首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to clarify the role of the actin cytoskeleton during chemotactic peptide fMet-Leu-Phe (fMLF)-stimulated respiratory burst in human neutrophil granulocytes. Reactive oxygen species (ROS) was measured as luminol-amplified chemiluminescence (CL) and F-actin content as bodipy phallacidin fluorescence in neutrophils treated with latrunculin B or jasplakinolide, an inhibitor and activator of actin polymerization, respectively. Latrunculin B markedly decreased, whereas jasplakinolide increased, the F-actin content in neutrophils, unstimulated or stimulated with fMLF. Latrunculin B enhanced the fMLF-triggered ROS-production more than tenfold. Jasplakinolide initially inhibited the fMLF-induced CL-response, however, caused a potent second sustained phase (>400% of control). Both actin drugs triggered a substantial CL-response when added 5-25 min after fMLF. This was also valid for chemotactic doses of fMLF, where latrunculin B and jasplakinolide amplified the ROS-production 5-10 times. By using specific signal transduction inhibitors, we found that the NADPH oxidase activation triggered by destabilization of the actin cytoskeleton occurs downstream of phospholipase C and protein kinase C but is mediated by Rho GTPases and tyrosine phosphorylation. In conclusion, rearrangements of the actin cytoskeleton are a prerequisite in connecting ligand/receptor activation, generation of second messengers and assembly of the NADPH oxidase in neutrophil granulocytes.  相似文献   

2.
No profound alteration in the resting O2 consumption of mouse pulmonary alveolar macrophages, polymorphonuclear neutrophils or peritoneal macrophages incubated in media containing either cadmium chloride or cadmium acetate was observed. However, when heat-killed P. aeruginosa, opsonized in autologous serum, were added to the cell suspension a significant depression in the respiratory burst accompanying the phagocytic event was manifested. The suppression of the respiratory burst appeared to be related to the concentration of cadmium. The possible alteration in the relationship between macrophage microtubule assembly and endocytosis is discussed.  相似文献   

3.
Liposomes made from phosphatidylcholine (PC) or PC-fatty acid ester mixtures have been shown to induce an activation of the respiratory burst in human blood monocytes and alveolar macrophages (AM). Incorporation of 1,2-diacylglycerol or arachidonic acid into PC liposomes significantly enhanced the effect. In the case of AM, the effect of PC liposomes was similar to those of phorbol 12-myristate 13-acetate (PMA) and the ionophore A 23187, while in monocytes, PMA and A 23187 induced a stronger respiratory burst than PC liposomes. In the presence of PMA, higher liposomal concentrations were required to produce the maximum activation of the respiratory burst in both types of cells.  相似文献   

4.
When phagocytic leukocytes, e.g. neutrophils, monocytes and macrophages, interact with soluble or particulate stimuli, the cells respond with an increased production of reactive oxygen metabolites. This production can be measured with the luminol-amplified chemiluminescence (CL) technique. In the present study, the CL reaction induced in monocyte-derived macrophages was investigated and compared to the responses of neutrophils and monocytes. In systems without additives the CL response of macrophages to soluble stimuli (FMLP, PMA and ionomycin) was very low. Addition of a peroxidase (HRP) to the reaction mixtures resulted in a pronounced increase in CL activity. The cellular CL response in macrophages is thus limited by the amount of peroxidase available. The macrophage response differs qualitatively from the responses of neutrophils and monocytes, in that the intracellular phase of the response is missing.  相似文献   

5.
Respiratory burst activity and phosphorylation of an NADPH oxidase component, p47(phox), during neutrophil stimulation are mediated by phosphatidylinositol 3-kinase (PI-3K) activation. Products of PI-3K activate several kinases, including the serine/threonine kinase Akt. The present study examined the ability of Akt to regulate neutrophil respiratory burst activity and to interact with and phosphorylate p47(phox). Inhibition of Akt activity in human neutrophils by an inhibitory peptide significantly attenuated fMLP-stimulated, but not PMA-stimulated, superoxide release. Akt inhibitory peptide also inhibited hydrogen peroxide generation stimulated by bacterial phagocytosis. A direct interaction between p47(phox) and Akt was shown by the ability of GST-p47(phox) to precipitate recombinant Akt and to precipitate Akt from neutrophil lysates. Active recombinant Akt phosphorylated recombinant p47(phox) in vitro, as shown by (32)P incorporation, by a mobility shift change detected by two-dimensional gel electrophoresis, and by immunoblotting with phospho-Akt substrate Ab. Mutation analysis indicated that 2 aa residues, Ser(304) and Ser(328), were phosphorylated by Akt. Inhibition of Akt activity also inhibited fMLP-stimulated neutrophil chemotaxis. We propose that Akt mediates PI-3K-dependent p47(phox) phosphorylation, which contributes to respiratory burst activity in human neutrophils.  相似文献   

6.
Neutrophils play a central role in the innate immune response and a critical role in bacterial killing. Most studies of neutrophil function have been conducted under conditions of ambient oxygen, but inflamed sites where neutrophils operate may be extremely hypoxic. Previous studies indicate that neutrophils sense and respond to hypoxia via the ubiquitous prolyl hydroxylase/hypoxia-inducible factor pathway and that this can signal for enhanced survival. In the current study, human neutrophils were shown to upregulate hypoxia-inducible factor (HIF)-1α-dependent gene expression under hypoxic incubation conditions (3 kPa), with a consequent substantial delay in the onset of apoptosis. Despite this, polarization and chemotactic responsiveness to IL-8 and fMLP were entirely unaffected by hypoxia. Similarly, hypoxia did not diminish the ability of neutrophils to phagocytose serum-opsonized heat-killed streptococci. Of the secretory functions examined, IL-8 generation was preserved and elastase release was enhanced by hypoxia. Hypoxia did, however, cause a major reduction in respiratory burst activity induced both by the soluble agonist fMLP and by ingestion of opsonized zymosan, without affecting expression of the NADPH oxidase subunits. Critically, this reduction in respiratory burst activity under hypoxia was associated with a significant defect in the killing of Staphylococcus aureus. In contrast, killing of Escherichia coli, which is predominantly oxidase independent, was fully preserved under hypoxia. In conclusion, these studies suggest that although the NADPH oxidase-dependent bacterial killing mechanism may be compromised by hypoxia, neutrophils overall appear extremely well adapted to operate successfully under severely hypoxic conditions.  相似文献   

7.
Maximal rates of O and H2O2 production by human bloodstream monocytes activated during the respiratory burst by phorbol ester were only about 10% of those of neutrophils. Furthermore, monocytes possess only about 5% of the myeloperoxidase activity of neutrophils and so can only produce low levels of HOCI and related compounds. These combined reductions in O generating ability and lower myeloperoxidase levels result in low luminol chemiluminescence stimulated during the respiratory burst of monocytes. However, although monocytes generate much lower levels of O and H2O2 than neutrophils, these cells produce comparable rates of PMA-stimulated lucigenin chemiluminescence. Hence, this assay does not accurately reflect the production of either of these two oxidants by activated phagocytes, and further lucigenin must react with some other oxidant(s) via a process which leads to photon emission. This oxidant(s) is not O, H2O2, · OH, 1O2 or NO, but is derived from O generated during the respiratory burst and is generated in greater quantities by activated monocytes compared with neutrophils. Thus, lucigenin chemiluminescence is an indirect measure of superoxide release.  相似文献   

8.
The effects of t-butyl hydroperoxide on glutathione and NADPH and the respiratory burst (an NADPH-dependent function) in rat alveolar macrophages was investigated. Alveolar macrophages were exposed for 15 min to t-butyl hydroperoxide in the presence or absence of added glucose. Cells were then assayed for concanavalin A-stimulated O2 production or for NADPH, NADP, reduced glutathione, glutathione disulfide, glutathione released into the medium and glutathione mixed disulfides. Exposure of rat alveolar macrophages to 1 X 10(-5) M t-butyl hydroperoxide causes a loss of concanavalin A-stimulated superoxide production (the respiratory burst) that can be prevented or reversed by added glucose. Cells incubated without glucose had a higher oxidation state of the NADPH/NADP couple than cells incubated with glucose. With t-butyl hydroperoxide, NADP rose to almost 100% of the NADP + NADPH pool; however, addition of glucose prevented this alteration of the NADPH oxidation state. Cells exposed to 1 X 10(-5) M t-butyl hydroperoxide in the absence of glucose showed a significant increase in the percentage GSSG in the GSH + GSSG pool and increased glutathione mixed disulfides. These changes in glutathione distribution could also be prevented or reversed by glucose. With 1 X 10(-4) M t-butyl hydroperoxide, changes in glutathione oxidation were not prevented by glucose and cells were irreversibly damaged. We conclude that drastic alteration of the NADPH/NADP ratio does not itself reflect toxicity and that significant alteration of glutathione distribution can also be tolerated; however, when oxidative stress exceeds the ability of glucose to prevent alterations in oxidation state, irreversible damage to cell function and structure may occur.  相似文献   

9.
10.
The effect of Isorhapontigenin (Iso) isolated from Belamcanda chinensis on respiratory burst of rat neutrophils was investigated. Iso (1, 10, 100 mmol/l) showed an inhibitory effect on superoxide anion and hydrogen peroxide production in phorbol myristate acetate (PMA) activated rat neutrophils in a concentration-dependent manner. Scanning electron microscopy detected that Iso (100 mmol/l) protected against surface changes in rat neutrophils stimulated with PMA. Also, 100 mmol/l Iso inhibited the release of beta-glucuronidase from the activated neutrophils. Electron-spin resonance (ESR) detected that Iso scavenged oxygen free radicals generated in the PMA activated Neutrophils. These results suggest that Iso inhibits respiratory burst of PMA-activated rat neutrophils by scavenging oxygen free radicals.  相似文献   

11.
12.
Electropermeabilization creates small pores in the plasma membrane allowing the introduction of low-molecular-weight modulatory components, such as ions and nucleotides, into the cytosol. The present study investigates fluoride-mediated stimulation of the signal transduction pathway that activates the respiratory burst in electropermeabilized neutrophils. In marked contrast to intact (i.e., non-electropermeabilized) neutrophils, cells permeabilized by this technique demonstrated an immediate and potent stimulation of the superoxide (O2-)-generating NADPH oxidase in response to the addition of fluoride. Furthermore, permeabilization of neutrophils in the presence of exogenously added ATP enhanced the rate of F(-)-mediated O2- production. Fluoride-stimulated O2- production in electropermeabilized neutrophils was antagonized by GDP beta S and dependent upon the presence of Mg2+ in the medium, but was insensitive to pertussis toxin treatment, consistent with the hypothesis that fluoride activates a G protein, probably Gp, by interacting with the nucleotide-binding site on the G alpha subunit. In addition, electropermeabilized neutrophil O2- release triggered by F- was blocked by staurosporine and H-7, indicating that this pathway proceeds largely through protein kinase C activation. However, nucleotide-enhanced O2- production was only partially blocked by these inhibitors, suggesting that under such conditions ATP either competes with the inhibitor-protein kinase interaction or affects the signaling pathway(s) in such a way that protein kinase C may no longer be necessary for the activation of NADPH oxidase.  相似文献   

13.
The current study aims to review flow cytometric (FCM) parameters for the quantification of phagocytosis. A limitation of existing methods is their difficulty with accurate quantification of the phagocytic index, i.e., number of beads per phagocyte, in individual cell lines in mixed cell suspensions. We have quantified phagocytosis and the oxidative burst simultaneously using fluorescent beads coated with meningococcal outer membrane vesicles (OMV beads) by the conversion of dihydrorhodamine 123 (DHR-123) to rhodamine 123 (R-123). Both these processes depend on specific serum opsonins. After the incubation, staining with a fluorescent anti-CD14 monoclonal antibody succeeded in discriminating phagocytosing monocytes from neutrophils. The spectral overlaps between OMV beads, R-123, and anti-CD14 could be completely compensated. Percentage of phagocytosis and the phagocytic index were similar in monocytes and neutrophils, but the oxidative burst behaved differently. Two monocyte subpopulations were observed. Both subpopulations spontaneously converted some DHR-123 into R-123, whereas the reaction was triggered by phagocytosis in neutrophils. The total oxidative response increased with increasing phagocytic index in both cell types, but the oxidative burst in monocytes was about twice that of neutrophils. The oxidative ratio (mean R-123 fluorescence value divided by the phagocytic index) declined with time in monocytes, but increased in neutrophils. Our results demonstrate the need for careful attention to technical details. This single-laser, three-color FCM method facilitates the comparative research of phagocytosis and the oxidative burst in monocytes and neutrophils and provides a basis for a number of applications in hematology, infectious medicine, and immunology.  相似文献   

14.
It is known that low intensity magnetic fields increase superoxide anion production during the respiratory burst of rat peritoneal neutrophils in vitro. We investigated whether the high intensity magnetic fields (1.5 T) during magnetic resonance imaging can influence the human neutrophil function under in vivo conditions. Blood samples were obtained from 12 patients immediately before and after magnetic resonance imaging (mean time 27.6(+/-11.4 min)). The induced respiratory burst was investigated by the intracellular oxidative transformation of dihydrorhodamine 123 to the fluorescent dye rhodamine 123 via flow cytometry. The respiratory burst was induced either with phorbol 12-myristate 13-acetate, Escherichia coli, N-formyl-methionyl-leucylphenylalanine or priming with tumor necrosis factor followed by FMLP stimulation. There was no significant difference between the respiratory burst before and after magnetic resonance imaging, irrespective of the stimulating agent. Short time exposure to a high intensity magnetic field during magnetic resonance imaging seems not to influence the production of radical species in living neutrophils.  相似文献   

15.
The chemokinetic test (ameboid motility) and enhancement of oxygen-dependent metabolism of neutrophils (the NBT test) were considered in human blood stimulated with Staph. aureus allergen. There were three variants of stimulated cells: 1) neutrophils developing ameboid motility (13,5 +/- 1,7% cells), 2) neutrophils with activated oxygen-dependent metabolism (11.5 +/- 0.6%), 3) neutrophils positive in both the tests (2.6 +/- 0.8%). Unstimulated cells accounted for 71.6 +/- 4.1%. Considerable differences were recorded for each variant. The data obtained are regarded as evidence of dissimilar capability of neutrophils of the realization of effector functions.  相似文献   

16.
Y Fukuhara  Y Ise  K Kakinuma 《FEBS letters》1988,229(1):150-156
Recently, a flavin enzyme (pI 5.0), that is probably responsible for superoxide (O2-)-generated oxidase activity, was separated by isoelectric focusing-polyacrylamide gel electrophoresis (IEF-PAGE) from neutrophil membranes in our laboratory [(1987) J. Biol. Chem. 262, 12316-12322]. In the present work, we performed immunological studies on this enzyme derived from pig blood neutrophils. The enzyme extract obtained on IEF-PAGE was injected into guinea pigs to raise antibodies. IgG antibody against the pI 5.0 protein inhibited maximally 54% of the O2- -generating activity of the membrane-solubilized oxidase, whereas the normal serum IgG was not inhibitory at all. Our results further confirmed that the enzyme (PI 5.0) is one of the component(s) of the O2- -generating system. The enzyme gave rise to a band corresponding to a major protein of 72 +/- 4 kDa on both non-denaturing and SDS-PAGE. Immunoblotting after SDS-PAGE demonstrated labelling of peptides of 70-72, 28-32 and 16-18 kDa.  相似文献   

17.
Stimulation of polymorphonuclear leukocytes with the chemotactic peptide N-formylmethionylleucylphenylalanine (fMet-Leu-Phe) causes conversion of monomeric actin to polymeric actin. We studied the role of proteinase inhibitors phenylmethylsulfonyl fluoride PMSF) and diisopropyl fluorophosphate in fMet-Leu-Phe-induced actin polymerization in polymorphonuclear leukocytes. Pre-incubation of cells with PMSF (2 mM) for 1 min caused inhibition of fMet-Leu-Phe-induced actin polymerization, as studied by 7-nitrobenz-2-oxa-1,3-diazole (NBD) -phallacidin labeling and flow cytometry. PMSF also inhibited fMet-Leu-Phe-induced hydrogen peroxide release, superoxide anion generation and chemiluminescence. In contrast, diisopropyl fluorophosphate (5 mM) was unable to inhibit fMet-Leu-Phe-induced actin polymerization and superoxide generation, but was effective in inhibiting hydrogen peroxide production and chemiluminescence. PMSF did not cause any change in membrane potential by itself and failed to inhibit the membrane potential changes induced by fMet-Leu-Phe, indicating that PMSF does not affect the binding of fMet-Leu-Phe to the receptors. The high concentration of PMSF required coupled with the fact that diisopropyl fluorophosphate was unable to inhibit fMet-Leu-Phe-induced actin polymerization suggested that this activity of PMSF might be unrelated to proteinase inhibitory activity. Polymyxin B, a membrane-active antibiotic, had an effect similar to PMSF on fMet-Leu-Phe-induced actin polymerization. This suggests that PMSF may also be acting via its membrane effect rather than its anti-proteinase effect.  相似文献   

18.
Cytochrome b-245, the only clearly identified component of the microbicidal oxidase system of phagocytes, is a heterodimer consisting of a 23 kDa (alpha) and a 76-92 kDa (beta) subunit. This study was conducted to examine whether, in common with a number of proteins, the subunits of the cytochrome were phosphorylated upon activation of the oxidase. Both subunits were phosphorylated after activation of neutrophils or macrophages with phorbol myristate acetate or a phagocytic stimulus, although the time course of this process did not parallel that of the oxidase. Phosphorylation of these proteins was normal in cells from two patients with autosomal recessive chronic granulomatous disease, in whom phosphorylation of a 47 kDa protein is defective.  相似文献   

19.
A cytochrome b with a midpoint oxidation-reduction potential of -245mV (cytochrome b-245) that is a major component of the microbicidal oxidase system of human neutrophil leucocytes has been identified in human eosinophils, monocytes and macrophages at concentrations similar to that found in human neutrophils. It was absent from a variety of other cells. This cytochrome is present in phagocytic leucocytes and probably plays an important part in the specialized activities of these cells.  相似文献   

20.
Protein kinase C (PKC) was found to be present in purified human monocytes and lymphocytes isolated by countercurrent centrifugal elutriation. In unstimulated monocytes and lymphocytes, approximately 90% of the PKC activity was cytosolic when the cells were disrupted in the presence of EGTA. The role of this kinase in the stimulation of the respiratory burst in monocytes was investigated. Phorbol esters capable of triggering the release of O2- caused a loss of PKC activity from the cytosol and the appearance of the kinase activity in the particulate cell fraction. Kinase activity was partially extractable from the particulate fraction by 0.1% Triton X-100, whereupon it demonstrated calcium and lipid dependence. The EC50 for the phorbols in initiating the respiratory burst correlated well with their EC50 for stimulating the appearance of PKC activity in the particulate fraction (R = 0.998). Redistribution of PKC activity in monocytes by phorbol myristate acetate (PMA) was rapid and appeared to precede the release of O2-. PMA also shifted PKC activity from the cytosol to the extractable particulate fraction of lymphocytes. We conclude that redistribution of PKC activity by active phorbols or other cell stimulants could provide substrate specificity for phosphorylation reactions. By shifting PKC activity to the monocyte particulate fraction, active phorbols may initiate the phosphorylation of a substrate required for stimulation of the respiratory burst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号