首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In an earlier study, we reported that an N-terminal proteolytic fragment ((1-95)IGFBP-3) corresponding to the first 95 residues of human insulin-like growth factor binding protein-3 (IGFBP-3) inhibits proliferation in a variety of fibroblasts. With a view to investigating its cytostatic capacity in carcinoma cells, we transiently transfected MCF-7 breast adenocarcinoma cells with an expression vector containing (1-95)IGFBP-3 cDNA. The transfected cells secreted a hyper-glycosylated form of (1-95)IGFBP-3. Twenty-four hours after transfection, cell morphology and viability were similar in control and (1-95)IGFBP-3-secreting cells. However, after 48 h, (1-95)IGFBP-3-secreting cells were apoptotic, with marked cytoplasmic vacuolation and increased free histones in the cytoplasm. Culture media conditioned by (1-95)IGFBP-3-secreting cells also induced morphological changes and apoptosis in wild-type MCF-7 cells, indicating that (1-95)IGFBP-3 was responsible for the effects observed. These results provide further evidence that the N-terminal proteolytic fragment of IGFBP-3 has a functional role.  相似文献   

3.
4.
Insulin-like growth factor binding protein-3 (IGFBP-3) is the most abundant IGFBP in serum and other biological fluids. Apart from its capacity for specific and high-affinity binding to IGFs, it also has so-called "IGF-independent" activities that modulate cell proliferation and survival/apoptosis. However, the molecular elements of the IGFBP-3 signalling pathway remain obscure. In this study, we investigated the possible implication of phosphatidylinositol 3-kinase (PI 3-kinase) activity in MCF-7 breast carcinoma cells. In cells incubated with IGFBP-3, both total and insulin receptor substrate-1 (IRS-1)-associated PI 3-kinase activities were rapidly stimulated, with maximal effects after 3 and 10min of incubation, respectively. IGFBP-3-induced PI 3-kinase activity was unaffected by the state of IRS-1 tyrosine phosphorylation. Since IGFBP-3 failed to stimulate PI 3-kinase activity in MDA-MB 231 breast carcinoma cells, its effects in MCF-7 cells could be considered as cell-type-specific. Pertussis toxin abolished IGFBP-3-stimulation of PI 3-kinase activity, suggesting that this IGFBP-3 signalling pathway depends upon a pertussis toxin-sensitive G protein. Our results provide further evidence that IGFBP-3 directly triggers a specific intracellular signal in MCF-7 cells.  相似文献   

5.
We examined the relationship between signal transduction and the expression of insulin-like growth factor I (IGF-I), IGF-I receptor level, and IGF binding proteins (IGFBPs) in murine clonal osteoblastic MC3T3-E1 cells. 12–O-Tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, decreased the secretion of immunoreactive IGF-I into the medium, whereas dibutyryl cAMP (Bt2cAMP) augmented the secretion In contrast, TPA increased the level of type IIGF receptor on the cells. Furthermore, MC3T3-E1 cells produced and secreted at least three different IGFBPs with molecular masses of 24, 30, and 34 kDa, and the 24-kDa IGFBP was predominant under normal conditions. However, TPA specifically increased the secretion of the 34-kDa IGFBP. The N-terminal amino acid sequence of the purified 34-kDa IGFBP was nearly identical with that of rat IGFBP-2. Furthermore, the 34-kDa IGFBP was immunoreactive to anti-IGFBP-2 antiserum. The level of IGFBP-2 mRNA in the cells was increased by TPA, indicating that the increase in IGFBP-2 secretion results from the stimulation of IGFBP-2 production. In contrast, Bt2cAMP affected neither IGF-l receptor number nor the IGFBP secretion. These results indicate that the production of IGF-l and the expression of IGF-l receptors and IGFBP-2 are up-regulated by the activation of adenylate cyclase and protein kinase C, respectively, in osteoblastic MC3T3-E1 cells. © 1994 Willey-Liss, Inc.  相似文献   

6.
7.
The insulin-like growth factors (IGFs) I and II are present in extracellular fluids associated with specific binding proteins (IGFBPs) that can modify their biologic actions. These studies were undertaken to determine which forms of IGFBP are secreted by endometrial carcinoma (HEC-1B) and breast carcinoma (MDA-231) cells, to characterize variables that control IGFBP secretion, and to study the effect of IGFBP-1 and IGFBP-2 on IGF-I stimulated cell proliferation. Secreted IGFBPs were identified by ligand blotting and IGFBP-1 was quantified using a specific radioimmunoassay (RIA). MDA-231 cell conditioned media (CM) contained four (43,000, 39,000, 30,000 and 24,000 Mr) forms of IGFBP, and HEC-1B cell CM contained three forms (39,000, 34,000 and 30,000 Mr). Immunoblotting showed that the 30,000 Mr form secreted by both cell types was IGFBP-1. Likewise the 34,000 Mr band in HEC-1B media reacted with IGFBP-2 antiserum and the 39,000 and 43,000 Mr bands reacted with IGFBP-3 antiserum. IGF-I stimulated the secretion of IGFBP-3 from both cell types and IGFBP-2 from HEC-1B cells but either decreased or caused no change in secretion of IGFBP-1 and a 24,000 Mr form. In contrast, insulin inhibited the secretion of IGFBP-1 but increased the secretion of the 24,000 Mr form. Compounds that elevate intracellular cAMP levels increased the secretion of IGFBP-3, IGFBP-1, and the 24,000 Mr form from both MDA-231 and HEC-1B cells. When sparse cultures of MDA-231 cells were used, addition of IGF-I caused a 24% increase in cell number after 48 hr. This mitogenic response was enhanced by the presence of recombinant human IGFBP-1 (45% increase in cell number, P less than 0.001). Bovine IGFBP-2 did not potentiate IGF-I stimulated cell proliferation. These findings show that two tumor cell lines secrete distinct forms of IGFBPs and that there is differential regulation of IGFBP secretion. At least one form secreted by both tumors may act as a positive autocrine modulator of IGF-I's growth stimulating actions.  相似文献   

8.
Insulin-like growth factor binding protein-3 (IGFBP-3) inhibits proliferation and promotes apoptosis in normal and malignant cells. In MCF-10A human mammary epithelial cells, 30 ng/ml human plasma-derived IGFBP-3 inhibited DNA synthesis to 70% of control. This inhibition appeared IGF-independent, since neither an IGF-receptor antibody nor IGFBP-6 inhibited DNA synthesis. Malignant transformation of MCF-10A cells by transfection with Ha-ras oncogene abolished the inhibitory effect of IGFBP-3, concomitant with an increase in IGFBP-3 secretion and cell association of approximately 60 and 300%, respectively. When mitogen-activated protein (MAP) kinase activation was partially inhibited using PD 98059, IGFBP-3 sensitivity in ras-transfected cells was restored, with a significant inhibitory effect at 10 ng/ml IGFBP-3. PD 98059 had no effect on IGFBP-3 secretion or cell association by ras-transfected or parent MCF-10A cells. Hs578T, a tumor-derived breast cancer cell line that expresses activated Ha-ras, similarly has a high level of secreted and cell-associated IGFBP-3. In the absence of PD 98059, DNA synthesis by Hs578T cells was reduced to 70% of control by 1000 ng/ml IGFBP-3. PD 98059 increased sensitivity to IGFBP-3, so that this level of inhibition was achieved with 100 ng/ml IGFBP-3. These results suggest that MAP kinase activation by oncogenic ras expression causes IGFBP-3 resistance, a possible factor in the dysregulation of breast cancer cell growth.  相似文献   

9.
Insulin-like growth factor (IGF) I is a potent mitogen for human osteosarcoma cells such as the Saos-2/B-10 cell line. IGF binding proteins (IGFBPs) prevent stimulation of DNA synthesis by IGFs. In contrast to recombinant human (rh) IGFBP-2, -3, -4, and -5, 10-100 nM rhIGFBP-6 stimulated [(3)H]thymidine incorporation into DNA and multiplication of Saos-2/B-10 cells. Upon withdrawal of serum, 30 nM IGFBP-6 also decreased apoptosis (within 4 h) and increased protein content and sodium-dependent phosphate uptake (within 24 h), but less potently than IGF I. (125)I-labeled rhIGFBP-6 did not bind to the cells, and cold IGFBP-6 did not affect (125)I-labeled IGF I binding. Production of IGF I, IGF II, and IGFBP-6 by the cells or significant degradation of rhIGFBP-6 could not be detected within 24 h of incubation. Thus, among the rhIGFBPs tested, rhIGFBP-6 is unique in stimulating osteosarcoma cell growth. Furthermore, it has an antiapoptotic effect.  相似文献   

10.

Background

Insulin-like growth factor binding proteins (IGFBPs) are six related secreted proteins that share IGF-dependent and -independent functions. If the former functions begin to be well described, the latter are somewhat more difficult to investigate and to characterize. At the cellular level, IGFBPs were shown to modulate numerous processes including cell growth, differentiation and apoptosis. However, the molecular mechanisms implicated remain largely unknown. We previously demonstrated that IGFBP-3, but not IGFBP-1 or IGFBP-5, increase intracellular calcium concentration in MCF-7 cells (Ricort J-M et al. (2002) FEBS lett 527: 293–297).

Methodology/Principal Findings

We perform a global analysis in which we studied, by two different approaches, the binding of each IGFBP isoform (i.e., IGFBP-1 to -6) to the surface of two different cellular models, MCF-7 breast adenocarcinoma cells and C2 myoblast proliferative cells, as well as the IGFBP-induced increase of intracellular calcium concentration. Using both confocal fluorescence microscopy and flow cytometry analysis, we showed that all IGFBPs bind to MCF-7 cell surface. By contrast, only four IGFBPs can bind to C2 cell surface since neither IGFBP-2 nor IGFBP-4 were detected. Among the six IGFBPs tested, only IGFBP-1 did not increased intracellular calcium concentration whatever the cellular model studied. By contrast, IGFBP-2, -3, -4 and -6, in MCF-7 cells, and IGFBP-3, -5 and -6, in C2 proliferative cells, induce a rapid and transient increase in intracellular free calcium concentration. Moreover, IGFBP-2 and -3 (in MCF-7 cells) and IGFBP-5 (in C2 cells) increase intracellular free calcium concentration by a pertussis toxin sensitive signaling pathway.

Conclusions

Our results demonstrate that IGFBPs are able to bind to cell surface and increase intracellular calcium concentration. By characterizing the IGFBPs-induced cell responses and intracellular couplings, we highlight the cellular specificity and complexity of the IGF-independent actions of these IGF binding proteins.  相似文献   

11.
It is recognized that insulin-like growth factors (IGFs) are bound to specific high-affinity insulin-like growth factor-binding proteins (IGFBPs). The role of IGFBPs in bone metabolism is not well established. The effect of recombinant human [Cys281]IGFBP-2 ([Cys281]rhIGFBP-2) on bone formation in 21-day-old fetal rat calvariae was investigated. [Cys281]rhIGFBP-2 was expressed in and purified from conditioned medium of a clonal Chinese hamster ovary cell line. IGF-I-stimulated cell proliferation was inhibited dose dependently by [Cys281]rhIGFBP-2, with half-maximal inhibition observed at 2 x 10(-8) M. Suppression of the IGF-I-stimulated DNA synthesis was observed at an apparent dose ratio of 1:10. [Cys281]rhIGFBP-2 (10(-6) M) also inhibited the basal incorporation of [3H]thymidine into DNA by up to 45%. Insulin-stimulated cell proliferation was not affected in the presence of the binding protein. In addition, [Cys281]rhIGFBP-2 inhibited bone collagen synthesis under basal and IGF-I-stimulated conditions. In contrast, [Cys281]rhIGFBP-2 did not alter the parathyroid hormone-stimulated bone cell proliferation rate. In conclusion, binding of hIGF-I to rhIGFBP-2 results in an inhibition of the actions of free IGF-I on bone cell replication and matrix synthesis. Parathyroid hormone-stimulated cell proliferation is not mediated by an increase in free IGFs.  相似文献   

12.
The proliferative action of insulin-like growth factors (IGF-I and -II) is mediated via the type I IGF receptor (IGF-IR) and is modulated by their association with high affinity binding proteins, IGFBP-1 to -6. We recently found that, in addition to its ability to bind IGFs, IGFBP-3 also inhibits IGF-IR activation independently of IGF binding and without interacting directly with IGF-IR. Here, we show that IGFBP-3 is capable of blocking the signal triggered by IGFs. Breast carcinoma-derived cells (MCF-7) were stimulated by des(1-3)IGF-I or [Gln(3),Ala(4),Tyr(15),Leu(16)]IGF-I, two IGF analogues with intact affinity for IGF-IR, but with weak or virtually no affinity for IGFBPs, then incubated with IGFBP-3. The activated IGF-IR was desensitized through reversal of its autophosphorylation, following which both phosphatidylinositol 3-kinase and p42(MAPK) activities were depressed. Direct measurement of phosphotyrosine phosphatase activity and reconstitution experiments using tyrosine-phosphorylated insulin receptor substrate-1 (IRS-1) indicated that IGFBP-3 activated a phosphotyrosine phosphatase (PTPase). This action appeared to be peculiar to IGFBP-3 among the IGFBPs, since neither IGFBP-1 nor IGFBP-5 (structurally the closest to IGFBP-3), had any such effect. Several cell lines derived from normal or tumor cells responsive to IGF-I were used to show that IGFBP-3-stimulated PTPase is cell type-specific. Although the precise nature of the phosphatase remains to be determined, the results of this study demonstrate that IGFBP-3 stimulates a phosphotyrosine phosphatase activity that down-regulates the IGF-I signaling pathway, suggesting a major role for IGFBP-3 in regulating cell proliferation.  相似文献   

13.
The insulin-like growth factors (IGFs) have been implicated in the growth regulation of human breast cancer. Since the IGFs are associated with specific binding proteins (IGFBPs) which may modulate receptor/ligand interactions, production of IGFBPs by breast cancer cells could alter their IGF-dependent growth. This study examined the expression of IGFBPs 4, 5, and 6 in eight breast cancer cell lines (BCCLs) using ribonuclease (RNase) protection assays. IGFBP-4 mRNA was detected in all BCCLs studied. IGFBP-5 expression was higher in estrogen receptor (ER) positive cells, while IGFBP-6 mRNA was detected in only two ER negative BCCLs. We also found that E2 treatment enhanced the expression of IGFBPs 2, 4, and 5 in T47-D cells. We next studied IGFBP mRNA expression in 40 primary breast tumors. All tumors expressed mRNA for IGFBPs 2–6 but none expressed IGFBP-1 message. IGFBP-3 expression was higher in ER negative tumors, while that of IGFBP-4 and -5 was higher in ER positive specimens. These differences were statistically significant (P < .05). Ligand blot analysis of tumor extracts confirmed the presence of IGFBPs in breast cancer tissues. Thus, differential IGFBP expression in ER positive and negative tumors suggests an important role for this protein in breast cancer biology.  相似文献   

14.
Insulin-like growth factor binding protein-3 (IGFBP-3) has been proposed to mediate the growth inhibitory effects of transforming growth factor (TGF)-beta in breast and prostate cancer cells. Both TGF-beta and exogenous IGFBP-3 inhibit DNA synthesis in Mv1 mink lung epithelial cells (CCL64). The present study asks whether IGFBPs synthesized by CCL64 cells mediate growth inhibition by TGF-beta. CCL64 cells synthesize and secrete a single 34-kDa IGFBP that was identified as IGFBP-2 by immunoprecipitation and immunodepletion. Recombinant bovine IGFBP-2 inhibited CCL64 DNA synthesis in serum-free media in an IGF-independent manner. Coincubation with Leu(60)-IGF-I, an IGF-I analog that binds to IGFBPs with higher affinity than to IGF-I receptors, decreased the inhibition by bIGFBP-2. Leu(60)-IGF-I also decreased the inhibition of CCL64 DNA synthesis by TGF-beta by up to 70%, whereas Long-R3-IGF-I, an IGF-I analog with higher affinity for IGF-I receptors than for IGFBPs, did not decrease inhibition, suggesting that the effect of Leu(60)-IGF-I resulted from its forming complexes with endogenous IGFBPs. Leu(60)-IGF-I did not decrease TGF-beta stimulation of a Smad3-dependent reporter gene. Following incubation of intact CCL64 cells with bIGFBP-2 at 0 degrees C, bIGFBP-2 was recovered in membrane fractions; membrane association was abolished by coincubation with Leu(60)-IGF-I. If exogenous and secreted IGFBP-2 must bind to CCL64 cells to inhibit DNA synthesis, Leu(60)-IGF-I might reduce the inhibition of DNA synthesis by bIGFBP-2 or TGF-beta by inhibiting the association of IGFBP-2 in the media with CCL64 cells. Since TGF-beta does not increase IGFBP-2 abundance, we propose that TGF-beta sensitizes CCL64 cells to the latent growth inhibitory activity of endogenous IGFBP-2 by potentiating an intracellular IGFBP-2 signaling pathway or by promoting the association of secreted IGFBP-2 with the plasma membrane.  相似文献   

15.
Ricort JM  Lombet A  Lassarre C  Binoux M 《FEBS letters》2002,527(1-3):293-297
Insulin-like growth factor binding protein-3, IGFBP-3, specifically binds to IGFs with high affinity, but it is also capable of modulating the IGF-I signalling pathway or inducing apoptosis independently of its binding to IGFs. The molecular mechanisms underlying the action of IGFBP-3 have not been elucidated. In this study, we have demonstrated that binding of IGFBP-3 to a cell surface receptor in MCF-7 breast carcinoma cells induces a rapid and transient increase in intracellular free calcium. This increase was mediated via a pertussis toxin-sensitive pathway, indicating that the IGFBP-3 receptor may be specifically coupled to a Gi protein. The effect of IGFBP-3 on calcium concentrations was dose-dependent and also occurred when IGFBP-3 was complexed with either IGF-I or heparin, suggesting that the receptor binding site is probably located in the least conserved central domain of IGFBP-3. Neither IGFBP-1, nor IGFBP-5 (structurally the closest to IGFBP-3) altered intracellular calcium concentrations. These results provide evidence that a specific intracellular signal is triggered by IGFBP-3 binding to a cell surface receptor.  相似文献   

16.
Insulin-like growth factor binding protein-3 (IGFBP-3) can inhibit cell growth by directly interacting with cells, as well as by forming complexes with IGF-I and IGF-II that prevent their growth-promoting activity. The present study examines the mechanism of inhibition of DNA synthesis by IGFBP-3 in CCL64 mink lung epithelial cells. DNA synthesis was measured by the incorporation of 5-bromo-2'-deoxyuridine, using an immunocolorimetric assay. Recombinant human IGFBP-3 (rh[N109D,N172D]IGFBP-3) inhibited DNA synthesis in proliferating and quiescent CCL64 cells. Inhibition was abolished by co-incubation of IGFBP-3 with a 20% molar excess of Leu(60)-IGF-I, a biologically inactive IGF-I analogue that binds to IGFBP-3 but not to IGF-I receptors. DNA synthesis was not inhibited by incubation with a preformed 1:1 molar complex of Leu(60)-IGF-I and IGFBP-3, indicating that only free IGFBP-3 inhibits CCL64 DNA synthesis. Inhibition by IGFBP-3 is not due to the formation of biologically inactive complexes with free IGF, since endogenous IGFs could not be detected in CCL64 conditioned media; any IGFs that might have been present could only have existed in inactive complexes, since endogenous IGFBPs were present in excess; and biologically active IGFs were not displaced from endogenous IGFBP complexes by Leu(60)-IGF-I. After incubation with CCL64 cells, (125)I-IGFBP-3 was covalently cross-linked to a major thick similar400-kDa complex. This complex co-migrated with a complex formed after incubation with (125)I-labeled transforming growth factor-beta (TGF-beta) that has been designated the type V TGF-beta receptor. (125)I-IGFBP-3 binding to the thick similar400-kDa receptor was inhibited by co-incubation with unlabeled IGF-I or Leu(60)-IGF-I. The ability of Leu(60)-IGF-I to decrease both the inhibition of DNA synthesis by IGFBP-3 and IGFBP-3 binding to the thick similar400-kDa receptor is consistent with the hypothesis that the thick similar400-kDa IGFBP-3 receptor mediates the inhibition of CCL64 DNA synthesis by IGFBP-3.  相似文献   

17.
Insulin-like growth factor (IGF)-I is a pleiotropic hormone that regulates vascular smooth muscle cell (VSMC) migration, proliferation, apoptosis, and differentiation. These actions are mediated by the IGF-I receptor. How activation of the same receptor by the same ligand leads to these diverse cellular responses is not well understood. Here we describe a novel mechanism specifying VSMC responses to IGF-I stimulation, distinctive for the pivotal roles of local IGF-binding proteins (IGFBPs). The role of local IGFBPs was indicated by comparing the activities of IGF-I and des-1-3-IGF-I, an IGF-I analog with reduced binding affinity to IGFBPs. Compared with IGF-I, des-1-3-IGF-I was more potent in stimulating DNA synthesis but much less potent in inducing directed migration of VSMCs. When the effects of individual IGFBPs were tested, IGFBP-2 and IGFBP-4 were found to inhibit IGF-I-stimulated DNA synthesis and migration. IGFBP-5 had an inhibitory effect on IGF-I-stimulated DNA synthesis, but it strongly potentiated IGF-I-induced VSMC migration. By using a non-IGF-binding IGFBP-5 mutant and an IGF-I-neutralizing antibody, it was demonstrated that IGFBP-5 also stimulates VSMC migration in an IGF-independent manner. This effect of IGFBP-5 was inhibited by soluble heparin and by treating cells with heparinase. Mutation of the heparin-binding motif of IGFBP-5 reduced its migration promoting activity. These findings suggest that local IGFBPs are important determinants of cellular responses to IGF-I stimulation, and a key player in this paradigm is IGFBP-5. IGFBP-5 not only modulates IGF-I actions, but it also stimulates cell migration by interacting with cell-surface heparan sulfate proteoglycans.  相似文献   

18.
19.
Insulin-like growth factor-binding protein-3 (IGFBP-3) is inhibitory to the growth of many breast cancer cells in vitro; however, a high level of expression of IGFBP-3 in breast tumors correlates with poor prognosis, suggesting that IGFBP-3 may be associated with growth stimulation in some breast cancers. We have shown previously in MCF-10A breast epithelial cells that chronic activation of Ras-p44/42 mitogen-activated protein (MAP) kinase confers resistance to the growth-inhibitory effects of IGFBP-3 (Martin, J. L., and Baxter, R. C. (1999) J. Biol. Chem. 274, 16407-16411). Here we show that, in the same cell line, IGFBP-3 potentiates DNA synthesis and cell proliferation stimulated by epidermal growth factor (EGF), a potent activator of Ras. A mutant of IGFBP-3, which fails to translocate to the nucleus and has reduced ability to cell-associate, similarly enhanced EGF action in these cells. By contrast, the structurally related IGFBP-5, which shares many functional features with IGFBP-3, was slightly inhibitory to DNA synthesis in the presence of EGF. IGFBP-3 primes MCF-10A cells to respond to EGF because pre-incubation caused a similar degree of EGF potentiation as co-incubation. In IGFBP-3-primed cells, EGF-stimulated EGF receptor phosphorylation at Tyr-1068 was increased relative to unprimed cells, as was phosphorylation and activity of p44/42 and p38 MAP kinases, but not Akt/PKB. Partial blockade of the p44/42 and p38 MAP kinase pathways abolished the potentiation by IGFBP-3 of EGF-stimulated DNA synthesis. Collectively, these findings indicate that IGFBP-3 enhances EGF signaling and proliferative effects in breast epithelial cells via increased EGF receptor phosphorylation and activation of p44/42 and p38 MAP kinase signaling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号