首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The secondary structure of the retrovirus integration protein (IN) was predicted from seven inferred retrovirus IN sequences. The IN sequences were aligned by computer and the phylogenetic relationships between them were determined. The secondary structure of the aligned IN sequences was predicted by two consensus prediction methods. The predicted secondary structural patterns from the two consensus prediction schemes were compared with and superimposed on a composite structural profile of hydropathic/chain flexibility/amphipathic indexes with each index profile being calculated independently for the aligned IN sequences. The use of this composite structural profile not only enhanced the prediction accuracy but also helped in defining the surface loop regions which would be otherwise unpredictable by the use of consensus prediction methods alone. An amphipathic helix was identified by these united structural prediction-chain property profiles. Helical wheel analysis gave the amphipathic helix a coiled-coil like pattern which was similar to the leucine zipper discovered for some eukaryotic gene regulatory proteins. The proposed amphipathic helix may play an essential role in defining the biological properties of IN.  相似文献   

2.
S S Chen 《Journal of virology》1994,68(3):2002-2010
To study the functional role of the zipper motif region, located in the N-terminal region of the envelope transmembrane protein of human immunodeficiency virus type 1, a series of vaccinia virus-expressed mutant proteins containing a proline substitution in this region were characterized. All of the mutant proteins showed partial or no inhibition in gp160 cleavage, demonstrated impaired ability of gp120 to associate with gp41, and were unable to mediate syncytium formation with CD4+ cells. Moreover, mutants 580 and 587 secreted excessive gp120 into the medium compared with the wild type. Mutations in this region affected the conformation of the local or proximal sequence but did not alter the conformation conferred by a distal site. These studies reveal the crucial role of the C-terminal segment of the zipper motif region in envelope heterodimeric association and suggest that this sequence forms a gp120 contact site.  相似文献   

3.
Many retroviruses, including the human and simian immunodeficiency viruses, contain a leucine zipper-like repeat in a highly conserved region of the external domain of the transmembrane (TM) glycoprotein. This region has been postulated to play a role in stabilizing the oligomeric form of these molecules. To determine what role this region might play in envelope structure and function, several mutations were engineered into the middle isoleucine of the leucine zipper-like repeat of the human immunodeficiency virus type 1 (HIV-1) TM protein. A phenotypic analysis of these mutants demonstrated that conservative mutations (Ile to Val or Leu) did not block the ability of the viral glycoprotein to mediate cell-cell fusion or affect virus infectivity. In contrast, each of the other mutations, except for the Ile-to-Ala change, completely inhibited the ability of the glycoprotein to fuse HeLa-T4 cells and of mutant virions to infect H9 cells. The alanine mutation produced an intermediate phenotype in which both cell fusion and infectivity were significantly reduced. Thus, the biological activity of the glycoprotein titrates with the hydrophobicity of the residue in this position. None of the mutations affected the synthesis, oligomer formation, transport, or processing of the HIV glycoprotein complex. Although these results do not rule out a role for the leucine zipper region in glycoprotein oligomerization, they clearly point to a critical role for it in a post-CD4 binding step in HIV membrane fusion and virus entry.  相似文献   

4.
S S Chen  C N Lee  W R Lee  K McIntosh    T H Lee 《Journal of virology》1993,67(6):3615-3619
The N-terminal region of the envelope (env) transmembrane protein of human immunodeficiency virus type 1 (HIV-1) has a leucine zipper-like motif. This highly conserved zipper motif, which consists of a heptad repeat of leucine or isoleucine residues, has been suggested to play a role in HIV-1 env glycoprotein oligomerization. This hypothesis was tested by replacing the highly conserved leucine or isoleucine residues in the zipper motif with a strong alpha-helix breaker, proline. We report here that such substitutions did not abolish the ability of env protein to form oligomers, indicating that this highly conserved zipper motif does not have a crucial role in env protein oligomerization. However, the mutant viruses all showed impaired infectivity, suggesting that this conserved zipper motif can have an important role in the virus life cycle.  相似文献   

5.
The integrase protein from human immunodeficiency virus type 1 (HIV-1) has generally been reported to require Mn2+ for efficient in vitro activity. We have reexamined the divalent metal ion requirements of HIV-1 integrase and find that the protein is capable of promoting efficient 3' processing and DNA strand transfer with either Mn2+ or Mg2+. The metal ion preference depended upon the reaction conditions. HIV-1 integrase displayed significantly less nonspecific nuclease activity in reaction mixtures containing Mg2+ than it did under the previously described reaction conditions with mixtures containing Mn2+.  相似文献   

6.
The integrase (IN) protein of the human immunodeficiency virus (HIV) is required for specific cleavage of the viral DNA termini, and subsequent integration of the viral DNA into target DNA. To identify the various domains of the IN protein we generated a series of IN deletion mutants as fusions to maltose-binding protein (MBP). The deletion mutants were tested for their ability to bind DNA, to mediate site-specific cleavage of the viral DNA ends, and to carry out integration and disintegration reactions. We found that the DNA-binding region resides between amino acids 200 and 270 of the 288-residues HIV-1 IN protein. The catalytic domain of the protein was mapped between amino acids 50 and 194. For the specific activities of IN, cleavage of the viral DNA and integration, both the DNA-binding domain and the conserved amino-terminal region of IN are required. These regions are dispensable however, for disintegration activity.  相似文献   

7.
8.
Single-amino-acid changes in a highly conserved central region of the human immunodeficiency virus type 1 (HIV-1) integrase protein were analyzed for their effects on viral protein synthesis, virion morphogenesis, and viral replication. Alteration of two amino acids that are invariant among retroviral integrases, D116 and E152 of HIV-1, as well as a mutation of the highly conserved amino acid S147 blocked viral replication in two CD4+ human T-cell lines. Mutations of four other highly conserved amino acids in the region had no detectable effect on viral replication, whereas mutations at two positions, N117 and Y143, resulted in viruses with a delayed-replication phenotype. Defects in virion precursor polypeptide processing, virion morphology, or viral DNA synthesis were observed for all of the replication-defective mutants, indicating that changes in integrase can have pleiotropic effects on viral replication.  相似文献   

9.
The product of the human cytomegalovirus (HCMV) UL71 gene is conserved throughout the herpesvirus family. During HCMV infection, protein pUL71 is required for efficient virion egress and is involved in the final steps of secondary envelopment leading to infectious viral particles. We found strong indications for oligomerization of pUL71 under native conditions when recombinant pUL71 was negatively stained and analyzed by electron microscopy. Oligomerization of pUL71 during infection was further verified by native and reducing polyacrylamide gel electrophoresis (PAGE). By in silico analyses of the pUL71 sequence, we noticed a basic leucine zipper (bZIP)-like domain, which might serve as an oligomerization domain. We demonstrated the requirement of the bZIP-like domain for pUL71 oligomerization by coimmunoprecipitation and bimolecular fluorescence complementation using a panel of pUL71 mutants. These studies revealed that the mutation of two leucine residues is sufficient to abrogate oligomerization but that intracellular localization of pUL71 was unaffected. To investigate the relevance of the bZIP domain in the viral context, recombinant viruses carrying mutations identical to those in the panel of pUL71 mutants were generated. bZIP-defective viral mutants showed impaired viral growth, a small-plaque phenotype, and an ultrastructural phenotype similar to that of the previously described UL71 stop mutant virus. The majority of virus particles within the viral assembly compartment exhibited various stages of incomplete envelopment, which is consistent with the growth defect for the bZIP mutants. From these data we conclude that the bZIP-like domain is required for oligomerization of pUL71, which seems to be essential for correct envelopment of HCMV.  相似文献   

10.
The paramyxovirus fusion proteins have a highly conserved leucine zipper motif immediately upstream from the transmembrane domain of the F1 subunit (R. Buckland and F. Wild, Nature [London] 338:547, 1989). To determine the role of the conserved leucines in the oligomeric structure and biological activity of the Newcastle disease virus (NDV) fusion protein, the heptadic leucines at amino acids 481, 488, and 495 were changed individually and in combination to an alanine residue. While single amino acid changes had little effect on fusion, substitution of two or three leucine residues abolished the fusogenic activity of the protein, although cell surface expression of the mutants was higher than that of the wild-type protein. Substitution of all three leucine residues with alanine did not alter the size of the fusion protein oligomer as determined by sedimentation in sucrose gradients. Furthermore, deletion of the C-terminal 91 amino acids, including the leucine zipper motif and transmembrane domain, resulted in secretion of an oligomeric polypeptide. These results indicate that the conserved leucines are not necessary for oligomer formation but are required for the fusogenic ability of the protein. When the polar face of the potential alpha helix was altered by nonconservative changes of serine to alanine (position 473), glutamic acid to lysine or alanine (position 482), asparagine to lysine (position 485), or aspartic acid to alanine (position 489), the fusogenic ability of the protein was not significantly disrupted. In addition, a double mutant (E482A,D489A) which removed negative charges along one side of the helix had negligible effects on fusion activity.  相似文献   

11.
12.
Human immunodeficiency virus type 1 (HIV-1) and other retroviruses require integration of a double-stranded DNA copy of the RNA genome into the host cell chromosome for productive infection. The viral enzyme, integrase, catalyzes the integration of retroviral DNA and represents an attractive target for developing antiretroviral agents. We identified several derivatives of dicaffeoylquinic acids (DCQAs) that inhibit HIV-1 replication in tissue culture and catalytic activities of HIV-1 integrase in vitro. The specific step at which DCQAs inhibit the integration in vitro and the mechanism of inhibition were examined in the present study. Titration experiments with different concentrations of HIV-1 integrase or DNA substrate found that the effect of DCQAs was exerted on the enzyme and not the DNA. In addition to HIV-1, DCQAs also inhibited the in vitro activities of MLV integrase and truncated variants of feline immunodeficiency virus integrase, suggesting that these compounds interacted with the central core domain of integrase. The inhibition on retroviral integrases was relatively specific, and DCQAs had no effect on several other DNA-modifying enzymes and phosphoryltransferases. Kinetic analysis and dialysis experiments showed that the inhibition of integrase by DCQAs was irreversible. The inhibition did not require the presence of a divalent cation and was unaffected by preassembling integrase onto viral DNA. The results suggest that the irreversible inhibition by DCQAs on integrase is directed toward conserved amino acid residues in the central core domain during catalysis.  相似文献   

13.
Molecular biology of the human immunodeficiency virus type 1   总被引:18,自引:0,他引:18  
W A Haseltine 《FASEB journal》1991,5(10):2349-2360
The immunodeficiency virus type 1 is a complex retrovirus. In addition to genes that specify the proteins of the virus particle and the replicative enzymes common to all retroviruses, HIV-1 specifies at least six additional proteins that regulate the virus life cycle. Two of these regulatory genes, tat and rev, specify proteins essential for replication. These proteins bind to specific sequences of newly synthesized virus RNA and profoundly affect virus protein expression. Tat and rev appear to be prototypes of novel eukaryotic regulatory proteins. These two genes may play a central role in regulating the rate of virus replication. Three other viral genes, vif, vpu, and vpr, affect the assembly and replication capacity of newly made virus particles. These genes may play a critical role in spread of the virus from tissue to tissue and from person to person. Our understanding of the contribution of each of the virus structural proteins and regulatory genes to the complex life cycle of the virus in natural infections is incomplete. However, enough insight has been gained into the structure and function of each of these components to provide a firm basis for rational antiviral drug development.  相似文献   

14.
A 43-mer peptide derived from the coiled coil domain of the transmembrane glycoprotein, gp41, of human immunodeficiency virus type 1, was synthesized. Light scattering measurements suggested that the peptide molecules likely exist in the aqueous solution in trimeric form. Circular dichroism experiments showed a moderate helix population enhancement for the peptide in 80% methanol solution relative to helicity in sodium dodecyl sulfate micellar suspension. NMR spectroscopy indicated that the N-terminal section of the peptide was conformationally more sensitive to the medium. The conformationally labile regions contain residues implicated in gp41-gp120 association. Our data support the idea that the coiled coil region is responsible for oligomerization of the gp41 ectodomain and suggest a site of conformational isomerization following receptor binding-induced gp120 dissociation from gp41.  相似文献   

15.
16.
Mu-mediated polymerase chain reaction footprinting was used to investigate the protein-DNA structure of human immunodeficiency virus type I (HIV-I) preintegration complexes. Preintegration complexes were partially purified from cells after using an established coculture infection technique as well as a novel technique using cell-free supernatant from transfected cells as the source of virus. Footprinting revealed that bound proteins protected the terminal 200-250 base pairs of each viral end from nuclease attack. Bound proteins also caused strong transpositional enhancements near each end of HIV-I. In contrast, regions of viral DNA internal to the ends did not show evidence of strong protein binding. The end regions of preintegrative HIV-I apparently form a unique nucleoprotein structure, which we term the intasome to distinguish it from the greater preintegration complex. Our novel system also allowed us to analyze the structure and function of preintegration complexes isolated from cells infected with integrase mutant viruses. Complexes were derived from viruses defective for either integrase catalysis, integrase binding to the viral DNA substrate, or an unknown function in the carboxyl-terminal domain of the integrase protein. None of these mutant complexes supported detectable integration activity. Despite the presence of the mutant integrase proteins in purified samples, none of these nucleoprotein complexes displayed the native intasome structure detected in wild-type preintegration complexes. We conclude that multiple integrase functions are required to form the native structure of the HIV-I intasome in infected cells.  相似文献   

17.
The retroviral encoded protein integrase (IN) is required for the insertion of the human immunodeficiency virus type 1 (HIV-1) proviral DNA into the host genome. In spite of the crucial role played by IN in the retroviral life cycle, which makes this enzyme an attractive target for the development of new anti-AIDS agents, very few inhibitors have been described and none seems to have a potential use in anti-HIV therapy. To obtain potent and specific IN inhibitors, we used the two-hybrid system to isolate short peptides. Using HIV-1 IN as a bait and a yeast genomic library as the source of inhibitory peptides (prey), we isolated a 33-mer peptide (I33) that bound tightly to the enzyme. I33 inhibited both in vitro IN activities, i.e. 3' end processing and strand transfer. Further analysis led us to select a shorter peptide, EBR28, corresponding to the N-terminal region of I33. Truncated variants showed that EBR28 interacted with the catalytic domain of IN interfering with the binding of the DNA substrate. Alanine single substitution of each EBR28 residue (alanine scanning) allowed the identification of essential amino acids involved in the inhibition. The EBR28 NMR structure shows that this peptide adopts an alpha-helical conformation with amphipathic properties. Additionally, EBR28 showed a significant antiviral effect when assayed on HIV-1 infected human cells. Thus, this potentially important short lead peptide may not only be helpful to design new anti-HIV agents, but also could prove very useful in further studies of the structural and functional characteristics of HIV-1 IN.  相似文献   

18.
19.
The integrase protein (IN) of human immunodeficiency virus type 1 removes two nucleotides from both 3' ends of the viral DNA (donor cleavage) and subsequently couples the newly generated 3' OH groups to phosphates in the target DNA (integration). The sequence requirements of IN for cleavage as well as for integration of viral DNA substrates have previously been studied by mutational analyses and by adduct interference assays. We extended these studies by analysis of heteroduplex oligonucleotide substrates and by missing-base analysis. We found for some base pairs that mutation of only one of the two bases and not the other affected IN activity. These base pairs center around the cleavage site. Besides donor cleavage and integration, IN can also perform "intermolecular disintegration," which has been described as the reversal of the integration reaction. We found that this reaction is independent of viral DNA sequences. In addition, the optimum spacing between the integration sites in intermolecular disintegration does not reflect the spacing found in vivo. These results indicate that this reaction is not the exact reversal of integration but rather is a sequence-independent phosphoryl transfer reaction between gapped DNA duplex molecules.  相似文献   

20.
Human EED, a member of the superfamily of WD-40 repeat proteins and of the Polycomb group proteins, has been identified as a cellular partner of the human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein (R. Peytavi et al., J. Biol. Chem. 274:1635-1645, 1999). In the present study, EED was found to interact with HIV-1 integrase (IN) both in vitro and in vivo in yeast. In vitro, data from mutagenesis studies, pull-down assays, and phage biopanning suggested that EED-binding site(s) are located in the C-terminal domain of IN, between residues 212 and 264. In EED, two putative discrete IN-binding sites were mapped to its N-terminal moiety, at a distance from the MA-binding site, but EED-IN interaction also required the integrity of the EED last two WD repeats. EED showed an apparent positive effect on IN-mediated DNA integration reaction in vitro, in a dose-dependent manner. In situ analysis by immunoelectron microscopy (IEM) of cellular distribution of IN and EED in HIV-1-infected cells (HeLa CD4(+) cells or MT4 lymphoid cells) showed that IN and EED colocalized in the nucleus and near nuclear pores, with maximum colocalization events occurring at 6 h postinfection (p.i.). Triple colocalizations of IN, EED, and MA were also observed in the nucleoplasm of infected cells at 6 h p.i., suggesting the ocurrence of multiprotein complexes involving these three proteins at early steps of the HIV-1 virus life cycle. Such IEM patterns were not observed with a noninfectious, envelope deletion mutant of HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号