共查询到20条相似文献,搜索用时 15 毫秒
1.
John A. Connor Lucas D. Pozzo Miller Jeffrey Petrozzino Wolfgang Müller 《Developmental neurobiology》1994,25(3):234-242
Intracellular Ca2+ dynamics have been measured using imaging techniques in dendrites and spines of CA3 hippocampal neurons in brain slice under both acute and tissue culture conditions. In response to presynatic stimulation, micromolar levels of Ca2+ are rapidly reached in spines of distal dendrites. If stimulus parameters are chosen judiciously so as to minimize postsynaptic firing, then the dendrite shaft increases are far less. Spine Ca2+ increases are largely dependent upon activation of NMDA receptors. At the large mossy fiber synapses, presynaptic stimuli also produce large Ca2+ increases but the differences in shaft-spine Ca2+ levels are much less; often they are insignificant. Also at these locations, postsynaptic firing, without presynaptic stimulation is sufficient to produce large increase in spine Ca2+ levels. 1994 John Wiley & Sons, Inc. 相似文献
2.
Intracellular Ca2+ is an important regulator of many cellular processes. Besides ion channels and transporters in the plasmalemma, changes in [Ca]i can be mediated by uptake and release mechanisms of internal organelles. Theoretical and experimental procedures are developed aiming to reveal the distribution of internal Ca2+ pools and their role in generating complicated spatial patterns of [Ca]i gradients. Cultured pyramidal neurons from rat hippocampus were loaded with Ca2+-sensitive fluorescent dyes, fura-2 and fluo-3. Cell images were partitioned according to pixel amplitude and highlighted pictures were characterized by their intensity, relative area and connectivity. This approach facilitates the localization of the sites of Ca2+ release from internal stores induced by application of different agents. After each trial, neurons were stained with dyes, acridine orange or DiOC6, which bind preferentially to nucleus and endoplasmic reticulum. A correlation between images confirmed the spatial localization of Ca2+ release sites. Application of the partition procedure also gave a clear evidence for the importance of Ca2+ influx in the mechanism of [Ca]i oscillations. 相似文献
3.
胍丁胺对大鼠心室肌细胞内游离钙浓度的影响 总被引:1,自引:1,他引:1
本研究旨在观察胍丁胺 (agmatine ,Agm)对分离大鼠心室肌细胞内游离钙浓度 ( [Ca2 +]i)的影响。用酶解方法分离大鼠心室肌细胞 ,用Fluo 3 AM负载 ,然后用激光共聚焦法测定单个心室肌细胞 [Ca2 +]i 的荧光强度 (fluorescenceintensity ,FI) ,结果以FI或相对荧光强度 (F/F0 % )表示。实验结果表明 ,在正常台氏液 (含钙 1 0mmol/L)和无钙台氏液中 ,单个大鼠心室肌细胞的荧光密度分别为 12 8 8± 13 8和 119 6± 13 6,两者无差异。Agm 0 1、1和 10mmol/L浓度依赖性地显著降低细胞的钙浓度 ;在正常台氏液中加入EGTA 3mmol/L ,Agm同样降低细胞的钙浓度。KCl 60mmol/L ,PE 3 0 μmol/L ,和Bay K 864 410 μmol/L均升高心室肌细胞的[Ca2 +]i。Agm同样降低高浓度KCl、Bay K 864 4和PE诱发的心室肌细胞 [Ca2 +]i 升高。当细胞外液钙浓度由 1mmol/L增加到 10mmol/L时 ,诱发心室肌细胞钙超载 ,同时部分心室肌细胞产生可传播的钙波 (Ca2 +wave) ,Agm 1mmol/L降低钙波的传播速度和持续时间 ,最终阻断钙波。以上结果提示 ,Agm对心室肌细胞的胞浆[Ca2 +]i具有抑制作用 ,此作用通过阻断电压依赖性钙通道而实现 ;并可能与抑制大鼠心室肌细胞内钙释放有关 相似文献
4.
Dendritic Ca2+ plays an important role not only in synaptic integration and synaptic plasticity, but also in dendritic excitability in midbrain dopamine neurons. However, the functional organization of dendritic Ca2+ signals in the dopamine neurons remains largely unknown. We therefore investigated dendritic Ca2+ signals by measuring glutamate-induced Ca2+ increases along the dendrites of acutely isolated midbrain dopamine neurons.Maximal doses of glutamate induced a [Ca2+]c rise with similar amplitudes in proximal and distal dendritic regions of a dopamine neuron. Glutamate receptors contributed incrementally to the [Ca2+]c rise according to their distance from the soma, with a reciprocal decrement in the contribution of voltage-operated Ca2+ channels (VOCCs). The contribution of AMPA and NMDA receptors increased with dendritic length, but that of metabotropic glutamate receptors decreased. At low doses of glutamate at which spontaneous firing was sustained, the [Ca2+]c rise was higher in the distal than the proximal regions of a dendrite, possibly due to the increased spontaneous firing rate.These results indicate that functional organization of Ca2+ signals in the dendrites of dopamine neurons requires different combination of VOCCs and glutamate receptors according to dendritic length, and that regional Ca2+ rises in dendrites respond differently to applied glutamate concentration. 相似文献
5.
Voltage-gated sodium channels (VGSC) are involved in the generation of action potentials in neurons. Brevetoxins (PbTx) are potent allosteric enhancers of VGSC function and are associated with the periodic 'red tide' blooms. Using PbTx-2 as a probe, we have characterized the effects of activation of VGSC on Ca(2+) dynamics and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling in neocortical neurons. Neocortical neurons exhibit synchronized spontaneous Ca(2+) oscillations, which are mediated by glutamatergic signaling. PbTx-2 (100 nm) increased the amplitude and reduced the frequency of basal Ca(2+) oscillations. This modulatory effect on Ca(2+) oscillations produced a sustained rise in ERK1/2 activation. At 300 nm, PbTx-2 disrupted oscillatory activity leading to a sustained increase in intracellular Ca(2+) ([Ca(2+)](i)) and induced a biphasic, activation followed by dephosphorylation, regulation of ERK1/2. PbTx-2-induced ERK1/2 activation was Ca(2+) dependent and was mediated by Ca(2+) entry through manifold routes. PbTx-2 treatment also increased cAMP responsive element binding protein (CREB) phosphorylation and increased gene expression of brain-derived neurotrophic factor (BDNF). These findings indicate that brevetoxins, by influencing the activation of key signaling proteins, can alter physiologic events involved in survival in neocortical neurons, as well as forms of synaptic plasticity associated with development and learning. 相似文献
6.
Pannaccione A Secondo A Scorziello A Calì G Taglialatela M Annunziato L 《Journal of neurochemistry》2005,94(3):572-586
7.
The relationship between electrical activity and spike‐induced Ca2+ increases in dendrites was investigated in the identified wind‐sensitive giant interneurons in the cricket. We applied a high‐speed Ca2+ imaging technique to the giant interneurons, and succeeded in recording the transient Ca2+ increases (Ca2+ transients) induced by a single action potential, which was evoked by presynaptic stimulus to the sensory neurons. The dendritic Ca2+ transients evoked by a pair of action potentials accumulated when spike intervals were shorter than 100 ms. The amplitude of the Ca2+ transients induced by a train of spikes depended on the number of action potentials. When stimulation pulses evoking the same numbers of action potentials were separately applied to the ipsi‐ or contra‐lateral cercal sensory nerves, the dendritic Ca2+ transients induced by these presynaptic stimuli were different in their amplitude. Furthermore, the side of presynaptic stimulation that evoked larger Ca2+ transients depended on the location of the recorded dendritic regions. This result means that the spike‐triggered Ca2+ transients in dendrites depend on postsynaptic activity. It is proposed that Ca2+ entry through voltage‐dependent Ca2+ channels activated by the action potentials will be enhanced by excitatory synaptic inputs at the dendrites in the cricket giant interneurons. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 234–244, 2002; DOI 10.1002/neu.10032 相似文献
8.
Prenatal stress is known to cause neuronal loss and oxidative damage in the hippocampus of offspring rats. To further understand the mechanisms, the present study was undertaken to investigate the effects of prenatal stress on the kinetic properties of high-voltage-activated (HVA) Ca(2+) and K(+) channels in freshly isolated hippocampal CA3 pyramidal neurons of offspring rats. Pregnant rats in the prenatal stress group were exposed to restraint stress on days 14-20 of pregnancy three times daily for 45 min. The patch clamp technique was employed to record HVA Ca(2+) and K(+) channel currents. Prenatal stress significantly increased HVA Ca(2+) channel disturbance including the maximal average HVA calcium peak current amplitude (-576.52+/-7.03 pA in control group and -702.05+/-6.82 pA in prenatal stress group, p<0.01), the maximal average HVA Ca(2+) current density (-40.89+/-0.31 pA/pF in control group and -49.44+/-0.37 pA/pF in prenatal stress group, p<0.01), and the maximal average integral current of the HVA Ca(2+) channel (106.81+/-4.20 nA ms in control group and 133.49+/-4.59 nA ms in prenatal stress group, p<0.01). The current-voltage relationship and conductance--voltage relationship of HVA Ca(2+) channels and potassium channels in offspring CA3 neurons were not affected by prenatal stress. These data suggest that exposure of animals to stressful experience during pregnancy can exert effects on calcium ion channels of offspring hippocampal neurons and that the calcium channel disturbance may play a role in prenatal stress-induced neuronal loss and oxidative damage in offspring brain. 相似文献
9.
Zhang R Yamada J Hayashi Y Wu Z Koyama S Nakanishi H 《Biochemical and biophysical research communications》2008,372(4):816-820
There is increasing evidence that a functional interaction exists between interleukin-1β (IL-1β) and N-methyl-d-aspartate (NMDA) receptors. The present study attempted to elucidate the effect of IL-1β on the NMDA-induced outward currents in mechanically dissociated hippocampal neurons using a perforated patch recording technique. IL-1β (30-100 ng/ml) inhibited the mean amplitude of the NMDA-induced outward currents that were mediated by charybdotoxin (ChTX)-sensitive Ca2+-activated K+ (KCa) channels. IL-1β (100 ng/ml) also significantly increased the mean ratio of the NMDA-induced inward current amplitudes measured at the end to the beginning of a 20-s application of NMDA. In hippocampal neurons from acute slice preparations, IL-1β significantly inhibited ChTX-sensitive KCa currents induced by a depolarizing voltage-step. IL-1 receptor antagonist antagonized effects of IL-1β. These results strongly suggest that IL-1β increases the neuronal excitability by inhibition of ChTX-sensitive KCa channels activated by Ca2+ influx through both NMDA receptors and voltage-gated Ca2+ channels. 相似文献
10.
Julia Gauberg Wassim Elkhatib Carolyn L. Smith Anhadvir Singh Adriano Senatore 《The Journal of biological chemistry》2022,298(4)
CaV1 and CaV2 voltage-gated calcium channels evolved from an ancestral CaV1/2 channel via gene duplication somewhere near the stem animal lineage. The divergence of these channel types led to distinguishing functional properties that are conserved among vertebrates and bilaterian invertebrates and contribute to their unique cellular roles. One key difference pertains to their regulation by calmodulin (CaM), wherein bilaterian CaV1 channels are uniquely subject to pronounced, buffer-resistant Ca2+/CaM-dependent inactivation, permitting negative feedback regulation of calcium influx in response to local cytoplasmic Ca2+ rises. Early diverging, nonbilaterian invertebrates also possess CaV1 and CaV2 channels, but it is unclear whether they share these conserved functional features. The most divergent animals to possess both CaV1 and CaV2 channels are placozoans such as Trichoplax adhaerens, which separated from other animals over 600 million years ago shortly after their emergence. Hence, placozoans can provide important insights into the early evolution of CaV1 and CaV2 channels. Here, we build upon previous characterization of Trichoplax CaV channels by determining the cellular expression and ion-conducting properties of the CaV1 channel orthologue, TCaV1. We show that TCaV1 is expressed in neuroendocrine-like gland cells and contractile dorsal epithelial cells. In vitro, this channel conducts dihydropyridine-insensitive, high-voltage–activated Ca2+ currents with kinetics resembling those of rat CaV1.2 but with left-shifted voltage sensitivity for activation and inactivation. Interestingly, TCaV1, but not TCaV2, exhibits buffer-resistant Ca2+/CaM-dependent inactivation, indicating that this functional divergence evolved prior to the emergence of bilaterian animals and may have contributed to their unique adaptation for cytoplasmic Ca2+ signaling within various cellular contexts. 相似文献
11.
Kushmerick C Kalapothakis E Beirão PS Penaforte CL Prado VF Cruz JS Diniz CR Cordeiro MN Gomez MV Romano-Silva MA Prado MA 《Journal of neurochemistry》1999,72(4):1472-1481
GH3 cells present spontaneous Ca2+ action potentials and oscillations of intracellular Ca2+, which can be modified by altering the activity of K+ or Ca2+ channels. We took advantage of this spontaneous activity to screen for effects of a purified toxin (Tx3-1) from the venom of Phoneutria nigriventer on ion channels. We report that Tx3-1 increases the frequency of Ca2+ oscillations, as do two blockers of potassium channels, 4-aminopyridine and charybdotoxin. Whole-cell patch clamp experiments show that Tx3-1 reversibly inhibits the A-type K+ current (I(A)) but does not block other K+ currents (delayed-rectifying, inward-rectifying, and large-conductance Ca2+-sensitive) or Ca2+ channels (T and L type) in these cells. In addition, we describe the sequence of a full cDNA clone of Tx3-1, which shows that Tx3-1 has no homology to other known blockers of K+ channels and gives insights into the processing of this neurotoxin. We conclude that Tx3-1 is a selective inhibitor of I(A), which can be used to probe the role of this channel in the control of cellular function. Based on the effect of Tx3-1, we suggest that I(A) is an important determinant of the frequency of Ca2+ oscillations in unstimulated GH3 cells. 相似文献
12.
5-HT(3) (serotonin type 3) receptors are targets of antiemetics, antipsychotics, and antidepressants and are believed to play a role in cognition. Nevertheless, contrasting results have been obtained with respect to their functions in the CNS and in the control of transmitter release. We used rat hippocampal neurons in single-neuron microcultures to identify the roles of presynaptic 5-HT(3) receptors at central synapses. 5-HT (10 microm) caused a transient > 10-fold increase in the frequency of miniature inhibitory postsynaptic currents without affecting amplitudes or kinetics. This effect was abolished by tropisetron (30 nm) and when Ca(2+) channels were blocked by 100 microm Cd(2+) it was mimicked and occluded when neurons were depolarized by 20 mm, but not 10 mm, K(+). Thus, activation of presynaptic 5-HT(3) receptors increased spontaneous GABA release by causing depolarization and opening of voltage-gated Ca(2+) channels. In microculture neurons, 5-HT transiently reduced action potential-evoked inhibitory autaptic currents by > 50%; this effect was blocked by tropisetron and mimicked by 20 mm, but not 10 mm, K(+). Miniature excitatory postsynaptic currents were not altered by 5-HT. Excitatory autaptic currents were tonically reduced, an effect attenuated by 5-HT(1A) antagonists. Thus, presynaptic 5-HT(3) receptors control GABA, but not glutamate, release and mediate opposite effects on spontaneous and action potential-dependent release. 相似文献
13.
Considerable evidence indicates that neuroadaptations leading to addiction involve the same cellular processes that enable learning and memory, such as long-term potentiation (LTP), and that psychostimulants influence LTP through dopamine (DA)-dependent mechanisms. In hippocampal CA1 pyramidal neurons, LTP involves insertion of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors into excitatory synapses. We used dissociated cultures to test the hypothesis that D1 family DA receptors influence synaptic plasticity in hippocampal neurons by modulating AMPA receptor trafficking. Brief exposure (5 min) to a D1 agonist increased surface expression of glutamate receptor (GluR)1-containing AMPA receptors by increasing their rate of externalization at extrasynaptic sites. This required the secretory pathway but not protein synthesis, and was mediated mainly by protein kinase A (PKA) with a smaller contribution from Ca2+-calmodulin-dependent protein kinase II (CaMKII). Prior D1 receptor stimulation facilitated synaptic insertion of GluR1 in response to subsequent stimulation of synaptic NMDA receptors with glycine. Our results support a model for synaptic GluR1 incorporation in which PKA is required for initial insertion into the extrasynaptic membrane whereas CaMKII mediates translocation into the synapse. By increasing the size of the extrasynaptic GluR1 pool, D1 receptors may promote LTP. Psychostimulants may usurp this mechanism, leading to inappropriate plasticity that contributes to addiction-related behaviors. 相似文献
14.
Keiko Suzuki Sadaaki Takeyama Takashi Kikuchi Shoji Yamada Jaro Sodek Hisashi Shinoda 《The journal of histochemistry and cytochemistry》2005,53(12):1525-1537
Because the development and activity of osteoclasts in bone remodeling is critically dependent on cell-cell and cell-matrix interactions, we used laser confocal microscopy to study the response of osteoclasts to lipopolysaccharide (LPS; 10 microg/ml), parathyroid hormone (PTH; 10(-8) M), and bisphosphonates (BPs; 1-25 microM clodronate or 0.1-2.5 microM risedronate) in cultured neonatal calvaria. Following treatment with LPS or PTH (<48 hr), osteopontin (OPN) and the alphavbeta3 integrin were found colocalized with the actin ring in the sealing zone of actively resorbing osteoclasts. In contrast, non-resorbing osteoclasts in BP-treated cultures showed morphological abnormalities, including retraction of pseudopods and vacuolization of cytoplasm. In the combined presence of LPS and BP, bone-resorbing osteoclasts were smaller and the sealing zone diffuse, reflecting reduced actin, OPN, and beta3 integrin staining. Depth analyses of calvaria showed that the area of resorbed bone was filled with proliferating osteoblastic cells that stained for alkaline phosphatase, collagen type I, and bone sialoprotein, regardless of the presence of BPs. These studies show that confocal microscopy of neonatal calvaria in culture can be used to assess the cytological relationships between osteoclasts and osteoblastic cells in response to agents that regulate bone remodeling in situ, avoiding systemic effects that can compromise in vivo studies and artifacts associated with studies of isolated osteoclasts. 相似文献
15.
Maroto M de Diego AM Albiñana E Fernandez-Morales JC Caricati-Neto A Jurkiewicz A Yáñez M Rodriguez-Franco MI Conde S Arce MP Hernández-Guijo JM García AG 《Cell calcium》2011,50(4):359-369
Compound ITH33/IQM9.21 (ITH/IQM) belongs to a new family of l-glutamic acid derivatives with antioxidant and neuroprotective properties on in vitro and in vivo models of stroke. Because neuronal damage after brain ischemia is tightly linked to excess Ca2+ entry and neuronal Ca2+ overload, we have investigated whether compound ITH/IQM antagonises the elevations of the cytosolic Ca2+ concentrations ([Ca2+]c) and the ensuing exocytotic responses triggered by depolarisation of bovine chromaffin cells. In fluo-4-loaded cell populations, ITH/IQM reduced the K+-evoked [Ca2+]c transients with an IC50 of 5.31 μM. At 10 μM, the compound decreased the amplitude and area of the Ca2+ transient elicited by challenging single fura-2-loaded cells with high K+, by 40% and 80%, respectively. This concentration also caused a blockade of K+-induced catecholamine release at the single-cell level (78%) and cell populations (55%). These effects are likely due to blockade of the whole-cell inward Ca2+ currents (IC50 = 6.52 μM). At 10 μM, ITH/IQM also inhibited the Ca2+-dependent outward K+ current, leaving untouched the voltage-dependent component of IK. The inward Na+ current was unaffected. Inhibition of depolarisation-elicited Ca2+ entry, [Ca2+]c elevation and exocytosis could contribute to the neuroprotective effects of ITH/IQM in vulnerable neurons undergoing depolarisation during brain ischemia. 相似文献
16.
Depletion of Ca2+ from the endoplasmic reticulum (ER) lumen triggers the opening of Ca2+ release-activated Ca2+ (CRAC) channels at the plasma membrane. CRAC channels are activated by stromal interaction molecule 1 (STIM1), an ER resident protein that senses Ca2+ store depletion and interacts with Orai1, the pore-forming subunit of the channel. The subunit stoichiometry of the CRAC channel is controversial. Here we provide evidence, using atomic force microscopy (AFM) imaging, that Orai1 assembles as a hexamer, and that STIM1 binds to Orai1 with sixfold symmetry. STIM1 associates with Orai1 in the form of monomers, dimers, and multimeric string-like structures that form links between the Orai1 hexamers. Our results provide new insights into the nature of the interactions between STIM1 and Orai1. 相似文献
17.
Bkaily Ghassan Pothier Pierre D'Orléans-Juste Pedro Simaan May Jacques Danielle Jaalouk Doris Belzile François Hassan Ghada Boutin Chantal Haddad Georges Neugebauer Witold 《Molecular and cellular biochemistry》1997,172(1-2):171-194
In recent years, fluorescence microscopy imaging has become an important tool for studying cell structure and function. This non invasive technique permits characterization, localisation and qualitative quantification of free ions, messengers, pH, voltage and a pleiad of other molecules constituting living cells. In this paper, we present results using various commercially available fluorescent probes as well as some developed in our laboratory and discuss the advantages and limitations of these probes in confocal microscopy studies of the cardiovascular system. 相似文献
18.
In previous works, we have shown that L-type voltage-operated calcium channels, N-methyl-d-aspartate receptors (NMDAr), neuronal nitric oxide synthase (nNOS) and cytochrome b5 reductase (Cb5R) co-localize within the same lipid rafts-associated nanodomains in mature cerebellar granule neurons (CGN). In this work, we show that the calcium transport systems of the plasma membrane extruding calcium from the cytosol, plasma membrane calcium pumps (PMCA) and sodium–calcium exchangers (NCX), are also associated with these nanodomains. All these proteins were found to co-immunoprecipitate with caveolin-1 after treatment with 25 mM methyl-β-cyclodextrin, a lipid rafts solubilizing agent. However, the treatment of CGN with methyl-β-cyclodextrin largely attenuated the rise of cytosolic calcium induced by l-glutamate through NMDAr. Fluorescence energy transfer imaging revealed that all of them are present in sub-microdomains of a size smaller than 200 nm, with a peripheral distribution of the calcium extrusion systems PMCA and NCX. Fluorescence microscopy images analysis revealed high calcium dynamic sub-microcompartments near the plasma membrane in fura-2-loaded CGN at short times after addition of l-glutamate. In addition, the close proximity between sources of nitric oxide (nNOS) and superoxide anion (Cb5R) suggests that these nanodomains are involved in the fast and efficient cross-talk between calcium and redox signaling in neurons. 相似文献
19.
20.