rather than stereoselectivity in absorption and distribution. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Reboxetine, (RS)-2-[(RS)-α-(2-ethoxyphenoxy)benzyl]morpholine methanesulphonate, is a racemic compound and consists of a mixture of the (R,R)- and (S,S)-enantiomers. The pharmacokinetics of reboxetine enantiomers were determined in a crossover study in three male beagle dogs. Each animal received the following oral treatments, separated by 1-week washout period: 10 mg/kg reboxetine, 5 mg/kg (R,R)- and 5 mg/kg (S,S)-. Plasma and urinary levels of the reboxetine enantiomers were monitored up to 48 h post-dosing using an enantiospecific HPLC method with fluorimetric detection (LOQ: 1.1 ng/ml in plasma and 5 ng/ml in urine for each enantiomer). After reboxetine administration mean tmax was about 1 h for both enantiomers. Cmax and AUC were about 1.5 times higher for the (R,R)- than for the (S,S)-enantiomer, mean values ± SD being 704 ± 330 and 427 ± 175 ng/ml for Cmax and 2,876 ± 1,354 and 1,998 ± 848 ng.h/ml for AUC, respectively. No differences between the (R,R)- and (S,S)-enantiomers were observed in t½ (3.9 h). Total recovery of the two enantiomers in urine was similar, the Ae (0–48 h) being 1.3 ± 0.7 and 1.1 ± 0.7% of the enantiomer dose for the (R,R)- and the (S,S)-enantiomers, respectively. No marked differences in the main plasma pharmacokinetic parameters were found for either enantiomer on administration of the single enantiomers or reboxetine. No chiral inversion was observed after administration of the separate enantiomers, as already observed in humans. Chirality 9:303–306, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
To determine the stereospecific pharmacokinetics and gastrointestinal permeability (GI) changes (surrogate measures of toxicity) in the rat following oral administration of S, R, and racemic ketorolac (KT), optically pure enantiomers (S and R 2.5 mg/kg), and racemic KT (5 mg/kg) were administered orally to male Sprague-Dawley rats and plasma samples were collected for 6 h post-dose for pharmacokinetic assessments. KT-induced changes in GI permeability were assessed using sucrose and 51Cr-EDTA as markers of gastroduodenal and distal intestinal permeability, respectively. After the racemate, R-KT was predominant in plasma (AUC S/R, 0.45). No significant differences in pharmacokinetic indices were evident following administration of the racemate as compared with individual enantiomers. In plasma, there was only negligible S-KT after administration of R-KT. After S-KT, on the other hand, AUC of R-KT was found to be 6.7% of that of S-KT. Both permeability markers showed considerable interanimal variability. Gastroduodenal permeability was significantly increased from baseline by the racemate but not by either of the two enantiomers administered alone. Permeability to 51Cr-EDTA was not significantly increased above baseline for any of the treatments. The plasma concentration of R-KT found after administration of S-KT may be from the < 2% chiral impurity which appears magnified due to its slower clearance as compared with its antipode. There is no evidence of a pharmacokinetic interaction between the enantiomers. Since 2.5 mg/kg S-KT is somewhat less toxic on the gastroduodenum than 5 mg/kg racemate, it may be a safer alternative to the latter, at least in the rat model.  相似文献   

5.
The protein binding of the enantiomers of gallopamil has been investigated in solutions of human serum albumin, α1-acid glycoprotein and serum. Over the range of concentrations attained after oral gallopamil administration, the binding of both enantiomers to albumin, α1-acid glycoprotein, and serum proteins was independent of gallopamil concentration. The binding to both human serum albumin (40 g/liter) [range of fraction bound (fb) R: 0.624 to 0.699; S: 0.502 to 0.605] and α1-acid glycoprotein (0.5 g/liter) (range of fb R: 0.530 to 0.718; S: 0.502 to 0.620) was stereoselective, favoring the (R)-enantiomer (predialysis gallopamil concentrations 2.5 to 10,000 ng/ml). When the enantiomers (predialysis gallopamil concentration 10 ng/ml) were studied separately in drug-free serum samples from six healthy volunteers the fraction of (S)-gallopamil bound (fb: 0.943 ± 0.016) was lower (P < 0.05) than that of (R)-gallopamil (fb: 0.960 ± 0.010). The serum protein binding of both (R)- and (S)-gallopamil was unaffected by their optical antipodes (fb R: 0.963 ± 0.011; S: 0.948 ± 0.015) indicating that at therapeutic concentrations a protein binding enantiomer–enantiomer interaction does not occur. The protein binding of (R)- and (S)-gallopamil ex vivo 2 h after single dose oral administration of 50 mg pseudoracemic gallopamil (fb R: 0.960 ± 0.010: predialysis [R] 6.9 to 35.3 ng/ml; S: 0.943 ± 0.016: predialysis [S] 9.5 to 30.7 ng/ml) was comparable to that observed in vitro in drug-free serum. Gallopamil metabolites formed during first-pass following oral administration, therefore, do not influence the protein binding of (R)- or (S)-gallopamil. © 1993 Wiley-Liss, Inc.  相似文献   

6.
To examine the stereoselectivity of biliary excretion, the optically pure enantiomers of ketoprofen (KT), ibuprofen (IBU), and flurbiprofen (FLU) were intravenously administered to normal and bile duct-cannulated rats at 10 mg/kg. The recovery of total KT in bile was significantly higher after administration of (S)-KT than after (R)-KT [90.1 ± 3.5% vs 68.8 ± 8.2%, n =3, P < 0.05]. In normal rats the terminal half-life of (R)-KT was significantly shorter than that of (S)-KT after administration of (R)-KT (2.2 ± 0.6 h vs 14.3 ± 4.9 h, n = 3, P < 0.05). The terminal half-life of both enantiomers was significantly shorter in rats with continuous bile drainage as compared to normal rats. No significant differences in pharmacokinetic parameters could be found between both enantiomers in bile duct-cannulated animals. The total amount of IBU in bile was slightly higher after administration of (S)-IBU than after (R)-IBU administration. The percentage of (R)-IBU after (R)-IBU administration, however, was very low [(R)-IBU: 1.5 ± 0.9%, (S)-IBU: 23.4 ± 5.8%]. In normal rats the clearance of (R)-IBU was significantly higher as compared to (S)-IBU. Differences in pharmacokinetic parameters between normal and bile duct-cannulated rats were not statistically significant due to high interindividual variability. The total recovery of FLU, which was excreted in bile to a lower extent than either KT or IBU, also tended to be greater after S-enantiomer administration. Only small amounts of (S)-FLU could be recovered in bile after (R)-FLU administration. The pharmacokinetic parameters did not differ significantly between (R)- and (S)-FLU or between normal and bile duct-cannulated rats due to its low inversion rate and low excretion via bile. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Conscious male Wistar SPF Riv:TOX rats were dosed intravenously with 2.5, 5, or 10 mg/kg rac-propranolol·HCl, or with 5 mg/kg of either (-)-(S)- or (+)-(R)-propranolol·HCl. Disposition of (-)-(S)- and (+)-(R)-propranolol after dosing of rac-propranolol was linear in the dose range examined. Total plasma clearance was not changed in animals dosed with the individual enantiomers compared to the animals that were dosed with rac-propranolol. However, for (-)-(S)-propranolol both volume of distribution and elimination half-life decreased, whereas for (+)-(R)-propranolol increases were observed for these characteristics, in animals dosed with the individual enantiomers. Our observations suggest that the (+)-(R)-enantiomer competes with (-)-(S)-propranolol for plasma protein binding sites, resulting in lower plasma protein binding of the (-)-(S)-enantiomer when the racemate is administered. From recent toxicological experiments, it was concluded that rac-propranolol is more toxic than the individual enantiomers in the rat, when dosed iv at the same total mass. It is concluded that the observed potentiation of toxic effects of propranolol enantiomers when administered as a racemate can at least partly be explained by a pharmacokinetic interaction. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The enantioselective pharmacokinetics of TJ0711 hydrochloride were studied in rats given different doses of rac‐TJ0711 hydrochloride via intravenous and oral routes. R‐ and S‐TJ0711 hydrochloride were both rapidly absorbed, and the average AUC0‐∞ of R‐TJ0711 hydrochloride was greater than that of S‐TJ0711 hydrochloride after intragastric administration, with an R/S AUC ratio 1.11 and 1.35 for 30 and 50 mg/kg dose group, respectively. In contrast, the average AUC0‐∞ of R‐TJ0711 hydrochloride was smaller than that of S‐TJ0711 hydrochloride after intravenous injection, with an R/S AUC ratio 0.57 and 0.73 for 10 and 20 mg/kg dose group, respectively. R‐TJ0711 hydrochloride plasma half‐lives were shorter than those of S‐TJ0711 hydrochloride for all groups. AUC0‐4h and Cmax between the two enantiomers were significantly different after oral administration of 50 mg/kg dose of the racemate, while no significant differences between the two enantiomers were found for all the pharmacokinetic parameters of the 30 mg/kg dose group. Significant differences between the two enantiomers were detected for nearly all the pharmacokinetic parameters after intravenous administration, except for the VZ of 20 mg/kg dose group. This study suggests that dose and route of administration will influence the enantioselectivity in the pharmacokinetics of TJ0711 hydrochloride in rats. Chirality 27:53–57, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Pharmacokinetic studies are reported after single oral administration of 3 mg/kg of stereochemically pure (S)-ketoprofen [(S)-KP] and (R)-ketoprofen [(R)-KP] to three male Cynomolgus monkeys and after repeated administration for 6 months of 3, 15 and 75 mg/kg/day of (S)-KP to both male and female monkeys. A high-performance liquid chromatographic (HPLC) analysis was performed without derivatization of the samples, using a chiral column. The pharmacokinetic parameters for (S)-KP after administration of (S)-KP and for (R)-KP after administration of (R)-KP were, respectively, elimination half-life 2.32 ± 0.36 and 1.64 ± 0.40 h; oral clearance 3.50 ± 0.66 and 7.50 ± 3.20 ml/min/kg; apparent volume of distribution 0.74 ± 0.24 and 1.16 ± 0.76 liter/kg; mean residence time 1.79 ± 0.77 and 1.41 ± 0.65 h; area under the concentration/time curve 14.16 ± 2.93 and 7.31 ± 2.98 μg·h/ml. Forty-nine percent unidirectional bioinversion of (R)-KP to (S)-KP was observed in this species and the pharmacokinetic parameters for the (S)-KP resulting from this inversion were also calculated. In the study of 6-month repeated administration of (S)-KP, linear pharmacokinetic behavior and no evidence of drug accumulation were observed at the three dose levels. © 1994 Wiley-Liss, Inc.  相似文献   

10.
ML-1035, 4-amino-5-chloro-2-[2-(methylsulfinyl)ethoxy]-N-[2-(diethylamino)ethyl]benzamide, is a sulfoxide compound and a racemic gastroprokinetic agent with a chiral center at the sulfur atom. We have investigated the disposition kinetics of (R)-ML-1035 sulfoxide (R) and (S)-ML-1035 sulfoxide (S) after the single enantiomers and the racemic mixture were administered to rats in separate experiments. There was no noticeable chiral inversion after either enantiomer dose. Both enantiomers were rapidly absorbed. After dosing with enantiomers or with the racemate, the resulting plasma concentration-time curve of R was closely parallel to that of S in both intravenous and oral experiments, suggesting that the two enantiomers have approximately the same disposition kinetics. After intravenous enantiomer doses, only S underwent conversion to sulfide, suggesting that sulfidation in the liver is enantioselective. However, the enantioselective sulfidation after intravenous dosing did not introduce a difference in the global plasma disposition profiles between R and S, since the reduction reaction is a minor metabolic process. Other metabolic reactions such as sulfonation and mono-N-desethylations were not enantioselective. After oral administration, conversion to sulfide was observed for both enantioners, implicating the existence of a nonhepatic pathway in sulfidation. Administration of a prochiral sulfide dose was associated with an enantioselective sulfoxidation, in which the R/S concentration ratios increased as a function of time. In addition, enantiomeric interaction causing changes in pharmacokinetic parameters was observed after the oral racemate dose, while the interaction is negligible after an intravenous racemate dose, indicating a route dependency in enantiomeric interaction. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Amlodipine, 3-ethyl 5-methyl-2-[(2-aminoethoxymethyl]-4-(2-chlorophenyl)-1,4-dihydro-6-methyl-3,5-pyridinedicarboxylate, is a chiral calcium antagonist, currently on the market and in therapeutic use as a racemate. The pharmacokinetic behaviour of R-(+)- and S-(−)-amlodipine after single enantiomer administration to healthy male human volunteers together with comparative administration of the racemic mixture of both enantiomers were studied. Plasma levels were studied as a function of time and assayed using an enantioselective chromatographic method (coupled chiral and achiral HPLC) with on-line solid-phase extraction and UV absorbance detection. The method was validated separately for the R-(+)- and S-(−)-enantiomer, respectively. Results of the study indicate that the pharmacokinetic behaviour of R-(+)- and S-(−)-amlodipine after single enantiomer administration is comparable to that of each enantiomer after administration of the racemate. No racemization occurs in vivo in human plasma after single enantiomer administration.  相似文献   

12.
Ibutilide fumarate, a new drug for the treatment of cardiac arrhythmias, contains a stereogenic center bearing a secondary alcohol group. Several single dose and multiple dose studies of racemic ibutilide or its enantiomers were performed by the oral and intravenous routes in dogs. A chiral assay was used to examine racemization and the individual enantiomer pharmacokinetics. Following low oral or intravenous doses (approximately 0.3 mg/kg), the pharmacokinetics of the enantiomers were nearly identical, with no substantial chiral conversion. Both enantiomers exhibited high clearance rates, large volumes of distribution, and low oral bioavailability. As the dose increased, pharmacokinetic differences between the enantiomers were observed. The greatest differences (3-fold) were seen after oral administration at 4 mg/kg, indicating that first-pass metabolism of ibutilide was highly enantioselective at high doses. The clearances of the enantiomers differed by up to 34% at 5 mg/kg followed intravenous administration of the racemate. At high doses, other non-linear pharmacokinetic behavior was also apparent. The intravenous clearance of ibutilide declined from 5.3 L/h/kg at 0.3 mg/kg to 3.7 L/h/kg at a dose of 5 mg/kg. The absolute oral bioavailability of the racemate increased from 2% at 0.3 mg/kg to as much as 84% at 5 mg/kg. © 1996 Wiley-Liss, Inc.  相似文献   

13.
An enantioselective HPLC bioassay has been developed relying on extraction of (R)- and (S)-atenolol from alkalinized plasma or serum (pH > 12) into dichloromethane containing 5% (v/v) 1-butanol followed by an achiral derivatization of the drug with phosgene leading to (R)- and (S)-oxazolidine-2-one derivatives. Under these conditions there was quantitative conversion of the acetamido group to the corresponding nitrile. These stable derivatives were separated on a (R,R)-diaminocylohexane-dinitrobenzoyl chiral stationary phase [(R,R)-DACH-DNB] using dichloromethane/methanol 98/2 as mobile phase. Determination limits of 0.5 ng for (R)- and 0.6 ng for (S)-atenolol could be achieved using fluorimetric detection. The assay was applied to a human pharmacokinetic study which was performed in a randomized cross-over, double-blind fashion in 12 healthy volunteers, administering single oral doses of 100 mg (R,S)-, 50 mg (R)-, and 50 mg (S)-atenolol AUC0–24 and Cmax values of (R)-atenolol were slightly but significant higher than those of (S)-atenolol. The R/S ratios were 1.09 for AUC(R)/AUC(S) and 1.03 for Cmax (R)/Cmax(S) (P < 0.01) respectively after administration of the racemic drug. However, there were no differences between AUC, Cmax, and t½ values of each enantiomer, whether they were administered as single enantiometers or in the form of its racemic mixture. © 1993 Wiley-Liss, Inc.  相似文献   

14.
The pharmacokinetics of ibuprofen enantiomers were investigated in a crossover study in which seven healthy male volunteers received single oral doses of 800 mg racemic ibuprofen as a soluble granular formulation (sachet) containing L-arginine (designated trade name: Spedifen®), 400 mg (-)R-ibuprofen arginine or 400 mg (+)S-ibuprofen arginine. Plasma levels of both enantiomers were monitored up to 480 minutes after drug intake using an enantioselective analytical method (HPLC with ultraviolet detection) with a quantitation limit of 0.25 mg/l. Substantial inter-subject variability in the evaluated pharmacokinetic parameters was observed in the present study. After (+)S-ibuprofen arginine, the following mean pharmacokinetic parameters ±SD were calculated for (+)S-ibuprofen: tmax 28.6 ± 28.4 min; Cmax 36.2 ± 7.7 mg/l; AUC 86.4 ± 14.9 mg · h/l; t½ 105.2 ± 20.4 min. After (-)R-ibuprofen arginine, the following mean pharmacokinetic parameters were calculated for (+)S-ibuprofen and (-)R-ibuprofen, respectively: tmax 90.0 ± 17.3 and 50.5 ± 20.5 min; Cmax 9.7 ± 3.0 and 35.3 ± 5.0 mg/l; AUC 47.0 ± 17.2 and 104.7 ± 27.7 mg · h/l; t½ 148.1 ± 63.6 and 97.7 ± 23.3 min. After racemic ibuprofen arginine, the following mean pharmacokinetic parameters were calculated for (+)S- and (-)R-ibuprofen, respectively: tmax 30.7 ± 29.1 and 22.9 ± 29.8 min.; Cmax 29.9 ± 5.6 and 25.6 ± 4.4 mg/l; AUC 105.1 ± 23.0 and 65.3 ± 15.0 mg · h/l; t½ 136.6 ± 20.7 and 128.6 ± 45.0 min. Tmax values of S(+)- and (-)R-ibuprofen after a single dose of 400 mg of each enantiomer did not differ significantly from the corresponding parameters obtained after a single dose of 800 mg of racemic ibuprofen arginine, indicating that the absorption rate of (-)R- and (+)S-ibuprofen is not different when the two enantiomers are administered alone or as a racemic compound. An average of 49.3 ± 9.0% of a dose of the (-)R-ibuprofen arginine was bioinverted into its antipode during the study period (480 minutes post-dosing). The percent bioinversion during the first 30 minutes after (-)R-ibuprofen arginine intake averaged 8.1 ± 3.9%. The mean AUC of (+)S-ibuprofen calculated after 800 mg racemic ibuprofen arginine (105.1 ± 23.0 mg · h/l) was lower than the mean AUC value obtained by summing the AUCs of (+)S-ibuprofen after administration of 400 mg (+)S-ibuprofen arginine and 400 mg (-)R-ibuprofen arginine (133.4 ± 26.6 mg · h/l). In conclusion, the administration of Spedifen® resulted in very rapid absorption of the (+)S-isomer (eutomer) with tmax values much lower than those observed for this isomer when conventional oral solid formulations such as capsules or tablets of racemic ibuprofen are administered. This characteristic is particularly favourable in those conditions in which a very rapid analgesic effect is required. Chirality 9:297–302, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Alpha‐cypermethrin (α‐CP), [(RS)‐a‐cyano‐3‐phenoxy benzyl (1RS)‐cis‐3‐(2, 2‐dichlorovinyl)‐2, 2‐dimethylcyclopropanecarboxylate], comprises a diastereoisomer pair of cypermethrin, which are (+)‐(1R‐cis‐αS)–CP (insecticidal) and (?)‐(1S‐cis‐αR)–CP (inactive). In this experiment, the stereoselective degradation of α‐CP was investigated in rat liver microsomes by high‐performance liquid chromatography (HPLC) with a cellulose‐tris‐ (3, 5‐dimethylphenylcarbamate)‐based chiral stationary phase. The results revealed that the degradation of (?)‐(1S‐cis‐αR)‐CP was much faster than (+)‐(1R‐cis‐αS)‐CP both in enantiomer monomers and rac‐α‐CP. As for the enzyme kinetic parameters, there were some variances between rac‐α‐CP and the enantiomer monomers. In rac‐α‐CP, the Vmax and CLint of (+)‐(1R‐cis‐αS)–CP (5105.22 ± 326.26 nM/min/mg protein and 189.64 mL/min/mg protein) were about one‐half of those of (?)‐(1S‐cis‐αR)–CP (9308.57 ± 772.24 nM/min/mg protein and 352.19 mL/min/mg protein), while the Km of the two α‐CP enantiomers were similar. However, in the enantiomer monomers of α‐CP, the Vmax and Km of (+)‐(1R‐cis‐αS) ‐CP were 2‐fold and 5‐fold of (?)‐(1S‐cis‐αR)‐CP, respectively, which showed a significant difference with rac‐α‐CP. The CLint of (+)‐(1R‐cis‐αS)–CP (140.97 mL/min/mg protein) was still about one‐half of (?)‐(1S‐cis‐αR)–CP (325.72 mL/min/mg protein) in enantiomer monomers. The interaction of enantiomers of α‐CP in rat liver microsomes was researched and the results showed that there were different interactions between the IC50 of (?)‐ to (+)‐(1R‐cis‐αS)‐CP and (+)‐ to (?)‐(1S‐cis‐αR)‐CP(IC50(?)/(+) / IC50(+)/(?) = 0.61). Chirality 28:58–64, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
The pharmacokinetics and metabolic chiral inversion of the S(+)‐ and R(−)‐enantiomers of tiaprofenic acid (S‐TIA, R‐TIA) were assessed in vivo in rats, and in addition the biochemistry of inversion was investigated in vitro in rat liver homogenates. Drug enantiomer concentrations in plasma were investigated following administration of S‐TIA and R‐TIA (i.p. 3 and 9 mg/kg) over 24 hr. Plasma concentrations of TIA enantiomers were determined by stereospecific HPLC analysis. After administration of R‐TIA it was found that 1) there was a time delay of peak S‐TIA plasma concentrations, 2) S‐TIA concentrations exceeded R‐TIA concentrations from ∼2 hr after dosing, 3) Cmax and AUC(0‐∞) for S‐TIA were greater than for R‐TIA following administration of S‐TIA, and 4) inversion was bidirectional but favored inversion of R‐TIA to S‐TIA. Bidirectional inversion was also observed when TIA enantiomers were incubated with liver homogenates up to 24 hr. However, the rate of inversion favored transformation of the R‐enantiomer to the S‐enantiomer. In conclusion, stereoselective pharmacokinetics of R‐ and S‐TIA were observed in rats and bidirectional inversion in rat liver homogenates has been demonstrated for the first time. Chiral inversion of TIA may involve metabolic routes different from those associated with inversion of other 2‐arylpropionic acids such as ibuprofen. Chirality 11:103–108, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
The pharmacokinetics (PK) and pharmacodynamics (PD) of (S)- and (R)- ketoprofen (KTP) enantiomers were studied in calves after intravenous administration of each enantiomer at a dose of 1.5 mg/kg. Pharmacodynamic properties were evaluated using a model of acute inflammation, comprising subcutaneously implanted tissue cages stimulated by intracaveal injection of carrageenan. Chiral inversion of (R)-KTP to the (S)-antipode occurred. The R:S ratio in plasma was 33:15 min after administration, decreasing to 1:1 at 8 h. The calculated extent of inversion was 31 ± 7%. The R:S ratio in inflammatory exudate was of the order 3:1 at all the sampling times and the ratio in transudate was approximately 2:1 for 6 h, declining to 1:1 at 30 h. Only (S)-KTP was detected in biological fluids after administration of this enantiomer. Elimination half-life was longer for the (S) (2.19 h) than the (R)-enantiomer (1.30 h) and volume of distribution was also somewhat higher for the (S)-enantiomer. Body clearance values were 0.119 1/kg/h for (S)-KTP and 0.151 1/kg/h for the (R)-antipode. For (R)-KTP effects obtained were considered as a hybrid, since they potentially reflect the actions of both enantiomers. Concentrations of LTB4 and the cytokines interleukin-1, interleukin-6, and tumor necrosis factor alpha, in exudate were not significantly affected by either (R)- or (S)-KTP treatments. Inhibition of ex vivo thromboxane B2 (TxB2) synthesis, exudate prostaglandin E2 (PGE2) synthesis, β-glucuronidase release (β-glu), and bradykinin-induced skin swelling was significant in both treated groups. PK/PD modelling was applied to the (S)-KTP treatment only. EC50 values for inhibition of serum TxB2, exudate PGE2 and β-glu and BK-induced swelling were 0.047, 0.042, 0.101, and 0.038 μg/ml, respectively. It is concluded that the low EC50 values for inhibition of TxB2 and PGE2 by (S)-KTP are likely to explain the effects produced by (R)-KTP administration, since concentrations of (S)-KTP in exudate of these calves following chiral inversion were at least 5 times higher than the EC50 at all sampling times. The data for β-glu and bradykinin-induced swelling inhibition indicate possible inhibitory actions of (R)-KTP as well as (S)-KTP. © 1995 Wiley-Liss, Inc.  相似文献   

18.
An evaluation of ibuprofen bioinversion by simulation.   总被引:3,自引:0,他引:3  
Using a pharmacokinetic model recently proposed to explain ibuprofen disposition in man, plasma concentrations of pure ibuprofen enantiomers were simulated following oral administration of (-)-(R)-ibuprofen, (+)-(S)-ibuprofen, or rac-ibuprofen. Simulated and literature values for AUC's were used to compare S/R ratios for different cases of the model and for different methods of calculating the fraction of R bioinverted to S. Numerical simulation using STELLA confirmed previous results for different cases of bioinversion. Simulated S/R AUC ratios, for administration of the racemate, ranged from 4.0 (presystemic bioinversion) to 1.66 (systemic bioinversion). Literature values for S/R AUC ratios averaged 1.53 +/- 0.2 for administration of the racemate; therefore, systemic bioinversion was concluded to be representative of ibuprofen disposition. Additional simulations of S/R AUC ratios, for administration of (-)-(R)-ibuprofen only, ranged from 1.5 (presystemic bioinversion) to 0.66 (systemic bioinversion). Literature values for S/R AUC ratios averaged 0.50 +/- 0.9 for administration of (-)-(R)-ibuprofen only, which again supported conclusions of systemic bioinversion. Using different equations for estimation of fraction of R inverted to S (FR----S), results based on simulated data were identical; however, FR----S values based on literature data were different. Therefore, assumptions made for different FR----S equations do not appear to be rigorous. Calculations of FR----S, based on literature data, averaged 0.52 overall, indicating bioavailability of (+)-(S)-ibuprofen may be similar for a 150 mg dose of (+)-(S)-ibuprofen compared to a 200 mg dose of racemate.  相似文献   

19.
Boulton DW  Devane CL 《Chirality》2000,12(9):681-687
Methadone enantiomers and EDDP, the main metabolite of methadone, were separated (R(s) = 2.0 for methadone enantiomers) following liquid-liquid extraction from human serum and urine followed by reverse-phase high-performance liquid chromatography on a derivatized beta-cyclodextrin column and quantified at therapeutic concentrations with ultraviolet detection. Detector response was linear (r(2) > 0.98) to 1,000 and 2,500 ng x mL(-1) for methadone enantiomers and EDDP, respectively. The limit of quantification from a 1-mL biological sample was 2.5 and 5 ng x mL(-1) for methadone enantiomers and EDDP, respectively. Interday variation was <13% and intraday variation was <8% for the analytes of interest. The assay was applied to plasma protein and erythrocyte binding studies and a 96-h pharmacokinetic study in two healthy female volunteers following oral dosing with rac-methadone. The binding of methadone to plasma proteins was enantioselective with the active (-)-(R) enantiomer having the highest free fraction (mean +/- SD: 21.2+/-7.6% vs. 13.3+/-6.2% for (+)-(S)-methadone, n = 8). Binding of methadone to erythrocytes was not apparently enantioselective (38.6+/-1.3% and 38.1+/-1.4% bound for (-)-(R)- and (+)-(S)-methadone, respectively). The pharmacokinetic study revealed enantioselective disposition of methadone in one volunteer but not in the other. EDDP was observed in urine but was only in small or undetectable concentrations in serum. The method is applicable to in vitro and pharmacokinetic studies of rac-methadone disposition in humans.  相似文献   

20.
Ibuprofen (IB) is a chiral 2-arylpropionic acid derivative used as a nonsteroidal antiinflammatory drug (NSAID). It undergoes substantial R to S chiral inversion in humans and rats. In addition to systemic inversion, presystemic chiral inversion has been suggested for IB in humans but only after administration of formulations with slow absorption rates. In search for a suitable animal model, the absorption rate dependency of the extent of inversion was examined in male Sprague–Dawley rats given 20 mg/kg of racemic IB in aqueous solution (Tmax, 0.6 h), suspension (Tmax, 1 h) or as sustained release granules (Tmax, 2.3 h). In addition, (R)-IB (5 mg/liter) was incubated in the presence of everted rat gut segments in an organ bath at 37°. After sustained release granules, the S:R AUC ratios (7.3 ± 1.5) were significantly higher than suspension (3.6 ± 1.1) and solution (3.5 ± 0.2). Accordingly, AUCS and AUCR, as percent of the total AUC (S + R), significantly increased and decreased, respectively, after administration of the sustained released granules as compared with the solution and suspension. A significant positive linear correlation was found between the S:R AUC ratios and the corresponding Tmax for (R)-IB (r = 0.82). In vitro, (R)-IB was inverted by everted jejunum (12.2 ± 1.6%), ileum (14.2 ± 2.0%), and colon (4.4 ± 0.6%) segments. IB was also glucuronidated in the presence of the intestinal segments. Therefore, similar to earlier observations made in humans, in the rat, the S:R AUC ratio was positively and significantly correlated with the absorption rate from the dosage form. Rat small intestine was capable of inverting and conjugating (R)-IB. Hence, rat is a suitable model for studying the chiral inversion of IB. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号