首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model has been developed that permits assessment of residential exposure to 60-Hz magnetic fields emitted by appliances. It is based on volume- and time-averaging of magnetic-dipole fields. The model enables the contribution of appliances in the total residential exposure to be compared with that of other sources in any residence under study. Calculations based on measurements reported in the literature on 98 appliances revealed that appliances are not a significant source of whole-body exposure, but that they may be the dominant source of exposure of the body's extremities.  相似文献   

2.
The facility consists of a 12 × 11.5 × 2.4 m high room containing six sets of exposure apparatus and the other equipment necessary to maintain a pathogen-free system. The apparatus sets produced 5 mT (rms), 0.5 mT, or a sham exposure. The apparatus was arranged in the room to minimize the fringing field of the 5 mT set at the sham position. Each set was 3.85 × 1.80 × 0.66 m in outside dimension, containing 24 cages in the magnetically homogeneous region. The apparatus was designed using Harvey's figure-eight-configuration and generated a horizontal sinusoidal alternating field. In order to save electric power, the coil of the apparatus constituted a 50 Hz LC resonance circuit with a condensor bank to which electric power was supplied to compensate losses. Magnetic flux density was kept constant by controlling the coil current. Although mild steel was used in the skeleton of the building, the fringing flux at the sham was as low as 0.1 to 1 μT. Stainless steel was used for ventilating ducts, racks for the cages, cage covers, feeder baskets, and watering nozzles. The homogeneity of the field was measured to be ± 10% in the animal residence area, and food and water consumption was found to be unaffected by the field. At 5 mT, the coil current was 370 A, and the hollow coil was cooled by a stream of 20°C water to prevent both heat and dew on the coil surface. Vibration and acoustic noise was prevented by fiber reinforced plastic framework of the coil. High harmonic distortion was not observed at the output terminal of the coil driver. The facility has operated without trouble for 2 years. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Exposure systems that provide good magnetic field uniformity, minimum stray fields, and minimal heating, vibration, and hum, as well as capability for true sham exposure in which current flows in the coils, are needed to determine rigorously the biological effects of weak magnetic fields. Designs based on acrylic polymer coil support structures and twisted pair bifilary coil windings were employed to fabricate several different systems for the exposure of laboratory animals and cell cultures to magnetic fields. These systems exhibit excellent performance characteristics in terms of exposure field uniformity, stray field containment, and exposure field cancellation in the sham exposure mode. A custom-written computer program was used to determine the best arrangement for coils with regard to field uniformity in the exposure volume and stray field containment. For in vivo exposures, modules were made up of four Merritt four-coil sets, built into a single structure and positioned to form an octapole with fields directed in the horizontal plane. For in vitro applications, two different coil configurations were selected to produce the vertical fields required. A quadrupole system, comprising modules consisting of two Merritt four-coil sets arranged side by side to limit stray fields, was built as a prototype. In the second configuration, one Merritt four-coil set was positioned inside the other to form a concentric coil set. In both in vitro systems, exposure chambers were connected to remote commercial incubators in order to reduce ambient magnetic fields in the exposure volume. An active field cancellation circuit was developed for reducing ambient AC magnetic fields in the in vitro sham exposure chamber, when necessary. These design and fabrication approaches provide systems that offer uniform field exposures and excellent stray field containment when needed and are portable, washable, and relatively inexpensive. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    4.
    5.
    Experimental data on calcium-ion release in chicken brain tissue suggest that biological effects of electric and magnetic fields (EMFs) are concentrated near certain “active combinations” of DC magnetic field strength and “effective” AC magnetic field frequencies. We hypothesize that active AC/DC combinations may exist and suggest that epidemiologic data, coupled with DC magnetic field measurements, may be used to identify critical exposure conditions. An empirical model is used to calculate these multiple active combinations at any given DC magnetic field strength and to define a rating system that incorporates the proximity of AC magnetic field frequencies generated by electric power lines to the new, computed effective frequencies. Such an exposure score may be useful in investigating correlations of EMF exposure with disease incidence. For 60 Hz and 50 Hz, the highest EMF exposure scores occurred at DC field strengths of 506 mG and 422 mG, respectively. The exposure score contains a factor which may be adjusted to reflect the importance of harmonics of the AC magnetic field as well as of the fundamental frequency. Using this factor, we consider two important special cases consistent with chick brain data: 1) we consider active pairs associated with all detectable harmonics (up to 660 Hz) without regard to relative intensity of the harmonics, and 2) we use the relative intensities of the AC field frequencies to adjust their contribution to the exposure score. © 1993 Wiley-Liss. Inc.  相似文献   

    6.
    The potential dermal and respiratory exposure and risk assessments for an applicator were performed with chromafenozide in rice fields in Korea. Three experienced farmers of approximately the same height (168–170 cm) and weight (65–73 kg) were employed to perform the experiment. Dermal patches, gloves, socks, and masks were used to monitor the potential dermal exposure (PDE), and personal air samplers with XAD-2 resins were used to monitor the potential inhalation exposure. During the mixing/loading process of chromafenozide (2.5%, EC), the average hand exposure amount was 3.7 mg and the ratio to the applied amount was 1.85 ×10?2%. For spraying process, the potential dermal exposure amount was 98.3 (74.5–112.8) mg, corresponding to 0.492% of the total exposure amount. The major exposure parts were thigh (0.37%) and shin (0.10%), and the left body (55.0%) was more than that of the right body (45.0%). The inhalation exposure amount was only 39.9 mg. For risk assessment, the mean of PDE (384.0 mg/day) and the mean of absorbable quantity of exposure (3.99 mg/day) were calculated. The value of margin of safety (MOS) ranged from 1.12 to 1.69, all MOS were >1, indicating the exposure level of chromafenozide was safe during application in rice fields.  相似文献   

    7.
    The purpose of these experiments was to determine whether the exposure of rats at night to pulsed DC magnetic fields (MF) would influence the nocturnal production and secretion of melatonin, as indicated by pineal N-acetyltransferase (NAT) activity (the rate limiting enzyme in melatonin production) and pineal and serum melatonin levels. By using a computer-driven exposure system, 15 experiments were conducted. MF exposure onset was always during the night, with the duration of exposure varying from 15 to 120 min. A variety of field strengths, ranging from 50 to 500 μT (0.5 to 5.0 G) were used with the bulk of the studies being conducted using a 100 μT (1.0 G) field. During the interval of DC MF exposure, the field was turned on and off at 1-s intervals with a rise/fall time constant of 5 ms. Because the studies were performed during the night, all procedures were carried out under weak red light (intensity of <5 μW/cm2). At the conclusion of each study, a blood sample and the pineal gland were collected for analysis of serum melatonin titers and pineal NAT and melatonin levels. The outcome of individual studies varied. Of the 23 cases in which pineal NAT activity, pineal melatonin, and serum melatonin levels were measured, the following results were obtained; in 5 cases (21.7%) pineal NAT activity was depressed, in 2 cases (8.7%) studies pineal melatonin levels were lowered, and in 10 cases (43.5%) serum melatonin concentrations were reduced. Never was there a measured rise in any of the end points that were considered in this study. The magnitudes of the reductions were not correlated with field strength (i.e., no dose-response relationships were apparent), and likewise the reductions could not be correlated with the season of the year (experiments conducted at 12-month intervals under identical exposure conditions yielded different results). Duration of exposure also seemed not to be a factor in the degree of melatonin suppression. The inconsistency of the results does not permit the conclusion that pineal melatonin production or release are routinely influenced by pulsed DC MF exposure. In the current series of studies, a suppression of serum melatonin sometimes occurred in the absence of any apparent change in the synthesis of this indoleamine within the pineal gland (no alteration in either pineal NAT activity or pineal melatonin levels). Because melatonin is a direct free radical scavenger, the drop in serum melatonin could theoretically be explained by an increased uptake of melatonin by tissues that were experiencing augmented levels of free radicals as a consequence of MF exposure. This hypothetical possibly requires additional experimental documentation. Bioelectromagnetics 19:318–329, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

    8.
    Bowman et al. used epidemiologic data to test a model in which subjects were classified as being "in-resonance" or "not-in-resonance" for 60-Hz magnetic-field exposures depending on single static magnetic-field measurements at the centers of their bedrooms. A second paper by Swanson concluded that a single static magnetic-field measurement is insufficient to meaningfully characterize a residential environment. The main objective of this study was to investigate exposure-related questions raised by these two papers in two U.S. data sets, one containing single spot measurements of static magnetic fields at two locations in homes located in eight states, and the other repeated spot measurements (seven times during the course of one year) of the static magnetic fields at the centers of bedrooms and family rooms and on the surfaces of beds in 51 single-family homes in two metropolitan areas. Using Bowman's criterion, bedrooms were first classified as being in-resonance or not-in-resonance based on the average of repeated measurements of the static magnetic field measured on the bed where the presumed important exposure actually occurred. Bedrooms were then classified a second time using single spot measurements taken at the centers of bedrooms, centers of family rooms, or on the surfaces of beds, as would be done in the typical epidemiologic study. The kappa statistics characterizing the degree of concordance between the first (on-bed averages) and second (spot measurements) methods of assessing resonance status were 0.44, 0.33, and 0.67, respectively. This level of misclassification could significantly affect the results of studies involving the determination of resonance status.  相似文献   

    9.
    Equipment designed for simultaneous exposure of rodents to 60-Hz electric and magnetic fields is described. Three identical systems were constructed, each capable of continuous exposure of 256 rats or 640 mice to a nominal electric field at less than 50 kV/m, and to horizontal and vertical magnetic fields at less than 1 mT. Design features, construction details, and results of various tests of the systems are described. Tests were made: of phase relations between electric and magnetic fields; of uniformity of electric and magnetic fields; of changes across time in electric-field intensity as a result of animals' soiling of cages and various washing routines; of resistance of bedding material during humid and dry conditions; and of acoustic noise due to background, to field-generation equipment, and to air conditioning equipment. The results demonstrated that fields were effectively generated but that significant and troublesome changes in electric-field intensity occurred because of cage-soiling. However, when cages were frequently cleaned, field intensities were consistent from one exposure to another.  相似文献   

    10.
    A small, lightweight meter has been developed for magnetic-field measurements, particularly those needed for exposure-assessment purposes. This meter, known as the AMEX-3D, continuously measures all three axes of magnetic-flux density and electronically combines the data into a single estimate of cumulative exposure to the root-mean-square (rms) resultant flux density. The AMEX-3D weighs about 120 g, measures 2.7 cm x 5.1 cm x 10.2 cm, and is battery powered. Two panel-mounted jacks are provided for measuring battery voltage and for reading cumulative exposure data from the unit. The instrument has, within 3 dB, a flat response to magnetic flux densities at all frequencies in its 30-1,000 Hz bandwidth. A detailed analysis of error sources in the AMEX-3D leads to an estimate of +/- 20% as the accuracy of the instrument over its dynamic range, which extends from 0.02 to 15 microT. The AMEX-3D was tested in the field by asking electric-utility distribution linemen to wear AMEX-3D and EMDEX meters simultaneously while working. Agreement between the two measures of exposure was excellent.  相似文献   

    11.
    12.
    Pregnant CD1 mice were exposed or sham-exposed from day 0 to day 17 of gestation to a 50 Hz sinusoidal magnetic field at 20 mT (rms). Preimplantation and postimplantation survival were assessed and fetuses examined for the presence of gross external, internal, and skeletal abnormalities. There were no statistically significant field-dependent effects on preimplantation or postimplantation survival, sex ratio, or the incidence of fetuses with internal or skeletal abnormalities. Magnetic field exposure was, however, associated with longer and heavier fetuses at term, with fewer external abnormalities. The results lend no support to suggestions of increased rates of spontaneous abortion or congenital malformation following prenatal exposure to power frequency magnetic fields. © 1994 Wiley-Liss, Inc.  相似文献   

    13.
    The possibility of an association of early pregnancy loss (EPL) with residential exposure to ELF magnetic fields was investigated in a case-control study. Eighty-nine cases and 102 controls were obtained from the data of an earlier study aimed at investigating the occurrence of EPL in a group of women attempting to get pregnant. Magnetic-field exposure was characterized by measurements in residences. Strong magnetic fields were measured more often in case than in control residences. In an analysis based on fields measured at the front door, a cutoff score of 0.5 A/m (0.63 μT) resulted in an odds ratio of 5.1 (95% confidence interval 1.0–25). The results should be interpreted cautiously due to the small number of highly exposed subjects and other limitations of the data. © 1993 Wiley-Liss. Inc.  相似文献   

    14.
    A comparison is made of induced current densities, electric fields, and rates of energy deposition during in vitro studies with linearly and circularly polarized, extremely low frequency magnetic fields for a cylindrical volume of culture medium.  相似文献   

    15.
    Several reports have shown that weak, extremely-low-frequency (ELF), pulsed magnetic fields (PMFs) can adversely affect the early embryonic development of the chick. In this study, freshly fertilized chicken eggs were exposed during the first 48 h of postlaying incubation to PMFs with 100 Hz repetition rate, 1.0 μT peak-to-peak amplitude, and 500 μs pulse duration. Two different pulse waveforms were used, having rise and fall times of 85 μs (PMF-A) or 2.1 μs (PMF-B). It has been reported that, with 2 day exposure, these fields significantly increase the proportion of developmental abnormalities. In the present study, following exposure, the eggs were allowed to incubate for an additional 9 days in the absence of the PMFs. The embryos were taken out of the eggs and studied blind. Each of the two PMF-exposed groups showed an excess in the percentage of developmental anomalies compared with the respective sham-exposed samples. This excess of anomalies was not significant for the PMF-A-treated embryos (P = 0.173), whereas it was significant for the PMF-B-exposed group (P = 0.007), which showed a particularly high rate of early embryonic death. These results reveal that PMFs can induce irreversible developmental alterations and confirm that the pulse waveform can be a determinant factor in the embryonic response to ELF magnetic fields. The data also validate previous work based on the study of PMFs' effects at day 2 of embryonic development under field exposure. © 1994 Wiley-Liss, Inc.  相似文献   

    16.
    The effects of exposure to clinical magnetic resonance imaging (MRI) on analgesia induced by the mu opiate agonist, fentanyl, was examined in mice. During the dark period, adult male mice were exposed for 23.2 min to the time-varying (0.6 T/sec) magnetic field (TVMF) component of the MRI procedure. Following this exposure, the analgesic potency of fentanyl citrate (0.1 mg/kg) was determined at 5, 10, 15, and 30 min post-injection, using a thermal test stimulus (hot-plate 50 degrees C). Exposure to the magnetic-field gradients attenuated the fentanyl-induced analgesia in a manner comparable to that previously observed with morphine. These results indicate that the time-varying magnetic fields associated with MRI have significant inhibitory effects on the analgesic effects of specific mu-opiate-directed ligands.  相似文献   

    17.
    Residential magnetic and electric fields   总被引:1,自引:0,他引:1  
    A magnetic flux density (MFD) and electric-field (E-field) data-acquisition system was built for characterizing extremely low-frequency fields in residences. Every 2 min during 24-h periods, MFD and E-field measurements were made in 43 homes in King, Pierce, and Snohomish counties of Washington State. The total electrical energy used in each residence during the 24-h measurement period was also recorded, and maps were drawn to scale of the distribution wiring within 43 m (140 ft) of these homes. Finally, on a separate date, field measurements were made in each home during an epidemiological interview. The results of this study can be summarized as follows: 1) 24-h-average MFD measured at two separate points in the family room were correlated, as were a 24-h-average bedroom measurement and the mean of the two family-room measurements. 2) The 24-h-average family-room MFD and E-field measurements were uncorrelated. 3) The 24-h-average total harmonic distortions of family-room MFD and E-fields were less than about 24% and 7%, respectively. 4) Residential MFD exhibited a definite 24-h (diurnal) cycle. 5) The 24-h-average and interviewer-measured MFD were correlated. 6) Residential 24-h-average MFD were correlated with the wiring code developed by Wertheimer and Leeper. 7) An improved prediction of 24-h-average residential MFD was obtained using the total number of service drops, the distance to neighboring transmission lines, and the number of primary phase conductors.  相似文献   

    18.
    Jiang ML  Han TZ  Yang DW  Chen MX 《生理学报》2003,55(6):705-710
    研究观察了孕期磁共振磁场照射对子代大鼠海马突触超微结构的影响。SD孕鼠妊娠第12-18d给予0.35T核磁共振(magnetic resonance imaging,MRI)磁场照射。测量1、2和5月龄雌性仔鼠海马CAl区和齿状回的突触结构参数,用立体计量学方法进行定量测定。结果显示,磁场照射可引起2月龄子代大鼠海马CAl区突触间隙增宽.齿状回突触活性区长度变短、突触界面曲率和活性区面密度减小;5月龄子代大鼠CAl区突触间隙增宽,突触后致密物变薄,突触界面曲率减小,齿状回突触间隙增宽。结果提示,妊娠期接受MRI磁场照射可引起海马突触超微结构的改变。对这些结构变化与行为损害之间的关系进行了讨论。  相似文献   

    19.
    A dosimeter for assessment of exposures to ELF fields   总被引:3,自引:0,他引:3  
    There are currently no biological indicators of electromagnetic field exposure to aid investigation of the biological effects of ELF fields, but this hiatus is partly compensated for by the ease with which the external fields can be measured. The subject of this report is a small electronic instrument that can log electric-, magnetic-, and transient-field intensities of individual subjects for a duration of two weeks, thus allowing exposure to be assessed in considerable detail. A preliminary survey conducted with the instrument has shown clear differences in domestic and occupational exposures of specific groups. Simple analytical models can be fitted to the field-exposure data by adjusting a few parameters such as current, intensity, and distance. Such modeling may be increasingly useful as the data base on exposures expands.  相似文献   

    20.
    We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 μT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 μT and 50.6 μT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4–30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 μT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 μT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands: 95% CI = 1.3–64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed. © 1995 Wiley-Liss, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号