首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用高效液相色谱和原位杂交技术研究了皮质酮对大鼠再生肝细胞鸟氨酸脱羧酶 (ODC)活性及ODCmRNA表达的影响。结果显示 ,大鼠完整肝脏中ODC水平较低 ,2 / 3肝切除 (PH)后 3h ,不同处理组ODC活性开始升高 ,6h达到最高值 ,其中 ,去肾上腺 NaCl组和糖皮质激素受体拮抗剂RU4 86处理组的酶活性高于对照组 (去肾上腺假手术组 ) ,而去肾上腺 皮质酮处理组的酶活性低于对照组 ,36h恢复到肝切除前水平 ;完整肝脏的ODCmRNA水平极低 ,PH后表达量迅速增加 ,5h达到最大值 ,不同处理组mRNA水平的高低顺序与酶活性一致 ,12h降至肝切除前水平 ;在PH前 12h给大鼠注射RU4 86 (10mg/kg体重 ) ,取得了与去肾上腺 NaCl处理鼠相似的结果。以上结果表明 ,在PH诱导的再生肝细胞中 ,ODCmRNA表达量的增加和 /或减少是造成ODC活性改变的原因之一 ,皮质酮对ODC活性及其mRNA的表达具有抑制作用 ,主要表现在肝再生的早期 ,该作用可能是通过受体实现的  相似文献   

2.
The effects of immobilization stress and/or dexamethasone (DEX) on the adrenal ornithine decarboxylase (ODC) activities of sham-operated and adrenal-medulloectomized (enucleated) male Sprague-Dawley rats were investigated. On day 11 after surgery, rats were injected with saline or DEX (1 mg/kg), 3 h before the time of sacrifice (0600 h or 1800 h). Four groups, from sham-operated and enucleated rats (ENU) treated with saline or DEX were subjected to immobilization stress for 1 h prior to sacrifice. Groups of rats from stress-sham-DEX, non stress-sham-DEX, stress-sham, non stress-sham, stress-ENU-DEX, non stress-ENU-DEX, stress-ENU, and non stress-ENU were sacrificed at 0600 h or 1800 h on day 11 after surgery. Adrenal glands were excised and later analyzed for ODC activities. Results indicated that DEX and/or immobilization stress inhibited ODC activities (p < 0.05) in normal and regenerating adrenal glands at 1800 h and ODC activity varies diurnally, the activity being greater at 1800 h than at 0600 hours (p < 0.001).  相似文献   

3.
We investigated the ability of intracellular ornithine to alter both the biosynthesis of putrescine and the activity of ornithine decarboxylase in Reuber H35 hepatoma cells in culture incubated with 12-O-tetradecanoylphorbol 13-acetate (TPA). In confluent cultures of H35 cells, the addition of TPA (1.6 μM) caused the activity of ornithine decarboxylase to increase by more than 100-fold within 4 h. When exogenous ornithine (0.1–1.0 mM) was added to the culture medium with TPA, a marked dose-dependent increase in the production of putrescine was observed. The activity of ornithine decarboxylase in the same cultures incubated with ornithine decreased in a similar dose-dependent manner. The addition of arginine (0.1–1.0 mM) (but not lysine or histidine) to the H35 cells in culture concomitant with TPA also led to a relative increase in putrescine biosynthesis and a decrease in ornithine decarboxylase activity compared to cultures not receiving the amino acids. A similar response to exogenous ornithine and TPA was observed in a series of less confluent rapidly growing cultures which were in culture for a shorter period of time. The confluent cultures possessed a basal level of arginase (55 units/mg protein) which increased approx. 2-fold upon treatment with TPA. The intracellular concentration of ornithine in the unstimulated cells was in the order of 0.02–0.03 mM. Upon incubation of the cells with exogenous ornithine or arginine, the intracellular pools of these amino acids increased 4- to 8-fold.  相似文献   

4.
5.
6.
7.
The effect of an ethanolic extract from the stem bark of Bursera fagaroides on ornithine decarboxylase (ODC) activity in vitro and on the growth of Entamoeba histolytica was evaluated. For this purpose, increasing concentrations of the extract, up to 8.0 mg/mL, were added to amoeba cultures or ODC reaction mixtures, which were incubated at 37 °C. Metronidazole and G418 were added as controls. After 1.5 and 72 h, the ODC activity in vitro and growth, respectively, were determined. Results revealed a strong inhibition of growth with IC50 values on the order of 0.05 mg/mL. ODC activity, on the other hand, was inhibited by 12% and 50% at concentrations of 4.0 and 8.0 mg/mL, respectively.  相似文献   

8.
Uptake of exogenous polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effects on polyamine metabolism were investigated. Our data show that, in contrast to mammalian cells, Chlamydomonas reinhardtii does not contain short-living, high-affinity polyamine transporters whose cellular level is dependent on the polyamine concentration. However, exogenous polyamines affect polyamine metabolism in Chlamydomonas cells. Exogenous putrescine caused a slow increase of both putrescine and spermidine and, vice versa, exogenous spermidine also led to an increase of the intracellular levels of both spermidine and putrescine. No intracellular spermine was detected under any conditions. Exogenous spermine was taken up by the cells and caused a decrease in their putrescine and spermidine levels. As in other organisms, exogenous polyamines led to a decrease in the activity of ornithine decarboxylase, a key enzyme of polyamine synthesis. In contrast to mammalian cells, this polyamine-induced decrease in ornithine decarboxylase activity is not mediated by a polyamine-dependent degradation or inactivation, but exclusively due to a decreased synthesis of ornithine decarboxylase. Translation of ornithine decarboxylase mRNA, but not overall protein biosynthesis is slowed by increased polyamine levels.  相似文献   

9.
10.
In the present study we examined the production of insulin-like growth factor binding proteins (IGFBPs), in chromaffin cells, a model system for sympathetic neurons. Four IGFBPs of approximately 27, approximately 31, approximately 36 and a doublet of approximately 45-50 kDa, detected in Western ligand blots of conditioned medium, were identified in Western immunoblots as IGFBP-4, IGFBP-5, IGFBP-2 and IGFBP-3, respectively. In ligand blots IGFBP-3 and IGFBP-4 appeared as the most prominent species. IGF-I (1 nM) enhanced release of IGFBP-3 while dexamethasone (1 nM) diminished release of IGFBP-4. No significant proteolytic degradation of the IGFBPs was demonstrated. Cycloheximide completely attenuated release of the IGFBPs, indicating dependency on new synthesis of the proteins. These findings are consistent with autocrine modulation of the IGF system in bovine adrenomedullary chromaffin cells by IGFBPs. Furthermore, the specific stimulatory and inhibitory effects of IGF-I and dexamethasone, respectively, on release of the predominant species of IGFBP-3 and IGFBP-4, suggested that IGFBP production may be selectively modulated in a positive and negative manner.  相似文献   

11.
Colchicine and vinblastine in micromolar concentrations inhibit the activity of ornithine decar?ylase (E.C.4.1.1.17) (ODC), of mouse leukemia L1210 cells, which has been stimulated by dilution of the cells with fresh medium and serum. The colchicine analogues, lumicolchicine and colchiceine, which do not affect microtubular strcuture, do not inhibit ODC activity even at 10?4M. However, it appears that disruption of the microtubular structure is not in itself enough to inhibit ODC activity but that one or more additional temperature dependent steps are involved. We propose that the microtubule system is one of a series of components which regulates ODC activity.  相似文献   

12.
13.
The role of calcium in epidermal ornithine decarboxylase (ODC) induction by 12-O-tetradecanoylphorbol-13-acetate (TPA) was determined in adult mouse skin explants maintained in a serum-free Eagle's HeLa cell medium. Chelation of extracellular calcium by ethyleneglycol-bis-(β-aminoethyl ether) N,N′-tetraacetic acid (EGTA) prevented ODC induction by TPA, which could be resumed upon calcium restoration in the medium. Extracellular magnesium could not replace calcium for ODC induction by TPA. Concurrent incubation of skin pieces with a calmodulin inhibitor trifluoperzine (TFP) inhibited ODC induction. Furthermore, inclusion in the medium of lanthanum, which has a higher affinity for calcium-binding sites than calcium and displaces surface-bound calcium, inhibited ODC induction by TPA.  相似文献   

14.
The activity of tyrosine aminotransferase (TAT) (EC 2.6.1.5) was enhanced 3-fold after a 5-h exposure of cultured rat liver cells (RLC) to streptozotocin (SZ) at concentrations higher than 100 microgram/ml (0.38 mM) in the presence of 10 nM dexamethasone, a potent glucocorticoid inducer for the enzyme. The structurally related carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) also enhanced the aminotransferase in the presence of the glucocorticoid, but its optimal concentration was at 100 ng/ml (0.68 microM). While the cellular NAD (NAD+ + NADH) concentration was reduced to 60% of the control levels, the rate of poly(ADP-ribose) formation in the isolated cell nuclei was unaffected by treating the cells with SZ. The enhancement of tyrosine aminotransferase by SZ and MNNG was effectively prevented by nicotinamide. Using nicotinamide and its derivatives such as 1-methyl-, N'-methyl- or 6-amino-derivatives it was found that the degree of enzyme induction is almost inversely proportional to the cellular NAD content, though the activity of nuclear poly(ADP-ribose)polymerase remains unchanged. The results indicate that SZ or MNNG, in combination with dexamethasone, stimulate the induction of tyrosine aminotransferase through their NAD lowering action.  相似文献   

15.
Poly C binding protein 1 (PCBP1) is an expressional regulator of the mu‐opioid receptor (MOR) gene. We hypothesized the existence of a PCBP1 co‐regulator modifying human MOR gene expression by protein–protein interaction with PCBP1. A human brain cDNA library was screened using the two‐hybrid system with PCBP1 as the bait. Receptor for activated protein kinase C (RACK1) protein, containing seven WD domains, was identified. PCBP1‐RACK1 interaction was confirmed via in vivo validation using the two‐hybrid system, and by co‐immunoprecipitation with anti‐PCBP1 antibody and human neuronal NMB cell lysate, endogenously expressing PCBP1 and RACK1. Further co‐immunoprecipitation suggested that RACK1‐PCBP1 interaction occurred in cytosol alone. Single and serial WD domain deletion analyses demonstrated that WD7 of RACK1 is the key domain interacting with PCBP1. RACK1 over‐expression resulted in a dose‐dependent decrease of MOR promoter activity using p357 plasmid containing human MOR promoter and luciferase reporter gene. Knock‐down analysis showed that RACK1 siRNA decreased the endogenous RACK1 mRNA level in NMB, and elevated MOR mRNA level as indicated by RT‐PCR. Likewise, a decrease of RACK1 resulted in an increase of MOR proteins, verified by 3H‐diprenorphine binding assay. Collectively, this study reports a novel role of RACK1, physically interacting with PCBP1 and participating in the regulation of human MOR gene expression in neuronal NMB cells.  相似文献   

16.
Facchini A  Borzì RM  Flamigni F 《FEBS letters》2005,579(13):2919-2925
Among several extracellular messengers tested, lysophosphatidic acid (LPA) was able to cause the most marked induction of ornithine decarboxylase (ODC) in serum-starved human T/C-28a2 chondrocytes. LPA also induced the activation/phosphorylation of Src, Akt and p44/42 MAPK, and the translocation of PKC-delta from cytosol to membrane coupled to its tyrosine phosphorylation. Experiments with selective signaling inhibitors indicate that LPA leads to Src activation through Gi protein-coupled receptors. In turn Src can activate PI3K and PKC-delta, and all these signaling proteins are required for ODC induction. In conclusion these results show that chondrocytes may be a novel target for LPA action. However, although LPA is considered a mitogen for several cell types and ODC induction is generally correlated to cell growth, LPA was not able to stimulate chondrocyte growth, but rather exerted an anti-proliferative effect.  相似文献   

17.
It is becoming widely accepted that the inflammatory response is involved in neurodegenerative disease. In this context, we have developed an animal model of dopaminergic system degeneration by the intranigral injection of lipopolysaccharide (LPS), a potent inductor of inflammation. To address the importance of the inflammatory response in the LPS-induced degeneration of nigral dopaminergic neurones, we carried out two different kinds of studies: (i) the possible protective effect of an anti-inflammatory compound, and (ii) the effect of the intranigral injection of inflammatory cytokines (TNF-alpha, IL-1beta and IFN-gamma) on dopaminergic neurones viability. Present results show that dexamethasone, a potent anti-inflammatory drug that interferes with many of the features characterizing pro-inflammatory glial activation, prevented the loss of catecholamine content, Tyrosine hydroxylase (TH) activity and TH immunostaining induced by LPS-injection and also the bulk activation of microglia/macrophages. Surprisingly, injection of the pro-inflammatory cytokines failed to reproduce the LPS effect. Taken together, our results suggest that inflammatory response is implicated in LPS-induced neurodegeneration. This damage may be due, at least in part, to a cascade of events independent of that described for TNF-alpha/IL-1 beta/IFN-gamma.  相似文献   

18.
Glucocorticoid (GC)-induced osteonecrosis of the femoral head (GC-ONFH) is considered as one of the most serious side effects of long-term or over-dose steroid therapy. However, the underlying cause mechanisms are still not fully investigated. We firstly established a rat model of GC-ONFH and injected lipopolysaccharide (LPS) and methylprednisolone (MPS). We found that the expressions of Cx43, Runx2, ALP and COLⅠ were more decreased than the normal group. Secondly, the isolated rat bone marrow stem cells (BMSCs) were treated with dexamethasone (Dex) in vitro, and the expressions of Cx43, Runx2, ALP and COLⅠ were decreased significantly. Moreover, the results of immunofluorescence staining, alizarin red staining, EdU assay and CCK8 showed that the osteogenic differentiation and the proliferation capacity of BMSCs were decreased after induced by Dex. A plasmid of lentivirus-mediated Cx43 (Lv-Cx43) gene overexpression was established to investigate the function of Cx43 in BMSCs under the Dex treatment. Findings demonstrated that the proliferation and osteogenic differentiation abilities were enhanced after Lv-Cx43 transfected to BMSCs, and these beneficial effects of Lv-Cx43 were significantly blocked when PD988059 (an inhibitor of ERK1/2) was used. In conclusion, the overexpression of Cx43 could promote the proliferation and osteogenic differentiation of BMSCs via activating the ERK1/2 signalling pathway, which provide a basic evidence for further study on the detailed function of Cx43 in GC-ONFH.  相似文献   

19.
The signal transduction pathways that mediate the mitogenic response of muscarinic acetylcholine receptors in astroglial cells have not been fully elucidated. In this study we investigated the activation of p70S6 kinase (p70S6K) by carbachol in 1321 N1 astroctyoma cells. Carbachol induced a dose- and time-dependent activation of p70S6K, as evidenced by increased phosphorylation at Thr-389, Thr-421 and Ser-424, by increased p70S6K activity, and by a shift in its molecular weight. Activation of p70S6K was mediated by M3 muscarinic acetylcholine receptors (mAChRs) and was inhibited by two phosphatidylinositol-3-kinase (PI3-K) inhibitors, by a pseudosubstrate to protein kinase C (PKC) zeta, and by the p70S6K inhibitor rapamycin. Carbachol-induced DNA synthesis was strongly inhibited by rapamycin, suggesting that p70S6K activation plays an important role in carbachol-induced cell proliferation. Ethanol (25-100 mm) has been shown to inhibit carbachol-induced proliferation of astroglial cells. In the same range of concentrations, ethanol also inhibits carbachol-induced activation of PKCzeta and of p70S6K. On the other hand, inhibition of PI3-kinase was only observed at higher ethanol concentrations. These results indicate that activation of the PKCzeta--> p70S6K pathway by M3 mAChRs may play a role in the increased DNA synthesis and may represent a target for ethanol-induced inhibition of astroglial cell proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号