首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cheung AK 《Journal of virology》2004,78(17):9016-9029
Palindromic sequences (inverted repeats) flanking the origin of DNA replication with the potential of forming single-stranded stem-loop cruciform structures have been reported to be essential for replication of the circular genomes of many prokaryotic and eukaryotic systems. In this study, mutant genomes of porcine circovirus with deletions in the origin-flanking palindrome and incapable of forming any cruciform structures invariably yielded progeny viruses containing longer and more stable palindromes. These results suggest that origin-flanking palindromes are essential for termination but not for initiation of DNA replication. Detection of template strand switching in the middle of an inverted repeat strand among the progeny viruses demonstrated that both the minus genome and a corresponding palindromic strand served as templates simultaneously during DNA biosynthesis and supports the recently proposed rolling-circle "melting-pot" replication model. The genome configuration presented by this model, a four-stranded tertiary structure, provides insights into the mechanisms of DNA replication, inverted repeat correction (or conversion), and illegitimate recombination of any circular DNA molecule with an origin-flanking palindrome.  相似文献   

2.
Some viable palindromic DNA sequences were found to cause an increase in the recovery of genetic recombinants. Although these palindromes contained no Chi sites, their presence in cis caused apparent recA+-dependent recombination to increase severalfold. This biological property did not correlate with the physical properties of the palindromes' extrusion of cruciform structures in vitro. Thus, two unrelated palindromes with similar effects on recombination in both Escherichia coli and Pseudomonas syringae displayed quite different kinetics of cruciform formation. In plasmids of native superhelical density, one palindrome underwent rapid cruciform formation at 55 degrees C, whereas the other did not form detectable cruciforms at any temperature. A shorter palindrome with similarly rapid kinetics of cruciform formation did not affect recombination detectably. The lack of a clear relationship between physical and genetic properties was also demonstrated in the case of longer, inviable palindromes. Here we found that the degree of asymmetry required in vivo to rescue a long palindrome from inviability far exceeded that required to kinetically prohibit cruciform extrusion in vitro.  相似文献   

3.
Recently, it was reported that Mg2+greatly facilitates cruciform extrusion in the short palindromes of supercoiled DNA, thereby allowing the formation of cruciform structures in vivo. Because of the potential biological importance of this phenomenon, we undertook a broader study of the effect of Mg2+on a cruciform extrusion in supercoiled DNA. The method of two-dimensional gel electrophoresis was used to detect the cruciform extrusion both in the absence and in the presence of these ions. Our results show that Mg2+shifts the cruciform extrusion in the d(CCC(AT)16GGG) palindrome to a higher, rather than to a lower level of supercoiling. In order to study possible sequence-specific properties of the short palindromes for which the unusual cruciform extrusion in the presence Mg2+was reported, we constructed a plasmid with a longer palindromic region. This region bears the same sequences in the hairpin loops and four-arm junction as the short palindrome, except that the short stems of the hairpins are extended. The extension allowed us to overcome the limitation of our experimental approach which cannot be used for very short palindromes. Our results show that Mg2+also shifts the cruciform extrusion in this palindrome to a higher level of supercoiling. These data suggest that cruciform extrusion in the short palindromes at low supercoiling is highly improbable. We performed a thermodynamic analysis of the effect of Mg2+on cruciform extrusion. The treatment accounted for the effect of Mg2+on both free energy of supercoiling and the free energy of cruciform structure per se. Our analysis showed that although the level of supercoiling required for the cruciform extrusion is not reduced by Mg2+, the ions reduce the free energy of the cruciform structure.  相似文献   

4.
Palindromes in DNA consist of nucleotides sequences that read the same from the 5′-end to the 3′-end, and its double helix is related by twofold axis. They occur in genomes of all organisms and have various functions. For example, restriction enzymes often recognize palindromic sequences of DNA. Palindromes in telomeres are crucial for initiation of replication. One can ask the questions, Do palindromes occur in protein, and if so, what function they play? We have searched the protein SWISSPROT database for palindromic sequences. A great number (26%) of different protein palindromes were found. One example of such protein is systemin, an 18-amino-acid-long peptide. It contains palindrome in its β-sheet domain that interacts with palindromic fragment of DNA. The other palindrome containing protein is cellular human tumor suppressor p53. Oligonucleotide LTIITL has been observed in the crystal structure and is located close to a DNA recognizing domain. As the number of possible palindromic sequences of a given length is far much greater for proteins (20N) than for nucleic acids (4N), the study on their role seems to be an exciting challenge. Our results have clearly showed that palindromes are frequently occurring motives in proteins. Moreover, even very few examples that we have examined so far indicate the importance of further studies on protein palindromes.  相似文献   

5.
Palindromes are symmetrical words of DNA in the sense that they read exactly the same as their reverse complementary sequences. Representing the occurrences of palindromes in a DNA molecule as points on the unit interval, the scan statistics can be used to identify regions of unusually high concentration of palindromes. These regions have been associated with the replication origins on a few herpesviruses in previous studies. However, the use of scan statistics requires the assumption that the points representing the palindromes are independently and uniformly distributed on the unit interval. In this paper, we provide a mathematical basis for this assumption by showing that in randomly generated DNA sequences, the occurrences of palindromes can be approximated by a Poisson process. An easily computable upper bound on the Wasserstein distance between the palindrome process and the Poisson process is obtained. This bound is then used as a guide to choose an optimal palindrome length in the analysis of a collection of 16 herpesvirus genomes. Regions harboring significant palindrome clusters are identified and compared to known locations of replication origins. This analysis brings out a few interesting extensions of the scan statistics that can help formulate an algorithm for more accurate prediction of replication origins.  相似文献   

6.
Palindromic sequences are important DNA motifs related to gene regulation, DNA replication and recombination, and thus, investigating the evolutionary forces shaping the distribution pattern and abundance of palindromes in the genome is substantially important. In this article, we analyzed the abundance of palindromes in the genome, and then explored the possible effects of several genomic factors on the palindrome distribution and abundance in Drosophila melanogaster. Our results show that the palindrome abundance in D. melanogaster deviates from random expectation and the uneven distribution of palindromes across the genome is associated with local GC content, recombination rate, and coding exon density. Our data suggest that base composition is the major determinant of the distribution pattern and abundance of palindromes and the correlation between palindrome density and recombination is a side-product of the effect of compositional bias on the palindrome abundance.  相似文献   

7.
Breakage-fusion-bridge cycles contribute to chromosome aberrations and generate large DNA palindromes that facilitate oncogene amplification in cancer cells. At the molecular level, large DNA palindrome formation is initiated by chromosome breaks, and genomic architecture such as short inverted repeat sequences facilitates this process in mammalian cells. However, the prevalence of DNA palindromes in cancer cells is currently unknown. To determine the prevalence of DNA palindromes in human cancer cells, we have developed a new microarray-based approach called Genome-wide Analysis of Palindrome Formation (GAPF, Tanaka et al., Nat Genet 2005; 37: 320-7). This approach is based on a relatively simple and efficient method to purify "snap-back DNA" from large DNA palindromes by intramolecular base-pairing, followed by elimination of single-stranded DNA by nuclease S1. Comparison of Genome-wide Analysis of Palindrome Formation profiles between cancer and normal cells using microarray can identify genome-wide distributions of somatic palindromes. Using a human cDNA microarray, we have shown that DNA palindromes occur frequently in human cancer cell lines and primary medulloblastomas. Significant overlap of the loci containing DNA palindromes between Colo320DM and MCF7 cancer cell lines suggests regions in the genome susceptible to chromosome breaks and palindrome formation. A subset of loci containing palindromes is associated with gene amplification in Colo320DM, indicating that the location of palindromes in the cancer genome serves as a structural platform that supports subsequent gene amplification.  相似文献   

8.
Palindromic and quasi-palindromic sequences are important DNA motifs found in various cis-acting genetic elements, but are also known to provoke different types of genetic alterations. The instability of such motifs is clearly size-related and depends on their potential to adopt secondary structures known as hairpins and cruciforms. Here we studied the influence of palindrome size on recombination between two directly repeated copies of the yeast CYC1 gene leading to the loss of the intervening sequence (“pop-out” recombination). We show that palindromes inserted either within one copy or between the two copies of the CYC1 gene become recombinogenic only when they attain a certain critical size and we estimate this critical size to be about 70 bp. With the longest palindrome used in this study (150 bp) we observed a more than 20-fold increase in the pop-out recombination. In the sae2/com1 mutant the palindrome-stimulated recombination was completely abolished. Suppression of palindrome recombinogenicity may be crucial for the maintenance of genetic stability in organisms containing a significant number of large palindromes in their genomes, like humans.  相似文献   

9.
Palindromes in DNA consist of nucleotides sequences that read the same from the 5'-end to the 3'-end, and its double helix is related by twofold axis. They occur in genomes of all organisms and have various functions. For example, restriction enzymes often recognize palindromic sequences of DNA. Palindromes in telomeres are crucial for initiation of replication. One can ask the questions, Do palindromes occur in protein, and if so, what function they play? We have searched the protein SWISSPROT database for palindromic sequences. A great number (26%) of different protein palindromes were found. One example of such protein is systemin, an 18-amino-acid-long peptide. It contains palindrome in its beta-sheet domain that interacts with palindromic fragment of DNA. The other palindrome containing protein is cellular human tumor suppressor p53. Oligonucleotide LTI-ITL has been observed in the crystal structure and is located close to a DNA recognizing domain. As the number of possible palindromic sequences of a given length is far much greater for proteins (20N) than for nucleic acids (4N), the study on their role seems to be an exciting challenge. Our results have clearly showed that palindromes are frequently occurring motives in proteins. Moreover, even very few examples that we have examined so far indicate the importance of further studies on protein palindromes.  相似文献   

10.
Nucleosomes were reconstituted in vitro from a fragment of DNA spanning the simian virus 40 minimal replication origin. The fragment contains a 27-base-pair palindrome (perfect inverted repeat). DNA molecules with stable cruciform structures were generated by heteroduplexing this DNA fragment with mutants altered within the palindromic sequence (C. Nobile and R. G. Martin, Int. Virol., in press). Analyses of the structural features of the reconstituted nucleosomes by the DNase I footprint technique revealed two alternative DNA-histone arrangements, each one accurately phased with respect to the uniquely labeled DNA ends. As linear double-stranded DNA, a unique core particle was formed in which the histones strongly protected the regions to both sides of the palindrome. The cruciform structure seemed to be unable to associate with core histones and, therefore, an alternative phasing of the histone octamer along the DNA resulted. Thus, nucleosome positioning along a specific DNA sequence appears to be influenced in vitro by the secondary structure (linear or cruciform) of the 27-base-pair palindrome. The formation of cruciform structures in vivo, if they occur, might therefore represent a molecular mechanism by which nucleosomes are phased.  相似文献   

11.
DNA palindromes are associated with rearrangement in a variety of organisms. A unique opportunity to examine the impact of a long palindrome in mammals is afforded by the Line 78 strain of mice. Previously it was found that the transgene in Line 78 is likely to be palindromic and that the symmetry of the transgene was responsible for a high level of germ line instability. Here we prove that Line 78 mice harbor a true 15.4-kb palindrome, and through the establishment of cell lines from Line 78 mice we have shown that the palindrome rearranges at the impressive rate of about 0.5% per population doubling. The rearrangements observed to arise from rapid palindrome modification are consistent with a center-break mechanism where double-strand breaks, created through hairpin nicking of an extruded cruciform, are imprecisely rejoined, thus introducing deletions at the palindrome center. Significantly, palindrome rearrangements in somatic tissue culture cells almost completely mirrored the structures generated in vivo in the mouse germ line. The close correspondence between germ line and somatic events indicates the possibility that center-break modification of palindromes is an important mechanism for preventing mutation in both contexts. Permanent cell lines carrying a verified palindrome provide an essential tool for future mechanistic analyses into the consequences of palindromy in the mammalian genome.  相似文献   

12.
A. Davison  DRF. Leach 《Genetics》1994,137(2):361-368
The construction in bacteriophage λ of a set of long DNA palindromes with paired changes in the central sequence is described. Identical palindrome centers were previously used by others to test the S-type model for cruciform extrusion in vitro. Long DNA palindromes prevent the propagation of carrier phage λ on a wild-type host, and the sbcC mutation is sufficient to almost fully alleviate this inviability. The plaque areas produced by the palindrome containing phages were compared on an Escherichia coli sbcC lawn. Central sequence changes had a greater effect upon the plaque area than peripheral changes, implying that the residual palindrome-mediated inviability in E. coli sbcC is center-dependent and could be due to the formation of a cruciform structure. The results argue strongly that intrastrand pairing within palindromes is critical in determining their effects in vivo. In addition, the same data suggests that DNA loops in vivo may sometimes contain two bases only.  相似文献   

13.
Lewis SM  Coté AG 《DNA Repair》2006,5(9-10):1146-1160
DNA palindromes are a source of instability in eukaryotic genomes but remain under-investigated because they are difficult to study. Nonetheless, progress in the last year or so has begun to form a coherent picture of how DNA palindromes cause damage in eukaryotes and how this damage is opposed by cellular mechanisms. In yeast, the features of double strand DNA interruptions that appear at palindromic sites in vivo suggest that a resolvase-type activity creates the fractures by attacking a palindrome after it extrudes into a cruciform structure. Induction of DNA breaks in this fashion could be deterred through a Center-Break palindrome revision process as investigated in detail in mice. The MRX/MRN likely plays a pivotal role in prevention of palindrome-induced genome damage in eukaryotes.  相似文献   

14.
We have identified a plasmid-like element within mitochondria of Neurospora crassa strain stp-B1. It is derived from the EcoRI-4 and EcoRI-6 regions of the mitochondrial DNA, and an additional 124 bp DNA segment of unknown origin. The plasmid DNA consists of an oligomeric series of circular molecules of monomer length 2.2 kbp. The abundance of the plasmid suggests its autonomous replication and the presence of an efficient origin of replication. An unusually large number of palindromes capable of forming secondary structures are present in the plasmid. Such a palindrome, located near sequences reminiscent of mammalian and fungal mtDNA origins of replication, may define the replication origin of the plasmid. This putative origin might also represent the replication origin of the wild-type mtDNA.  相似文献   

15.
Palindrome resolution and recombination in the mammalian germ line.   总被引:23,自引:1,他引:22       下载免费PDF全文
Genetic instability is promoted by unusual sequence arrangements and DNA structures. Hairpin DNA structures can form from palindromes and from triplet repeats, and they are also intermediates in V(D)J recombination. We have measured the genetic stability of a large palindrome which has the potential to form a one-stranded hairpin or a two-stranded cruciform structure and have analyzed recombinants at the molecular level. A palindrome of 15.3 kb introduced as a transgene was found to be transmitted at a normal Mendelian ratio in mice, in striking contrast to the profound instability of large palindromes in prokaryotic systems. In a significant number of progeny mice, however, the palindromic transgene is rearranged; between 15 and 56% of progeny contain rearrangements. Rearrangements within the palindromic repeat occur both by illegitimate and homologous, reciprocal recombination. Gene conversion within the transgene locus, as quantitated by a novel sperm fluorescence assay, is also elevated. Illegitimate events often take the form of an asymmetric deletion that eliminates the central symmetry of the palindrome. Such asymmetric transgene deletions, including those that maintain one complete half of the palindromic repeat, are stabilized so that they cannot undergo further illegitimate rearrangements, and they also exhibit reduced levels of gene conversion. By contrast, transgene rearrangements that maintain the central symmetry continue to be unstable. Based on the observed events, we propose that one mechanism promoting the instability of the palindrome may involve breaks generated at the hairpin structure by a hairpin-nicking activity, as previously detected in somatic cells. Because mammalian cells are capable of efficiently repairing chromosome breaks through nonhomologous processes, the resealing of such breaks introduces a stabilizing asymmetry at the center of the palindrome. We propose that the ability of mammalian cells to eliminate the perfect symmetry in a palindromic sequence may be an important DNA repair pathway, with implications regarding the metabolism of palindromic repeats, the mutability of quasipalindromic triplet repeats, and the early steps in gene amplification events.  相似文献   

16.
DNA in its natural, double-stranded form may contain palindromes, sequences which read the same from either side because they are identical to their reverse complement on the sister strand. Short palindromes are underrepresented in all kinds of genomes. The frequency distribution of short palindromes exhibits more than twice the inter-species variance of non-palindromic sequences, which renders palindromes optimally suited for the typing of DNA. Here, we show that based on palindrome frequency, DNA sequences can be discriminated to the level of species of origin. By plotting the ratios of actual occurrence to expectancy, we generate palindrome frequency patterns that allow to cluster different sequences of the same genome and to assign plasmids, and in some cases even viruses to their respective host genomes. This finding will be of use in the growing field of metagenomics.  相似文献   

17.
When the entire adeno-associated virus (AAV) genome is inserted into a bacterial plasmid, infectious AAV genomes can be rescued and replicated when the recombinant AAV-plasmid DNA is transfected into human 293 cells together with helper adenovirus particles. We have taken advantage of this experimental system to analyze the effects of several classes of mutations on replication of AAV DNA. We obtained AAV mutants by molecular cloning in bacterial plasmids of naturally occurring AAV variant or defective-interfering genomes. Each of these mutants contains a single internal deletion of AAV coding sequences. Also, some of these mutant-AAV plasmids have additional deletions of one or both AAV terminal palindromes introduced during constructions in vitro. We show here that AAV mutants containing internal deletions were defective for replicative form DNA replication (rep-) but could be complemented by intact wild-type AAV. This indicates that an AAV replication function, Rep, is required for normal AAV replication. Mutants in which both terminal palindromes were deleted (ori-) were also replication defective but were not complementable by wild-type AAV. The cis-dominance of the ori- mutation shows that the replication origin is comprised in part of the terminal palindrome. Deletion of only one terminal palindrome was phenotypically wild-type and allowed rescue and replication of AAV genomes in which the deleted region was regenerated apparently by an intramolecular correction mechanism. One model for this correction mechanism is proposed. An AAV ori- mutant also complemented replication of AAV rep- mutants as efficiently as did wild-type AAV. These studies also revealed an unexpected additional property of the deletion mutants in that monomeric single-stranded single-stranded DNA accumulated very inefficiently even though monomeric single-stranded DNA from the complementing wild-type AAV did accumulate.  相似文献   

18.
DNA palindromes are hotspots for DNA double strand breaks, inverted duplications and intra-chromosomal translocations in a wide spectrum of organisms from bacteria to humans. These reactions are mediated by DNA secondary structures such as hairpins and cruciforms. In order to further investigate the pathways of formation and cleavage of these structures, we have compared the processing of a 460 base pair (bp) perfect palindrome in the Escherichia coli chromosome with the same construct interrupted by a 20 bp spacer to form a 480 bp interrupted palindrome. We show here that the perfect palindrome can form hairpin DNA structures on the templates of the leading- and lagging-strands in a replication-dependent reaction. In the presence of the hairpin endonuclease SbcCD, both copies of the replicated chromosome containing the perfect palindrome are cleaved, resulting in the formation of an unrepairable DNA double-strand break and cell death. This contrasts with the interrupted palindrome, which forms a hairpin on the lagging-strand template that is processed to form breaks, which can be repaired by homologous recombination.  相似文献   

19.
Factors that bind to adeno-associated virus terminal repeats.   总被引:60,自引:49,他引:11       下载免费PDF全文
We have identified and characterized a DNA-protein complex that forms with the adeno-associated virus (AAV) terminal repeats. The complex formed only if the terminal palindrome was in the covalently closed or hairpin configuration; little if any binding was detected with the open duplex form of the terminal repeat. This fact suggested that both secondary structure and primary sequence are essential elements of recognition. DNase I protection studies indicated that virtually all of the A-A' palindrome and significant portions of the B-B' and C-C' palindromes are protected. The postulated terminal resolution site of AAV also is protected. Restriction mapping of the sequences necessary for binding indicated that almost all of the terminal palindrome must be present for binding to occur. Hairpins which are similar in size and shape to the AAV termini did not exhibit competition for binding, and the complex formed only if AAV-infected extracts were used. Thus, the binding reaction is specific for AAV sequences. The viral-coded nonstructural proteins Rep78 and Rep68 comigrated with the DNA-protein complex on neutral acrylamide gels, suggesting that one or both of these proteins are components of the complex. The characteristics of the complex suggested that it has a role in AAV DNA replication.  相似文献   

20.
J. M. Darlow  DRF. Leach 《Genetics》1995,141(3):825-832
Unusual DNA secondary structures have been implicated in the expansion of trinucleotide repeat tracts that are associated with several human inherited disorders. We present evidence consistent with the folding of these trinucleotide repeats into hairpin loops at the center of a long DNA palindrome in vivo. Our assay utilizes a palindrome in bacteriophage λ, the center of which determines its ability to inhibit plaque formation in a manner that is consistent with folding into a hairpin or cruciform structure. We show that central inserts of even numbers of d(CAG)·d(CTG) repeats inhibit plaque formation more than do odd numbers. Both d(CAG)(2)·d(CTG)(2) and d(CGG)(2)·d(CCG)(2) central sequences behave like DNA sequences known to form two-base loops in vitro, suggesting that they may also form compact and stable loops. By contrast, repeats of d(GAC)·d(GTC) do not show any evidence consistent with unusual loop stability. These results agree with in vitro evidence that the unstable repeats can form hairpin secondary structures and suggest a favored position of folding. We discuss the potential roles of secondary structures, DNA replication and recombination in models of repeat tract expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号